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Agency for Research on Cancer (IARC), Lyon, France; 3First Faculty of Medicine, Institute of Hygiene and Epidemiology,
Charles University in Prague, Prague, Czech Republic; 4Specialized Institute of Hygiene and Epidemiology, Banska
Bystrica, Slovakia; 5Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno,
Czech Republic; 6Unit of Animal Genomics, Faculty of Veterinary Medicine, GIGA-Research and Department of Animal
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An investigation into fine-scale European population structure was carried out using high-density genetic
variation on nearly 6000 individuals originating from across Europe. The individuals were collected as
control samples and were genotyped with more than 300 000 SNPs in genome-wide association studies
using the Illumina Infinium platform. A major East–West gradient from Russian (Moscow) samples to
Spanish samples was identified as the first principal component (PC) of the genetic diversity. The second
PC identified a North–South gradient from Norway and Sweden to Romania and Spain. Variation of
frequencies at markers in three separate genomic regions, surrounding LCT, HLA and HERC2, were strongly
associated with this gradient. The next 18 PCs also accounted for a significant proportion of genetic
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*Correspondence: Dr SC Heath, Centre National de Génotypage, 2, Rue Gaston Crémieux, 154 rue du Fbg. St Denis, Evry 91000, France.

Tel: þ 160878402; Fax: þ160878485; E-mail: simon.heath@gmail.com

European Journal of Human Genetics (2008) 16, 1413 – 1429
& 2008 Macmillan Publishers Limited All rights reserved 1018-4813/08 $32.00

www.nature.com/ejhg



diversity observed in the sample. We present a method to predict the ethnic origin of samples by
comparing the sample genotypes with those from a reference set of samples of known origin. These
predictions can be performed using just summary information on the known samples, and individual
genotype data are not required. We discuss issues raised by these data and analyses for association studies
including the matching of case-only cohorts to appropriate pre-collected control samples for genome-wide
association studies.
European Journal of Human Genetics (2008) 16, 1413–1429; doi:10.1038/ejhg.2008.210
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Introduction
The genetic structure of populations is very important both

from the population genetics viewpoint of understanding

past and current relationships between populations, and

from the genetic epidemiological viewpoint of avoiding

spurious associations between diseases and genetic markers

caused by differences in the population structure of cases

and controls in association studies.1–3 This study was

undertaken to address both of these aspects, to describe the

relationships between approximately 6000 European con-

trol samples from 13 different populations ranging geo-

graphically from Spain to Russia using data on 300k SNPs,

and to provide guidelines for the use of these and other

pre-collected European control samples in genome-wide

association studies when only cases have been collected.

There are several recent studies that address similar

questions about the relationships between European

populations.4–7 This study can be distinguished from these

earlier studies in part by the type and quantity of the data

used for the analysis. All samples studied were typed on the

same set of 4300000 SNPs. Most of the population studies

had 4100 samples (the minimum having 76 samples),

with the median number of samples per population being

374 and the maximum being 41300. All samples were

from current European residents, which could be expected

to give clearer results than using individuals of European

descent who are more likely to show the evidence of recent

admixture. In addition, the large number of different

populations spread geographically over a large part of

Europe allows more information to be obtained about

genetic differences across the continent than if only a small

number of very different populations were sampled.

The most common methods used by these studies on

human population structure are clustering approaches8,9 or

principal component analysis (PCA).10,11 The clustering

approaches work on the basis of the presence of distinct

genetic groups, and the probability of group membership

of samples or, at a finer level, of chromosome blocks, can

be estimated. These approaches and, in particular, the

Bayesian clustering methods8 have been widely used in

population genetic studies because of the detailed informa-

tion they provide on group membership and indivi-

dual admixture. However, these approaches tend to be

computationally intensive, and are in practice not suited to

the large numbers of markers present in genome-wide data

sets. A second problem with the cluster-based methods is

that they work best when the study population is a mixture

of distinct populations that is, European, African and

Asian, and are less well suited to the situation where

sample populations are overlapping. New implementations

are making the computational aspect less of a problem;12

however, the difficulty with overlapping populations

makes these approaches inappropriate for this study where

the aim is to describe the relationships between a set of

closely related populations within Europe. The PCA

approach was therefore mainly used for this study, as it is

possible to apply the technique to large data sets with

many thousands of individuals and hundreds of thousands

of markers, and with overlapping populations.

