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We see by Art. (39) that, unless every first minor has the root a — I
times at least, a solution can be deduced from the first minors which
has some power of t greater than zero in the coefficient. Again,
unless every second minor has the root a—2 times at least, a solution
can be deduced from the second minors with some power of t in the
coefficient. On the whole, we infer that when a equal roots occur in the
determinant, and the terms in the solution with U s a factor are to
be absent, it is necessary as well as sufficient that all the first, second,
&o. minors up to the (« —1) th should be zero.

Investigation of the Character of the Equilibrium of an Incom-
pressible Heavy Fluid of Variable Density.* By Lord
RAYLEIGH.

[Bead April 12th, 1883.]

The well-known condition of equilibrium requires that the fluid be
arranged in horizontal strata, so that its density a is a function of the
vertical coordinate z only. If this state of things be slightly departed
from, we may regard the actual density at any point x, y} z as equal
to tr+p, where p is a function of x, y, z, and the time t, which always
remains small during the period contemplated. The component velo-
cities u, v, vf are equally to be regarded as small; they are connected
by the equation of continuity

du , dv , dw A ,,,.
T~ +-T- + - y = U (.1;.
dx dy dz

The equilibrium pressure p is a function of z only. If the actual
pressure be called p + $p, the dynamical equations become, with omis-
sion of the squares of small quantities,

dx dt' dy dt' dz yF dt Ki

One further equation is supplied by the condition that the density
of every particle remains unchanged.

Thus ^ + ^ = 0 (3).
dt dz

* These calculations were written out in 1880, in order to illustrate the theory of
cirrous clouds propounded by the late Prof. Jevons {Phil. Mag., xiv., p. 22, 1867).
Pressure of other work has prevented me hitherto from pursuing the subject.
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By Fourier's theorem, and the general theory of disturbed equi-
librium, we know that the complete solution of the present problem
may be decomposed into partial solutions, for any one of which
the variable quantities considered as functions of a? vary as eu", as
functions of y vary as e'"'", and as functions of / vary as- eint. The
wave-lengths of the disturbances parallel to x and y are X, X'; where
A = 2ir//r, \'=2TT/K.

The introduction of these suppositions into (1), (2), and (3) leads to

~=0 (4),
dz

p K'$P = — nav, -^-=—gp — inow (5),
dz

inp+w —- = 0 (6).
dz

Eliminating u and v between (4) and the two first of equations (5),

we get t(« + * ) 2 p « « ' ^
dz

Next eliminating ty between (7) and the last of equations (5), we

find t (K +K )(0p + wfft0)+n— (<r—] = 0 (8).
dz \ dz t

Finally between (6) and (8) we eliminate p, and thus obtain

dz V dz I

or, as it may be also written,

dz2 ' adz Ldz
S.w] = 0 (10).
n* )

We will first apply this equation to the well-known case of two
uniform fluids of densities ax> av separated by a horizontal boundary
(z = 0), and for brevity we will omit to write K. For both regions
of fluid, the general equation (10) reduces to

;
of which the solution is

w = Ae's + Be-'z (12).

By the condition at infinity, we are to take for the upper fluid .4=0,
and for the lower B — 0. Moreover by continuity the value of w
mast be the same for both fluids at the separating surface. Thus we
may write for the upper fluid to — Be~"z, and for the lower w = Be"3.
The second boundary condition is obtained by integrating equation
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(9) across the surface of transition. Thus

t dwl f dv)~\ OK8 , \ A

whenoe r? =• gna~^ (13),
the known solution. * a

If the upper fluid be the lighter, a%<au and w8 is positive. This
indicates stability with harmonic oscillations, whose frequency increases
without limit with «r; that is, as the wave-length diminishes. If, on
the other hand, Oi>av the equilibrium is unstable, and the instability
(measured by the rate at which a small disturbance is multiplied in a
given time) is greater the smaller the wave-length. If the disturbance
be not limited to two dimensions, we have simply to replace K by

We know from the general theory that only real values of «? are

admissible in (9), and that if — be negative throughout, all the values
ctz

of »8 are positive, but if -^ be positive throughout, all the values of ?i2
dz

are negative. In order to prove this from the equation, suppose that
w and w are two solutions corresponding to different values of n%, say
w8 and W2. Then

' dy

or, on integration by parts between two finite or infinite limits for
which w, w' vanish,

I dw dvo' i . a f • > i i s Q f da , , « , . ...

