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Abstract 

Results from the investigation of the diffusion processes in a dry acrylamide-based photopolymer 

system are presented. The investigation is carried out in the context of experimental work on 

optimization of the high spatial frequency response of the photopolymer. Tracing the 

transmission holographic grating dynamics at short times of exposure is utilized to measure 

diffusion coefficients. The results reveal that two different diffusion processes contribute with 

opposite sign to the refractive index modulation responsible for the diffraction grating build up. 

Monomer diffusion from dark to bright fringe areas increases the refractive index modulation. It 

is characterized with diffusion constant D0=1.6.10-7 cm2/s. A second diffusion process takes place 

during the recording. It decreases the refractive index modulation and we ascribe it to diffusion of 

short chain polymer molecules and/or radicals from bright to dark fringe areas. The estimated 

diffusion coefficient for this process is D0= 6.35.10
-10

 cm
2
/s. The presence of the second process 

could be responsible for poor high spatial frequency response of the investigated photopolymer 
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system. Comparison with the diffusion in photopolymer systems known for their good response 

at high spatial frequencies shows that both investigated diffusion processes measured here occur 

in a much faster time scale.  

Introduction 

Photopolymers represent a class of photosensitive materials attracting scientific and industrial 

interest because of their high sensitivity, large dynamic range, easy processing and relatively low 

cost. Development of dry self-processing photopolymer systems makes photopolymers suitable for a 

large variety of applications – design of optical elements
1,2

, real-time interferometry
3,4

 and write 

once optical memories5-7. The acrylamide - based photopolymer developed in our group2,8 has 

excellent characteristics for transmission holograms recording. In addition to high sensitivity and 

diffraction efficiency, in normal use it suffers negligible shrinkage during and after the holographic 

recording in contrast to the data reported for other photopolymer systems
9
.  A disadvantage of this 

photopolymer system in its current formulation is its poor response at high spatial frequency 

holographic recording. To improve the high special frequency response a thorough understanding of 

the holographic recording mechanism in this particular system is required. Theoretical models 

describing holographic grating formation in different photopolymer systems predict that the 

monomer diffusion rate is a crucial factor for its performance during holographic recording. In the 

present work we focus our research on investigation of the monomer diffusion process in the 

acrylamide-based photopolymer system and we compare it with other photopolymers that are known 

for their good response in reflection mode of recording. To best of our knowledge we present here 

the first independent measurement of the diffusion constants characterizing the diffusion processes 

in this dry acrylamide – based photopolymer system. The mechanisms of holographic grating 
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formation and poor high spatial frequency response in relation to measured fast diffusion time 

constants are discussed.    

Theory 

Photochemical reactions during the holographic recording in photopolymer system 

 

The basic formulation of the dry photopolymer system contains photoinitiator and monomer that 

are dispersed in a binder matrix. In the investigated acrylamide-based photopolymer system 

photoinitiation is a two step process. Upon illumination of the photopolymer with light of 

appropriate wavelength the sensitizing dye absorbs a photon and reacts with an electron donor to 

produce free radicals (initiation step). These initiate polymerization where the light was absorbed. 

Chain propagation or termination follows the initiation. During the propagation reaction free 

radicals and monomer molecules interact and the polymer chains grow. At the termination step 

two free radicals interact and a polymer chain stops growing. Currently accepted models describe 

the recorded pattern formation as a result of changes in the density and the molecular 

polarizability, which accompany the polymerization. The magnitude of the refractive index 

change is dependent on the chain length achieved.    