Materials and methods
The study was performed using control samples collected

and genotyped for association or population studies; no

genotyping was performed specifically for this study. For all

studies, permission to use the samples was obtained from

the original investigators. All samples were genotyped on

the Illumina HumanHap 300 arrays or on its derivatives.

A total of 5847 individuals from across Europe, all

genotyped on 4300000 SNPs, were used for the study.

The samples came from 13 different countries, with sample

origin being taken as the geographic location where the

sample was collected, and consisted of eight sample sets. In

addition to these samples, the 210 unrelated HapMap13

population samples: 60 CEPH samples (parents), Utah

residents with ancestry from northern and western Europe

(CEU), 60 Yoruba samples (parents) from Ibadan, Nigeria

(YRI), 45 Han-Chinese samples from Beijing, China (CHB)

and 45 Japanese samples from Tokyo, Japan (JPT), were

included in the analyses. The first sample set contained

2016 control individuals from six different eastern Euro-

pean populations collected for a GWA (Genome-Wide

Association) study on lung cancer;14 620 from Poland,

560 from Russia, 374 from the Czech Republic, 209 from

Hungary, 145 from Slovakia and 108 from Romania. The

next set contained 1228 population samples from France.
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The third set had 1385 samples from the UK 1958 Birth

Cohort from the Wellcome Trust Case Control Consor-

tium.15,16 The fourth set had 506 German and 52 UK

control samples from a GWA study on Asthma.17 The fifth

set had 234 Belgian control samples from the GWA on

Crohn’s disease.18 The sixth set had 95 Swedish population

samples from the Uppsala Family Study.19 The seventh set

had 108 Norwegian control samples. The final set had 147

additional German population samples20 and 76 Spanish

control samples.

All samples were passed through the standard QC

procedures followed at the Centre National de Genotypage

for GWA studies. Samples with genotyping success rates

o95% were removed, as were male samples with 40.5% or

female samples with o20% heterozygous markers on the X

chromosome. A check for closely related individuals was

carried out within each study population by calculating

average IBS (identity by state) scores for all pairs of

individuals. Each marker that was successfully typed for

the two individuals was scored as 0, 1 or 2 depending on

the number of alleles in common between the samples.

The mean and standard deviation of this score for all

autosomal markers were calculated for each pair, and a

scatter plot produced of the mean against the standard

deviation. Outlying points owing to related pairs were

identified and the relevant individuals were excluded.

Apart from the family-based studies (the Spanish cohort

and the small UK cohort (52 samples)), only a small

percentage of individuals (0–1%) had to be removed from

each cohort because of close relatedness. In addition to

identifying related pairs, the IBS analysis can also detect

individuals who are ‘less’ related to the rest of the

population than would be expected if the samples were

homogenous. This is because of the individuals in question

having either a different ethnic background or a problem

in the quality of their genotypes. Such individuals were

also excluded from further analyses. The sample numbers

reported above are the final numbers used for the analyses

after all QC steps were completed.

All samples used in the study were unrelated; in the case

that the original data contained related individuals, an

unrelated subset was selected using the IBS analysis to

identify unrelated pairs. For the Spanish samples, which

consisted of extended families, a graph was constructed

with samples as nodes and edges joining unrelated samples

(as estimated from the IBS analysis). A maximal unrelated

set of individuals was then found as the maximal clique

from this graph, a problem for which efficient approxima-

tion algorithms exist.21

Five marker panels were used for the statistical analyses.

Panel 1 contained 129673 autosomal SNPs selected from

the Illumina HumanHap 300 panel to have a very high

genotyping success rates (Z98%) and high informativity

(minor allele frequency (MAF)Z0.05). In addition, SNPs in

linkage disequilibrium (LD) (r2Z0.1) with other SNPs on

the panel were removed. To investigate the effect of the

marker allele frequency spectrum on the analyses, a panel of

low-frequency SNPs (panel 2) and common SNPs (panel 3)

were selected as having success rates Z95% and with the

low-frequency SNP panel having 0oMAFo0.05, and the

common SNP panel having MAF40.485. The cutoff for the

common SNP panel was selected to give a similar number of

markers in both panels (8412 low-frequency SNPs and 8734

common SNPs). Panel 4 was constructed by selecting

markers that were significantly correlated with the popula-

tion membership to produce an estimate of a minimal

marker panel to distinguish the different European popula-

tions; this panel contained 391 SNPs. The final panel, panel

5, contained 48587 SNPs and was constructed from the

intersection between the autosomal markers from the

Affymetrix Mapping 500k and Illumina HumanHap 300

panels, selected to have success ratesZ95% and MAFZ0.01.