I a dz + /r I raw a2 + K -% I —ww dz = 0 (14).
J d« dz J w J dz'

In this equation w and w' may be interchanged if n* be written
for »8. Hence I a— -^- dz + K* I trwio'dz = 0 (15),

J dz dz J
I do * J A /i /»\

I —WJW dz = u ( I D ) .
J dz • v y

If now ?J.2 could be complex, there would be two solutions of the
form w = a + */3, w — a —1/3, and equation (15) would become

which cannot be true if, as we suppose, a is everywhere positive.
Again, suppose in (14) that «/= w. Thus
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from which it is evident that, if — be of one sign throughout, n* can
only be of the opposite sign.

These conclusions are limited to the cases for which every mode of
disturbance is stable, or every mode unstable j but we know that

if — be anywhere positive, instability must ensue. To see this from
dz

equation (9), we may regard it as the condition (according to the

methods of the Calculus of Variations) that I — w%dz is a maximum
J dz

• • i - i f C l d w \ * . 5 9 ^ i « • n * i • , ior minimum, while <r < (— 1 + « V / dz is given, ^ being the

then value of the ratio of the integrals. If da /dz be anywhere positive,
the first integral admits of a positive value, and therefore of a positive
maximum, so that one value at least of n2 is negative, and one mode of
disturbance is unstable.

The simplest case of a variable density which we can consider is

that obtained by supposing —y to be constant, equal say to /S, or, on
adz

integration, a = a0 e"* (18) ;

so that all strata of equal thickness are similarly constituted, differing
only in absolute density. In this case, with omission of K as before

(lO)becomes ^ + / 3 ^ - K* ( l + 2@)w = 0 (19).
dz dz \ n I

If inv wj be the roots of
w24- /?-!» —t'a H 4-nfin~2} — 0 f i!0^

the general solution of (19) is

to — Ae?"lS + Be1"'* (21),

A and B being arbitrary constants.
Let us now suppose that the fluid is bounded by impenetrable

horizontal planes at z = 0 and at z = I. Since ^u vanishes with z,
11 — —A, so that (21) becomes

w —A ( e ^ ' - e ^ ) (22).

Again, since w vanishes when ,i --~ I, e'"lt — c"h' = 0, or e['"l""')i = 1,

whence (ml — mi) I = 2aiir (23),

a being an integer. Thus (22) may be written

t(/ ^ ^ x i G j C ~̂* G • i ^ ^ *\. c 6XXI Cl _ • « • • • • I BB^E ) •
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by (20), (23), A' being a new arbitrary constant. The values of »
corresponding to the various values of a are obtained by comparison
of (20) and (23). From the former

(»*i-»h)lP = /3lP+4«fJ"(l+00n-1) (25),

so that . K J P (1+0 /3» - 2 ) = - l / P P - a V (26),

9f>

From (27) we see that the disturbances are all stable if /3 is negative,
that is, if the density diminishes upwards, and that in the contrary
case they are all unstable. The smallest admissible value of a is unity,
and this corresponds to the greatest numerical value of v?. Contrary
to what is met with in most vibrating systems, there is (in the case of
stability) a limit on the side of rapidity of vibration, but none on the
side of slowness. In the case of instability we are principally interested
in the mode for which the instability is greatest, and this also corres-
ponds to the unit value of a. When a is greater than unity, there are
internal nodal planes, as appears from (24).

If Z, K, and a are given, ?i9 is numerically greatest when /3 is such

that

If I, a, /5 be regarded as given, n% increases numerically from zero
when K is zero, up to a finite limit when K is infinite; or, in the case of
stability, as the wave-length diminishes from oo to 0, the frequency of
vibration rises from 0 to a finite value, given by

n>=-g$ (28),

which is independent both of a and of I. These vibrations are
1sochronous with the vibrations of a pendulum whose length is equal
to the distance between two strata, of which the densities are as e : 1.

If the disturbance be not limited to two dimensions, we must write
-v/(«' + «'*) for KS. The completely expressed value of w, corresponding
to one normal mode of disturbance, is then

w = Ae 1<J3sin —- cos — i - — 2 / cos —v-^, yoy cos n (t—/„)...(29).
IK \

We will now apply the solution to the investigation of the case in
which the density for all values of z less than 0 is >TU and for all values
of z greater than I is <r2, the transition from the one density to the
other being in accordance with the law a = ^e**, so that

a%- a^1 ; (30).

