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Abstract:    Recently, the finite element method (FEM) has been commonly applied in the engineering analysis of rotor dynamics. 
Gyroscopic moments, rotary inertia, transverse shear deformation and gravity can be included in computational models of  
rotor-bearing systems. In this paper, a finite element model and its solution method are presented for the calculation of the dy-
namics of dual rotor systems. A typical structure with two rotor shafts is discussed and the procedure for obtaining the coupling 
motion equations of the subsystems is illustrated. A computer program is developed to solve critical speeds and to simulate the 
transient motion. The influence of gyroscopic moments on co-rotation and counter-rotation is analyzed, and the effect of the speed 
ratio on critical speed is studied. The dynamic characteristics under different conditions of increasing speed during start-up are 
demonstrated by comparison with transient nodal displacements. The presented model provides a complete foundation for further 
investigation of the dynamics of dual rotor systems. 
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1  Introduction 

 
Despite the extensive use of the transfer matrix 

method in rotor dynamics problems, the finite ele-
ment technique has become more popular recently for 
its high efficiency and convenience of modeling. The 
finite element method (FEM) for rotors was first de-
veloped by Ruhl and Booker (1970). Nelson and 
Mc-Vaugh (1976) extended it to include translational 
and rotary inertias, gyroscopic moments, and axial 
loads, and Nelson (1980) considered the effect of 
shear deformation using the Timoshenko beam the-
ory. With the application of this method, we are able 
to solve complex problems because the equations of 
motion are explicit and easier to couple with bearing 

flexibilities or other multiple excitations. 
Dual rotor systems are widely used in aircraft 

engines because they can reduce the influence of 
gyroscopic moments generated by high and low 
pressure rotors when counter-rotating. Research on 
the dynamic characteristics of dual rotor structures is 
of great significance for lowering vibration and noise, 
and can enhance their overall performance, including 
their reliability and stability. In a dual rotor system, 
because of the inclusion of a special inter-bearing 
which connects the inter rotor with the outer rotor, the 
corresponding force becomes more complicated. The 
equations of the two subsystems should be coupled. 
This is the key difference between a dual and a single 
rotor system in terms of mathematical modeling. 
Critical speed prediction of a typical dual rotor system 
was first proposed by Rajan et al. (1986). Hsiao-Wei 
et al. (2002) carried out a systematic theoretical 
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analysis and an analysis of the effects of the speed 
ratio and inter-bearing stiffness. However, little at-
tention has been focused on the transient motion, 
which is becoming increasingly important in under-
standing the dynamic behavior when a rotor starts up, 
stops, or goes through a critical speed. 

In this paper, based on the studies of Nelson 
(1976) and Hsiao-Wei et al. (2002), a computational 
model of a dual rotor bearing system is established 
under an inertia coordinate. The procedure integrates 
the advantages of FEM and the Newmark method 
(1959) to obtain natural frequencies, critical speed 
maps, and transient results. The basic process for 
extending this model to a more complex rotor-bearing 
system such as a triple rotor system and geared rotors 
is also presented. 

 
 

2  Component equations 
 
A typical flexible rotor-bearing system with a 

single rotating shaft consists of a rotor, rotor segments 
and discrete bearings (Fig. 1) along with an inertia 
coordinate frame. The rotor is composed of discrete 
disks and the rotor segments have distributed mass 
and elasticity. 

Expressions of kinetic energy and strain energy 
are necessary to characterize the disk and shaft ele-
ment. Lagrange’s formulation is applied to obtain the 
differential equations of motion for each component. 
The formulation is written in the form 

 

d
,

d i
i i i

T T U
Q

t u u u

   
      

                (1) 

 

where T and U are the kinetic and strain energies, 
respectively, ui are generalized independent coordi-
nates and Qi are generalized forces. 