 

Diffusion model for holographic grating formation in photopolymer system 

 

The diffusion models
10-15

 predict that the key factor that controls dynamics and final properties of 

the recorded holographic grating (refractive index space profile and modulation) is proportional to 

the ratio of polymerization rate and monomer diffusion rate. Both parameters are strongly 



 4 

dependent on the nature of the photopolymer system and having information about them one can 

find the optimal conditions for holographic recording. Two different regimes of holographic 

recording at given spatial frequency can be distinguished with respect to the ratio of the diffusion 

and polymerization rate. When the polymerization rate is slower than the diffusion rate, the grating 

profile closely resembles the sinusoidal recording interference pattern and a high saturation value of 

the refractive index modulation can be achieved. When the monomer diffusion rate is slower than 

the polymerization rate deviation from the sinusoidal profile of the grating is observed and the 

diffraction efficiency at saturation is lower. The monomer diffusion rate is characteristic for a given 

photopolymer system. In a simplified picture when the diffusion dependence on the degree of 

polymerization is not considered the diffusion time will be constant at given spatial frequency. The 

polymerization rate, however depends on the recording intensity. By changing the recording 

intensity one can control the polymerization rate and in such a way to switch between the two 

regimes – effectively slow diffusion compared to the polymerization rate at high intensity and 

effectively fast diffusion when the intensity and the polymerization rate are low. There is little data 

available for diffusion constants in photopolymer systems. In most of it the monomer diffusion rate 

is relatively slow (6.51.10
-11

 cm
2
/s for Omnidex DuPont photopolymers

11
 and 3.57.10

-14
 cm

2
/s for 

the system investigated by Colvin et al 
12

) and increasing the recording intensity is not favorable for 

high holographic performance of such materials. 

Modeling the diffraction grating kinetics in continuous mode
13-15

 can only supply information about 

the ratio between both rates and in most of the cases the diffusion rates reported are based on 

assumed polymerization rates. In order to get the information required to optimize our 

photopolymer system’s response during the holographic recording, a separate determination of the 

diffusion and polymerization rate is necessary. The characterization of a given photopolymer 
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system is complicated by the fact that both the diffusion and the polymerization rate depend on the 

monomer concentration. This leads to a time dependence of both rates during the holographic 

recording. In the present investigation we have focused our attention on the estimation of the initial 

diffusion constant D0 using short exposure time for recording holographic gratings with low 

diffraction efficiency (in order of 1%).      

 

Experimental 

 

Materials 

The photosensitive layer was prepared as previously described3. Briefly, 2ml of triethanolamine 

was added to 17.5ml stock solution of polyvinyl alcohol (PVA) (10% w/w). Then the monomer, 

1g acrylamide, was added. In some of the samples a second monomer was used as a crosslinking 

agent. In these samples 0.32g – N,N Methylene bisacrylamide and 0.48g acrylamide were used. 

Finally, 4ml of Erythrosin B dye was added (stock solution concentration - 1.1mM). The solution 

was made up to 25ml by adding distilled water. 2ml of this solution were spread on 50x50mm 

plate. The samples were dried for 36 - 48 hours. Sample thickness after drying was 150µm.   

 

Measurement of monomer diffusion coefficient 

A method described by Colvin et al12 was utilized to measure the monomer diffusion coefficient. 

We recorded a transmission grating build-up during and after a short exposure (the recording 

time must be faster than the expected monomer diffusion time). We ensure that the exposure is 
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small enough so that we can assume the diffusion coefficient is not spatially modulated. 

Transmission gratings with diffraction efficiency of the order of few percent were recorded using 

NdYVO4 laser (Verdi 05) λ=532nm. Recording times were in 0.1-2 s range and the total 

recording intensity was varied between 3.5 and 70mW/cm2. A He - Ne laser, λ=633nm, was used 

for non-destructive real – time observation of grating formation. The photopolymer absorption is 

negligible at 633nm and the investigated gratings are considered as phase gratings, i.e. due to 

photoinduced change in refractive index. Transmission gratings at different spatial frequencies in 

the range 200-2000 l/mm were investigated. Diffracted signals in the +1 order were recorded 

using a Newport Model 840 optical power meter. A Laplace Instruments data acquisition system 

was used to transfer the signal from the photodetector to a computer. Time resolution of the data 

acquisition system was 5ms.   