Whenz> l,wcc e~'s, so that for z—lt dto/wdz — ~ K\ similarly for the
lower fluid, when 3=0, dwfw dz=+ K. Thus, by (21), the boundary
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conditions are MiAe'">'+miBe'"*1 = - K (Ae

whence, by elimination of A I B,

e""' (m, + (c) (m%-K) - e"

This, in connection with (20), determines the admissible values of n.
It may be written

mlmi—K (ma—TO,) — «c8

o r K(m%-mi) = t a n h i ( } L

mxm%—K1

By (20) this may be put into the form

K (ma—m,) , i » . \
•^rr—-v \ . *' r̂  = tanh * (TO.—m.)

or, if for brevity we write 0 for (in2—vi^'l,

This equation determines 0; and then, by (20),

68 = V (TJ^-TO,)8 = I3 {(mt+mtf-

= /38P + 4 ^ 1 ( l + ^ - 1 1 ) (32),

giving n in terms of 0.

Before going farther, we may verify theso results by applying them
to the case of a sudden transition, for" which I vanishes, while (SI
remains finite. The principal solution of (31) gives 01 = /S'Z8

approximately, so that

Using this in (32), we get

8whence ua = — gn tanh \fll = —
ffj + ffi

as before.
Other solutions of (31) are obtained by supposing d'HauhjO to

vanish, whence 0 = i. a. 2irt a being an integer other than zero,
These are of no importance, as the corresponding values of n vanish.

When the layer of transition is of finite thickness, the general solu-
tion expressed by (31), (32) is rather complicated. A simplification,
which does not involve much loss of interest, may be effected by
supposing that the whole change of density is small, so that (31), (32)
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become -̂ -f-—3 = - tanh 10 (33),

F r o m ( 3 3 ) , ^ | a

whence — tanh£0 = —-, or -£- (35).

Equation (35) cannot be satisfied by any real value of 0. If we write
0 = i<j>, we get in place of it,

and in placo of (34), y/Jn-» = - - 4 l _ l (37).

The series of admissible values of <f>, given by (36), extends to
infinity, but the higher roots correspond to small values of w2, which
are of little interest. Whether the equilibrium be stable or unstable,
the most important root is the smallest. It lies in the first quadrant,
and is given by the second alternative of (36). The progress of v? as
a function of KI is easily traced. When *rZ is small, 0a = 8»rZ, and

gftn'2 = —2 (*Z)~l, which leads to «2 = — gx -*r—l, the known result

for a lapid transition. As *:Z increases, \<p ranges from 0 to -JTT, and

T^-J or cot* \<p ranges from infinity to zero. Thus the numerical

value of n2 continually increases, until for an infinitely small wave-
length it approaches the finite limit —f/p, beyond which it cannot
pass. The principal result of the substitution of a gradual for an
abrupt transition is to arrest the further increase of ?t2, after the
wave-length has diminished so far as to become comparable in magni-
tude with the thickness of the layer of transition. In the case of the
limiting value of n2, the length of the equivalent pendulum is

1+ (log at-log <r,).

If, for example, the extreme difference of densities amounted tu one
per cent., the length of the equivalent pendulum would be 100 times
the thickness of the layer of transition.

For actual calculation (36), (37) may advantageously be written

J*Z= i ^ x t a n l 0 (38),

-^7/./3Z.7/-2 = J<cẐ - sin3i0 (39),

the right-hand member of ('Si)) being equal to unity, when KI is small.
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Ascribing arbitrary values to \<f>, we can readily calculate corres-
ponding values of KI and |vZ/sin2 %<f>, and thus exhibit the effect upon
the equilibrium of a gradual increase in the thickness of the layer of
transition, the extreme densities (determined by. fil) and the wave-
length being given.
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Equations nf the Loci of the Intersections of three Tangent Lines
and of three Tangent Planes to any Quadric u = 0. By Pro-
fessor WOLSTENIIOLMB.

[Read April \1th, 1883.]

If u =• 0 be the rational equation of the second degree of any quadric,
the equation of the tangent cone whose vertex is (xys) is (using XY2!
for current coordinates), when referred to its vertex as origin,

d.c

and the coctlu;ient of X2 in this is
itz

that o£ 2I-Z is 2,. -^- - 'h 'la,
dydz dy dz

Hence if we write A, U, (7, F, G, II for

dW dru* tP«» (72»»
</.r" dif ifc-' dydz' dzdx' dxdy*
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