2.1  Angular velocity and coordinates 

OXYZ is an inertia coordinate, in which O is 
coincident with the center of the rigid disk and the X 
axis is collinear with the undeformed rotor center line. 
OX3Y3Z3 is attached to the disk and rotates synchro-
nously with the rotor. The relationship between them 
can be described by the following successive rota-
tions: OXYZ rotates θz about OZ, yields OX1Y1Z1; 
OX1Y1Z1 rotates θy1 about OY1, yields OX2Y2Z2; and 

OX2Y2Z2 rotates θx2 about OX2, yields OX3Y3Z3, where 

1 ,y y   2 ,x   and 2x        is the angle of 

rotation about X and Ω is the spin speed, and the an-
gular velocity of 3 3 3OX Y Z  is 
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where ( , ),zz Rot  1( 1, )yy Rot  and 2( 2, )xx Rot  are 

rotation matrices. 

2.2  Rigid disk 

For a typical rotor disk, strain energy is ne-
glected in view of the rigid body assumption, and it 
can be modeled as a four-degrees-of-freedom ele-
ment. The vector of generalized coordinates 

 TD V W B u  includes the displacements V, 

W and the corresponding slopes B, . With the ap-
plication of the angular velocity of OX3Y3Z3, the ki-
netic energy of the disk for lateral motion is given by 
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where mD is the disk mass, Jd denotes the diametral 
inertia and Jp denotes the polar inertia. Following the 
Lagrangian approach, we can obtain: 
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              (4) 
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where MD is the mass matrix of the disk element and 
its gyroscopic matrix is GD. The unbalance force 
(Fig. 2) caused by the eccentric mass is (Carrella, 
2009) 
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where e is the eccentricity,  is the phase of unbalance, 

and the disk mass center is located at  3 3,y ze e  in 

3 3 3OX Y Z . When gravity needs to be considered, the 

item G
DQ  is included (Appendix). 

2.3  Finite shaft element 

Fig. 3 shows a two-node shaft element with eight 
degrees of freedom. The time displacements of an 
arbitrary cross section in the element can be expressed 
by the product of its nodal displacements and shape 
functions (Michael et al., 2010). 

According to the geometric analysis in Fig. 4, the 
slopes (B, Γ) can be given by the following relation-
ships (Jei and Lee, 1988): 
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For the shaft element the vector S u  

T
1 1 1 1 2 2 2 2[ ]V W B V W B 

 
represents the general-

ized coordinates. The interpolation functions (N1, N2, 
N3, and N4) are used to calculate the nodal displace-
ments, and the expressions are given by 
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The corresponding velocities are calculated by 

taking derivatives with respect to time. Similarly, the 
kinetic energy is obtained by computing an integral 
over the length of the element (Rao et al., 1998): 
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Fig. 3  Shaft element and generalized coordinates
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(12) 
 

where μ, jd and jp are the shaft element mass, dia-
metral inertia and polar inertia per unit length,  
respectively. 

For a differential element with a thickness of ds 
and located at s, the potential energy of elastic bend-
ing is (Rao, 1996) 
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where E  is the Young’s modulus, and I is the second 
moment of area.  

Integrating the B
SdU  and following the Lagran-

gian approach, we can obtain: 
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where T

S ,M  R
S ,M  SG  and SK  are the translational 

mass, rotatory mass, gyroscopic and stiffness matri-
ces of the shaft element, respectively. 

Based on the principle of virtual displacement, 

the gravity force vector G
SQ

 
can be deduced (Ap-

pendix). The virtual work of the gravity effect is 
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2.4  Bearing 

With the assumption of little vibration, the in-
herent nonlinear characteristics of fluid-film bearings 
can be linearized at the static equilibrium position 
(Zhong, 1987; Abduljabbar et al., 1996). Then its 
governing equation can be expressed as 
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where  Tb b b,V Wu are the displacements of the 

bearing node and 
T

S
ˆ ,j jV W   u are the displace-

ments of the journal node. b ,M  b1,C  b1,K  b2C  and 

b2K  are included (Appendix), and the elements of the 

matrices are illustrated in Fig. 5. The generalized 
force acting on the journal is (Das et al., 2008) 
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In the case of a high stiffness foundation, 

Vb=Wb=0, and the equation is simplified to 
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3  Assembly and system equations 

3.1  System of a single rotating shaft 

Fig. 6 shows a rotor-bearing system with a single 
rotating shaft. The vibration equation of the rotor can 
be obtained by combining Eqs. (4) and (14) (Shiau et 
al., 1999): 

 
s s s s s s s s

u d ,    M u G u K u Q Q              (19) 

 

where sM , sG  and sK  are the mass, gyroscopic and 
stiffness matrices, respectively of the rotor system, 

and su  is the vector of its generalized coordinates. 
s
uQ
 
is the unbalance force, and s

dQ  denotes the inter-

action force between the rotor and bearings. 
 