The refractive index modulation ∆n was calculated using the measured diffraction efficiency η 

according to Kogelnik’s theory
16

 in the following way:      

..

sin.cos

d

Arc
n

π

ηθλ
=∆ ,    (1) 

 

where d is the sample thickness, λ – reconstructing beam wavelength and  θ - reading beam 

incidence angle. After taking into account the level of refractive index modulation
20, 21

 we have 

estimated that even at the lowest reported spatial frequency (100 l/mm) equation (1) is applicable 

with a good approximation. The curves representing the time dependence of the refractive index 

change were fitted with Microcal Origin software applying the Levenberg–Marquardt method for 

minimizing the chi-square value. The diffusion time τd at given spatial frequency was extracted 

from the fitting results. Using the relation
11, 14
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2

0

1

KD
d =τ ,     (2), 

 

where K=2π/Λ , Λ - fringe spacing,  after linear fit of the diffusion time dependence on 1/K
2
 , the 

diffusion constant D0 was calculated.  

 

Results and discussion 

 

Preliminary investigation
8
 of the presented photopolymer system suggests that the 

diffusion processes must happen in much faster time scale than in other dry photopolymer 

systems. In order to better resolve the refractive index changes due to diffusion our investigation 

began at low spatial frequency of recording. The gratings were recorded for 0.1s with recording 

exposure 40mW/cm2. A characteristic curve for the refractive index modulation at a spatial 

frequency of 200 l/mm is presented in Figure 1. The maximum diffraction efficiency of the 

recorded grating was < 1%. Fresnel reflection losses were taken into account by multiplication of 

the diffraction efficiency expression by an appropriate factor. After the recording beams had been 

switched off (the moment is shown with an arrow in the figure) an initial increase (labeled as 

postprocess 1) followed by a decrease (postprocess 2) in the refractive index modulation were 

observed. Both processes can be characterized by single time constants after fitting the recorded 

kinetics with a two-exponential function. Data fit using three or four exponential functions was 

also carried out but the fit results in these cases were not characterised by a better chi-square 

value. As has been observed in other photopolymer systems
17, 18

 illumination with homogeneous 

light (postprocess 3 in Fig. 1) increased the diffraction efficiency. For postexposure a third beam, 
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different than the recording beams, was used so the effects related to illumination under Bragg 

angle, generation of a diffracted wave and existence of an interference pattern due to 

superposition of these two waves, were avoided. An increase in the diffraction efficiency after 

illumination with a single beam was observed for the gratings with very low diffraction 

efficiencies (a few percent) and also for those with more than 30% diffraction efficiency. The 

illumination with homogeneous light has a similar effect at low (100 l/mm) and at high 

(2000l/mm) spatial frequency of recording. This effect confirms that the recorded grating is not a 

result of polymerization only, otherwise homogeneous polymerization would erase the grating. 

Some additional process, accompanying the polymerization must take place during the recording 

in the photopolymer and must have a positive contribution to the final refractive index 

modulation. We ascribe this process to mass transport of monomer from dark to bright fringe 

areas due to a concentration gradient created during illumination with spatially modulated field. 

The increase in the refractive index modulation during postprocess 3 can be explained by the 

existence of a second spatial modulation of the refractive index that creates a phase grating 

shifted by π with respect to the main grating.  The origin is the conversion of the acrylamide 

double to single bond during the polymerization. The lower polarizability of the single bonds 

would, if this effect were considered, reduce the refraction index in exposed area
19

. Without post 

exposure, the grating due to the mass transport (higher refractive index in the bright fringe areas) 

and the grating due to bond conversion (lower refractive index in bright fringe areas) are 

superimposed and the final grating will have diffraction efficiency corresponding to the 

difference between the two gratings. When the sample is illuminated with homogeneous light the 

grating due to the bond conversions is erased and the effective diffraction efficiency observed 

increases (Fig.1 postprocess 3).  
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In order to check whether the initial positive contribution to the refractive index 

modulation (postprocess 1) is related to monomer diffusion, gratings at different spatial 

frequencies were recorded (100 to 2000 l/ mm). The dynamics of the gratings recorded at 200, 