Detecting population differences

The relationship between the different populations was

initially investigated by calculating the Fst statistic for each

pair of populations using the markers in panel 1. The

population structure was then investigated in more detail

using PCA on the individual samples. Following Patterson

et al,10 a scaled genotype matrix G was generated with rows

indexed by individuals and columns by polymorphic

(autosomal) SNPs; hence, G is of size n�m where m is

the number of SNPs and n is the number of individuals.

Each element gi,j contains the normalized genotype for

individual i at marker j, and is calculated from the

frequency of variant alleles (0, 0.5 or 1) xi,j for an individual

genotype by subtracting the variant allele frequency pj and

dividing by the standard deviation. In the case of missing

genotype data, the corresponding element was set to zero

that is, to the population mean for the marker.

The matrix A of size n�n was then constructed as:

A ¼
1

n
GG0

and the eigenvalues and eigenvectors (principal compo-

nents (PCs)) of A calculated. A has a maximum of n�1 non-

zero eigenvalues, but we considered only the k largest

eigenvalues and associated vectors. Both PCA and Fst

statistics were calculated using the EIGENSTRAT10,22

software package.

Identification of SNPs or genomic regions that were

correlated with a given PCs used the SNP weights, which

were calculated as follows: let L be a diagonal k� k matrix

where diagonal element Li is the ith largest eigenvalue, and

V be the n� k matrix containing the k PCs associated with

the eigenvalues in L. Let W be the k�m matrix of SNP

weights for each component:

W ¼ V 0G

Rather than directly using the SNP weights in W, the

correlations ri,j for PCs i and SNP j between the genotype
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vectors and individual component weights were calculated

as follows: let vi be the ith column of V and, therefore, the

vector of component weights for PCs i, and gj the jth

column of G and, therefore, the vector of normalized

genotypes for SNP j. The correlation ri,j was then calculated

as:

ri;j ¼
v 0i; :gj; :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv 0i; :vi; :Þðg
0
j; :gj; :Þ

q

ri;j ¼
wi;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv 0i; :vi; :Þðg
0
j; :gj; :Þ

q

The significance of the correlations was assessed by

calculating the test statistic (n�1)ri,j
2 , which has a w1

2

distribution under the null hypothesis of no correlation.

Note that this is equivalent (up to a factor of (n�1)/n) to

the commonly used score test for the association of a

quantitative trait with the PCs as the outcome variable.

The EIGENSTRAT package was used to calculate the SNP

weights for each eigenvector.

It is interesting to consider the minimum number

of markers required to reproduce the most important set

of components (ie, those corresponding to the largest

eigenvalues and, therefore, explaining most of the var-

iance). For a given component, the correlations between

the SNPs and the component can be used to select a small

set of SNPs that can accurately predict the component

weights.

A simple step-up strategy was used, adding markers to

the model one at a time and selecting at each step the

marker with the highest residual correlation that was not

already in the model, until no markers with test statistics

over the genome-wide significance level remained. To

model multiple components (ie, the k largest), this

procedure was carried out sequentially, starting with the

largest component. This strategy was intended to obtain a

small (although not necessarily minimal) set of markers

that can recover the largest features detected by the PCA

using marker panel 1. This method was used to select a set

of 391 markers (panel 4) that were significantly correlated

with the first two components from the PCA (using

panel 1) of the European populations.

An investigation into possible differences in the LD

patterns between populations was then carried out by

estimating the extent of LD as measured by r2 as a function

of physical distance in the different populations. Using the

markers in panel 1, estimates of r2 for all pairs of markers

closer than 10Mb apart were obtained from the maximum

likelihood (ML) estimates of the pairwise haplotype

frequencies. For computational efficiency, only observa-

tions where both markers were typed were used, which

allows a closed form solution for the ML estimates. Pairs of

markers were grouped into bins of width 1 kb on the basis

of the distance between them, and an average r2 was

calculated for each bin.

Predicting sample origin

Methods such as PCA or Bayesian clustering approaches,8,9

which can be used to show the population substructure,

can also be used to predict the genetic origin of unknown

samples given their data. For example, if the PCA on a set

of samples of known origin showed a separation between

the samples from different origins, then it is possible to

take samples of unknown origin and find the population

with which they have the closest resemblance.