 
 
 
 
 
 
 
 

The vibration equation of the bearings is given 
by 
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 where s
bM , s

bC  and s
bK  are the mass, damping and 

stiffness matrices of the bearings system, respectively. 
s
bQ  is the vector of the force and it is applied to the 

rotor by bearings. It can be calculated using the 
equation: 
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with 
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With the application of the location matrix L, s
dQ
 

is given by the following relationship:  
 

s T s
d bQ L Q .                                 (24) 

 
Combining Eqs. (19) and (20) and substituting 

for s
bQ , we obtain the final form used in programming 

for a single rotor system as follows: 
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3.2  Dual rotor system 

To acquire the vibration equation of a dual rotor 
system (Fig. 7), we couple the equations of the two 
subsystems: 
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where s
d1Q

 
are the generalized forces derived from 

the base bearings, and s
d2Q

 
are the generalized forces 

caused by the inter-bearing. The reaction force from 
the base bearings is 
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The force from the inter-bearing is 
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Utilizing the location matrices L1 and L2, 
s
d1Q

 
and s
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can be represented as Eq. (24). The final 

form used in programming for a dual rotor system is 
as follows: 
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4  Solution of system equations 

4.1  Natural frequencies 

The single rotor finite element (FE) model and 
the coupled FE model can both be simplified to a 
unified form as Eq. (34). The associated homogene-
ous equation needs to be solved to determine the 
natural frequencies of the system, which is an eigen-
value problem (Lee et al., 2003).  
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dynamic systems can be transformed into equivalent 
symmetric systems by using non-singular linear 
transformations (Adhikari, 1999; 2000). Here, a spe-
cial method is introduced that use state vectors, and 
the homogeneous equation can be written as follows 
(Garadin, 1983): 

 
v Av ,                                 (35) 

where 
 

1 1

,
     

    
  0

uM C M K
A

uI  
.

 
  
 

u
v

u
 
      (36) 

 
The eigenvalues and eigenvectors of matrix A  

are the corresponding natural frequencies and mode 
shapes of the rotor-bearing system. The natural fre-
quencies depend on the rotor operating speed due to 
the gyroscopic forces, so the critical speeds are given 
by the intersections of the synchronous line and the 
natural frequency curves. 

4.2  Transient analysis 

Mathematically, Eq. (34) represents a system of 
linear differential equations of second order, and 

,Mu ,Cu Ku  are the inertia, damping and elastic 

forces, respectively, all of which are time-dependent. 
In principle, the solution to the equation can be ob-
tained by standard procedures such as the Runge- 
Kutta method, but it is very time-consuming for large 
scale matrices. In this study, the Newmark method is 
adopted for its high efficiency and numerical stability 
(Bathe, 1996).  

This direct integration method is based on the 
assumption that the acceleration varies linearly be-
tween two time instances. The resulting expressions 
for the velocity and displacement vectors are written 
as 

 

1 1(1 )t t t t t tt t          u u u u ,           (37) 

2 2
2 2

1
,

2t t t t t t tt t t  
         
 

  u u u u u      (38) 

 

where 1  and 2  are the parameters used to obtain 

integration stability. Generally, 2
2 1( 0.5) / 4    
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and 1 0.5.   t tu  and t tu  can be expressed in 

terms of ,tu  ,t
u  t

u  and ,t tu  and then they are 

substituted into Eq. (39) for solving t tu . 

 
.t t t t t t t t      Mu Cu Ku Q           (39) 

4.3  Law of rising speed 

In industrial applications, two laws of rising 
speed are of interest (Fig. 8), namely, the linear law 
and the exponential law (Lalanne and Ferraris, 1990).  