500, and 1000 l/mm after illumination for 0.5s with intensity 10mW/cm
2 

show that in this range 

there is no dependence of the rise time on the spatial frequency. Only at very large fringe spacing 

(> 5 µm) was the dependence of the dynamics of the initial process on the spatial frequency 

observed. Data for 100 and 200 l/mm are shown in Fig.2. It is seen from the figure that the initial 

rate of increase in the refractive index modulation is lower at 100 l/mm. The dependence of the 

initial rate of increase on the spatial frequency was better observed in the samples containing N,N 

Methylene-bisacrylamide as all postprocesses were much slower in this sample (Fig.3). Here the 

rate of increase clearly slowed as the spatial frequencies decreased. As the polymerization rate 

itself should not depend on the spatial frequency (at such low % conversions) monomer diffusion 

from dark to bright fringe areas must be the main contributor to this increase of the diffraction 

efficiency. At higher spatial frequencies the diffusion distance is shorter, so any diffusion related 

process would be expected to be faster. Similar increase in the diffraction efficiency of the 

recorded gratings at short exposure times has been observed in other photopolymer systems 
11,12

.      

Analyzing the spatial frequency dependence of the dynamics of postprocess 2 in the same 

recorded gratings (Fig. 3) we observed that increasing the spatial frequency speeds up the decay 

in refractive index modulation. The same dependence on the spatial frequency was observed for 

the sample containing only acrylamide up to 1000l/mm. At high spatial frequency (2000 l/mm) 

when the postprocess 2 was very fast it could be observed separately from postprocess 1 only at 

very short exposure times (Fig. 4b). This dependence on the spatial frequency implies that the 

postprocess 2 is also related to diffusion between the differently illuminated areas. Such effect 
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could be expected from a diffusion of radicals or short chain polymer molecules in direction 

opposite to that of the monomer diffusion, i.e. from bright to dark fringe areas. 

 In order to check whether there could be a contribution of diffusion from the back to the 

front of the photopolymer layer we have measured the actual thickness of the recorded gratings 

by measuring their angular selectivity. It was estimated that the grating thickness is 

approximately 70% of the thickness of the layer and it does not depend on the recording intensity 

in the investigated intensity range. Even at the lowest spatial frequency of 100 l/mm the thickness 

of the grating is much larger than the fringe spacing. This fact combined with the pronounced 

dependence of the dynamics of postprocess 2 on the spatial frequency of recording supports the 

hypothesis that the diffusion described by postprocess 2 is in direction parallel to the grating 

vector.  

An interesting result from data fit for the samples additionally containing crosslinker is 

that the decaying component can not be fitted by a single-exponential function as in the case of 

the samples containing one monomer only. At least a two-exponential function is necessary to fit 

the dynamics of postprocess 2. A detailed investigation of the influence of crosslinker on the 

diffusion processes after short exposure is currently in progress and will be reported elsewhere.   

In order to check the hypothesis that two separate diffusion processes take place a set of 

gratings at constant spatial frequency were recorded. Time and intensity of recording were varied, 

so the final recording exposure was constant for a given set. The refractive index modulations 

recorded at 500 l/mm and 2000 l/mm are presented in Fig. 4a and Fig. 4b respectively. The first 

experimental observation is related to the maximum of the refractive index modulation. 

Increasing the exposure time (with an appropriate drop in intensity) produces higher diffraction 

efficiency of the recorded grating and hence higher refractive index modulation at both spatial 

��������� 
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frequencies. An explanation for such dependence can be found in the following. At longer 

exposure times the density of the photons in a given time interval will be smaller, so the 

concentration of the photoinduced radicals will be smaller. As a result the termination rate will be 

slower, hence a single radical will live longer and will cause the polymerization of a larger 

number of monomer molecules. As an ultimate result the number of the monomer molecules 

consumed per single photon will be higher at low intensities. Consequently at lower intensity of 

recording the gradient in the monomer spatial distribution will be higher and more molecules will 

diffuse from dark to bright fringe areas causing higher refractive index modulation. In other  

words,  a slower polymerization rate will result in longer polymer chains and conversion of a 

larger number of molecules from monomer to polymer. The larger refractive index modulation at 

lower intensities could be therefore associated to the polymer chain length. 

The second experimental observation is related to the amplitude of the initial rising 

component in the diffraction efficiency dynamics (see position of arrow for end of recording 

period). At both spatial frequencies the amplitude increases when the time of exposure is shorter 

and intensity is higher. This implies that when the exposure time is sufficient the main part of 

diffusion occurs during the recording period. Only at very short exposure times (or at very low 

spatial frequencies) one can observe the effect of monomer diffusion and measure the 

corresponding monomer diffusion time. 

The third experimental observation concerns the fall off in refractive index modulation 

that occurs after the initial rise - postprocess 2. It is seen from Fig.4a that the amplitude of the 

decreasing component in the refractive index modulation is different despite the fact that the 

exposure is kept constant. If the time of exposure is the main factor that influences the amplitude, 

decreased amplitude at longer exposure times could mean that the main part of diffusion occurs 
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during the recording time. Only a small part is observable after the recording is stopped. An 

alternative explanation could be related to the change in the intensity at shorter exposure times. 

At higher recording intensity the polymer chains will be shorter so they can more freely escape 

from bright to dark areas and in this  way will decrease refractive index modulation to a greater 

extent. When recording at high spatial frequency – 2000 l/mm (Fig.4b) postprocess 2 becomes 

very fast and can be observed only at very short times of exposure (see the inner chart in Fig.4b).     

Based on the data from the fitting results, the dependence of the characteristic time 

constants for postprocess 1 and postprocess 2 in samples containing one monomer only were 

extracted. As the dependence of the time constants for postprocess 1 on the spatial frequency can 

be discriminated only at 100 and 200 l/mm, for calculation of the diffusion constant we used the 

data at these two spatial frequencies. The characteristic diffusion times were 0.13 s and 0.046 s 

for 100 l/mm and 200l/mm respectively. The calculated monomer diffusion constant was D0= 

1.61 ± 0.03 10
-7

 cm
2
/s. The spatial frequency dependence of the diffusion time for postprocess 2 

is shown in Fig.5. After linear fit of the data we calculated a value of D0 = 6.35 ± 0.2 10
-10

 cm
2
/s 

for the second diffusion process. The errors were calculated after taking into account the 

following sources of error: error in the diffraction grating spatial frequency caused by limited 

accuracy of the optical set-up geometry; error in the time measurement caused by the limited time 

resolution; errors from the fitting procedure.  

 

 

Conclusions 
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We have investigated the mechanism of recording in a dry acrylamide-based photopolymer 

system. From the measured kinetics of the refractive index modulation after small recording 

exposure we were able to distinguish two diffusion processes. They make opposing contributions 

to the final diffraction efficiency. The monomer diffusion from the dark to bright fringe areas 

leads to an increase of the refractive index modulation. The diffusion coefficient estimated for 

this process is D0=1.61 ± 0.03.10
-7

cm
2
/s. It is significantly faster than other photopolymer 

systems known for their good response at high spatial frequency (Dupont Omnidex photopolymer 

for reflection holography is characterized by diffusion constant 6.51.10
-11 

cm
2
/s [11]).  We 

ascribe the second diffusion process to diffusion of short polymer chains and/or radicals from 

bright to dark fringe areas with a characteristic time in order of D0= 6.35 ± 0.2 10
-10

 cm
2
/s. The 

second diffusion process makes a negative contribution to the refractive index modulation and 

could be responsible for poor performance of the photopolymer at high spatial frequency of 

recording. Further investigations concerning the influence of the photopolymer composition 