For the linear law: 
 

1

c 1

, 0 ,
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                             (42) 

 
where α is the angular acceleration. 

For the exponential law: 
 

c( ) (1 e ),tt    
                                 (43) 

c0
( ) (1 e )d ,

t tt t                              (44) 

c( ) e .tt t    
                                       (45) 

 
Due to the existence of angular acceleration, the 

excitation forces caused by unbalance mass become 
more complicated during transient motion, and the 
expression is 

 
2

2

D
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sin( ( )) ( )cos( ( ))ˆ .
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0
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  




Q

 

   (46) 

 
 

5  Numerical examples 
 
To demonstrate the application and accuracy of 

the proposed program, simulation on a typical dual 

rotor system was carried out to determine the critical 
speed and transient response. Fig. 7 outlines the 
structure and the following Tables 1–3 list the detailed 
parameters. 

There are two operation modes in dual rotor 
systems: co-rotation and counter-rotation. The speed 
ratio is 2 1r    in co-rotation, and 2 1r     

in counter-rotation. 
Gyroscopic moments are related to the direction 

of rotation, so research on the dynamic characteris-
tics in both co-rotation and counter-rotation was 
conducted. Campbell diagrams of these two cases 
were obtained by calculation of natural frequencies. 
Figs. 9 and 10 show the variation in whirl frequency 
with inner rotor speed when rω=1.5 and rω=−1.5, 
respectively. 

Table 4 lists the data for the corresponding in-
tersections. Because the influence of gyroscopic 
moments on dual rotor structures may decrease in 
counter-rotation, the critical speeds are smaller. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Shaft element data 

Shaft Element
Length
(cm)

Inner radius 
(cm) 

Outer radius
(cm) 

1 10 0 1.1 

2 20 0 1.1 

3 15 0 1.1 

4 5 0 1.1 

1 

5 10 0 1.1 

6 7.5 2 2.6 

7 15 2 2.6 2 

8 7.5 2 2.6 

E=2.1×1011 Pa, μ=0.3, ρ=7800 kg/m3 

 
Table 2  Concentrated disk data 

Shaft Station
Mass
(kg)

Polar inertia 
(kg·m2) 

Diametral inertia
(kg·m2) 

2 9.683 0.04900 0.02450 
1 

5 9.683 0.04900 0.02450 

8 9.139 0.04878 0.02439 
2 

9 9.139 0.04878 0.02439 

Fig. 8  Start-up of linear law (a) and exponential law (b)

t1 t t

 t( ) t( )

ΩcΩc

(a) (b)
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One common phenomenon that can be found in 
Figs. 9 and 10 is that the third order frequencies of 
both forward and backward whirl barely vary with 
rotation speed, while those of other orders vary sig-
nificantly. In this specific case, this phenomenon 

indicates that the third order frequencies depend 
primarily on the bearing stiffness, while those of other 
orders depend more on the stiffness of the rotors. 

In general, the stiffness of supports has a great 
effect on vibration performance; the inter-bearing 
stiffness, especially, is one of the key design pa-
rameters of a dual rotor system. The critical speeds of 
the first three orders were calculated with a set of 
such parameters, and the results are plotted in Fig. 11. 
The critical speeds of the first two orders are practi-
cally constant, while that of the third order increases. 
Furthermore, when counter-rotating, the critical 
speeds become more sensitive to the inter-bearing 
stiffness. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

A scanning calculation was carried out to find 
the resonant speeds of different rotating modes. 
Holding ω1 at a constant value while varying ω2, the 
corresponding critical speeds can be obtained from 
the Campbell diagrams (Table 5). Similarly, another 
group of data can be obtained with varying ω1 and 
fixed ω2. The critical speed map of the dual rotor 
system is drawn according to these two sets of  
results. 