(mainly the influence of the crosslinker and the molecular weight of the binder) on the diffusion 

rates and the photopolymer response at high spatial frequencies are in progress.  
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Figure captions: 

 

 Fig.1 Refractive index modulation after recording for 0.1s with intensity 40 mW/cm2 at spatial 

frequency 200 l/mm.  The grating is illuminated with a homogeneous light 325s after the beginning 

of the recording. 

 

Fig.2 Comparison of the dynamics of refractive indexes modulation at low spatial frequencies – 

100l/mm (gray) and 200l/mm (black). Recording intensity - 40mW/cm2 ; recording time – 0.1s.   

 

Fig.3 Spatial frequency dependence of the refractive index modulation after recording for 0.2s 

with intensity 10mW/cm
2
 at 200 l/mm (black), 350 l/mm (light gray) and 500 l/mm (gray).  The 

sample contains acrylamide and N,N Methylene bisacrylamide in 3/2 weight ratio. 

 

Fig.4 Refractive index dynamics at constant exposure of recording: time of recording - 2s, 

recording intensity - 3.5 mW/cm2 (black); 0.5s and 14 mW/cm2 (light gray);  0.1s and 70m W/cm2 

(gray). The gratings are recorded at 532 nm and probed at 633 nm. Spatial frequency is 500 l/mm 

(a) and 2000 l/mm (b). 

 

Fig.5 Dependence of characteristic time for postprocess 2 on the fringe spacing. Data for the 

diffusion times are extracted after fit of the recorded refractive index modulations. The gratings are 

recorded for 0.5 s with overall intensity 10mW/cm
2
. The recording wavelength is 532nm, probing 

wavelength – 633nm. Error bars are within the size of the symbols.  
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 Fig.1 Refractive index modulation after recording for 0.1s with intensity 40 mW/cm
2
 at spatial frequency 200 l/mm.  The grating is 

illuminated with a homogeneous light 320 s after the beginning of the recording. 
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 Fig.2 Comparison of the dynamics of refractive indexes modulations at low spatial frequencies – 100l/mm (gray) and 200l/mm (black). 

Recording intensity - 40mW/cm2 ; recording time – 0.1s.   
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 Fig.3 Spatial frequency dependence of the refractive index modulation after recording for 0.2s with intensity 10mW/cm
2
 at 200 l/mm 

(black), 350 l/mm (light gray) and 500 l/mm (gray).  The sample contains acrylamide and N,N Methylene bisacrylamide in 3/2 weight 

ratio. 
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Fig.4 

Fig. 4a  Refractive index dynamics at constant exposure of recording: time of recording - 2s, recording intensity - 3.5 mW/cm
2
 

(black); 0.5s and 14 mW/cm
2
 (light gray);  0.1s and 70m W/cm

2
 (gray). The gratings are recorded at 532 nm and probed at 633 nm. 

Spatial frequency is 500 l/mm (a) and 2000 l/mm (b). 
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Fig.4b 

Fig.4b Refractive index dynamics at constant exposure of recording: time of recording - 2s, recording intensity - 3.5 mW/cm
2
 (black); 

0.5s and 14 mW/cm
2
 (light gray);  0.1s and 70m W/cm

2
 (gray). The gratings are recorded at 532 nm and probed at 633 nm. Spatial 

frequency is 500 l/mm (a) and 2000 l/mm (b). 
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Fig.5 Dependence of characteristic time for postprocess 2 on the fringe spacing. Data for the diffusion times are extracted after fit of the 

recorded refractive index modulations. The gratings are recorded for 0.5 s with overall intensity 10mW/cm
2
. The recording wavelength is 

532nm, probing wavelength – 633nm. Error bars are within the size of the symbols.        

 