In Fig. 12, the data for the intersections when 
rω=1.5 are approximately equal to those listed in 
Table 4. For the benefit of predicting resonance points, 
this kind of map is very helpful for choosing rω during 
the design process. It can be seen from the map or 
Table 5 that the speed ratio has almost no influence on 
the third order critical speed. The above analysis and 
the conclusion from Fig. 11 make it clear that the 
bearing stiffness has a significant impact on the 
natural frequencies of some specific orders. 
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Fig. 9  Campbell diagram of co-rotation in a dual rotor
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Fig. 10  Campbell diagram of counter-rotation in a dual 
rotor 
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Table 4  Critical speeds 

Critical speeds (r/min) 

Inner rotor excitation Outer rotor excitationOrder 
rω=1.5 rω=−1.5 rω=1.5 rω=−1.5 

1 
2 
3 

2429 
6026 

12 060 

2188 
5895 

12 080 

2309 
5914 

12 030 

2050 
5509 

11 850 

Fig. 11  Effect of inter-bearing stiffness on critical speeds
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Table 3  Bearing data 

Bearing No. Station Stiffness (N/m) 
1 1 2.60×107 
2 6 1.75×107 
3 7 1.75×107 
4 4, 10 8.75×106 
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Transient simulation was carried out to examine 
the dynamic characteristics when a rotor system starts 
up and goes through the resonance region with dif-
ferent laws of rising speed. The parameters used were: 
simulation time: 0–6 s, time step: 0.0004 s, damping 
coefficient: c=0.001, unbalance mass on node 5: 
fu=mue=50 g·mm. 

For the linear law: 
 

2500 , 0 4,
( )

10000, 4 6.

t t
t

t


 
   


 
 

 
For the exponential law: 
 

1.05( ) 10000(1 e ).tt  
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The two sets of data in Fig. 13 are displacements 
of node 5 in the Y direction, corresponding to the 
linear and exponential laws, respectively. Similarly, 
the results in Fig. 14 are the transient amplitude. In 
practice, the exponential law is applied mostly for 
passing through the resonance region smoothly, as 
shown in the figure. Transient analysis can also be 
used to evaluate the stability of systems. 

The whirl orbit is one of the most important 
features for representing the motion state and it is the 
essential theme in the time domain analysis of vibra-
tion signals. To investigate the influence of different 
damping coefficients, the laws of rising speed and the 
gravity effect, the following simulations were com-
pleted. The particular conditions are listed in Table 6. 
Four trajectory diagrams of node 5 are illustrated in 
Fig. 15. Figs. 15a and 15b present the whirl behavior 
with and without, respectively, the gravity considered. 
Figs. 15b and 15c indicate that βc affects the ampli-
tude response explicitly. Fig. 15d shows the orbit of 
the entire start-up, showing that the stabilization oc-
curs after passage through the critical speed. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13  Transient displacements of node 5 for the linear 
law (a) and exponential law (b) 
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Fig. 14  Transient amplitudes of node 5 for the linear law 
(a) and exponential law (b) 
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Table 5  Critical speeds for constant ω1 

Critical speed (r/min) 
ω1 1st 2nd 3rd 

0 2171 5720 12 029 

2000 2352 5822 12 030 

4000 2532 5917 12 030 

6000 2707 6003 12 031 

8000 2868 6082 12 031 

10 000 3025 6155 12 031 

12 000 3172 6222 12 032 

14 000 3307 6282 12 032 

16 000 3422 6338 12 032 

18 000 3535 6389 12 032 

20 000 3630 6436 12 032 

Fig. 12  Critical speed map of a dual rotor system
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6  Conclusions 

 
The vibration equation of a dual rotor system 

was derived in detail, and by combining it with the 
Newmark method, a capable and efficient program 
was developed to solve its natural frequencies and 
simulate the transient response. FEM is practicable 
and effective for the engineering analysis of dual rotor 
systems, because the motion equations of subsystems 
can be coupled conveniently.  

Gyroscopic moments will lead to different crit-
ical speeds in co-rotation and counter-rotation. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

During counter-rotation, the critical speeds decrease 
since the gyroscopic moments will be partially can-
celed. 

The speed ratio rω will affect the dynamic cha-
racteristics of dual rotor system. A scanning calcula-
tion can be applied to draw a critical speed map, 
which is helpful for choosing this parameter during 
the design process. 

From the analysis of the transient response, we 
found that the exponential law was better than the 
linear law because of the smaller amplitude. The sta-
bility of the rotor bearing system can also be esti-
mated by the orbits. 
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