This can be carried out by performing a PCA on all

samples, both of known and unknown origin. Using the

known samples only, country-specific mean and variances

for each PC showing a separation between the countries are

calculated, and, using these, the relative probability of a

new sample being in each of the possible candidate

populations is calculated for each component used in the

model assuming independent normal distributions for the

weights from each component. These relative probabilities

for each population are then multiplied across components

to give the final probability distribution.

To show this method, the country of origin of 20% of the

sample was ignored to form a test group and the remaining

80% of the sample was used to estimate the country-

specific means and variances for the four most significant

PCs. The probability of membership to each target

population for each member of the test group was then

calculated on the basis of this model.

The same analysis was also performed using the Bayesian

clustering program STRUCTURE,8 in which 80% of the

model was marked as having a known origin and 20% was

of unknown origin, and hence the origin had to be

predicted. STRUCTURE is a Markov chain Monte Carlo

(MCMC) sampling-based approach, and is computationally

more intensive than the PCA approaches when used with

large numbers of markers. It was not possible to run the

analysis using the full set of markers, and instead both the

PCA-based approach and STRUCTURE were run using the

‘minimal’ set of 391 markers, selected for their ability to

predict the first two PCs in the European analysis. The

STRUCTURE analysis was run for 100 000 iterations with

10000 iterations of burn-in, and visual inspection of the

likelihood at each sampling iteration indicated that

convergence was reached after B20000 iterations. The

output from the STRUCTURE analysis is an estimated

posterior probability distribution across the possible popu-

lations for each unknown sample, which can be compared

with the probabilities obtained from the PCA approach.

One drawback of both approaches described above to

predict sample origins is that if a sample comes from a

country that is not represented in the original data set, it

will still be classified as being a member of one of the

original countries. To avoid this, some means of evaluating

model fit must be used to identify samples that do not

come from any of the proposed possibilities. A simple

approach is to calculate a distance measure di for individual
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i from a sample to the center of the population to which

they have been assigned:

di ¼
X

j

vi;j � mj

sj

� �

where vi,j is the component weight for individual i at

component j, and mj and sj are the mean and standard

deviation of component j for the population assigned to

individual i.

Although this classification procedure is very useful,

there is a drawback in that it is necessary to perform the

PCA using both the known and unknown samples, which

is computationally intensive, as it will require that the PCA

be re-run each time new samples need to be processed. In

addition, this requires access to the individual genotype

data for the known samples, which may not always be

available. However, given the SNP weight matrix W, the

eigenvalues and the allele frequencies from the original

population used for the PCA, we can calculate a normalized

genotype matrix H for the new samples, using the allele

frequencies from the original population to perform the

normalization. Given W, L (the diagonal matrix with the

eigenvalues on the diagonal) and the original genotype

matrix G, the eigenvector matrix V for the original samples

can be calculated as follows.

From the properties of eigen decompositions, we can

write

V 0A ¼ LV 0

Given that A¼ (1/n) GG0, we can substitute for A to give:

ð1=nÞV 0GG 0 ¼ LV 0

The matrix of SNP weights, W, was defined as W¼V0G, so

we can re-write this as:

ð1=nÞWG0 ¼ LV 0

The transpose of V can then be obtained from:

V 0 ¼ ð1=nÞL�1WG0

This is not interesting in itself, as we already needed V to

calculate the SNP weights W. However, if we replace G by

H, the normalized genotype matrix for the new samples,

then it is possible to calculate Q, a vector of ‘pseudo-

eigenvectors’ for the new samples:

Q ¼ ð1=nÞL�1WH 0

The assumption here is that if we had performed the joint

PCA with the new and old samples together, the significant

components (and the SNP weights associated with them)

would be close to those calculated in the original PCA with

only the old samples.

To test this, the above procedure was carried out for the

210 HapMap samples from all four populations, estimating

the eigenvectors for the HapMap samples based on the SNP

weights and eigenvalues calculated from the European

control samples. All European control samples were then

used as the training set for the population classification of

the HapMap samples.

Results
Table 1 shows the Fst statistic calculated using marker

panel 1 for all population pairs using the 5847 European

samples along with the 210 HapMap samples. Not

unexpectedly, the differences between the African, Asian

and European populations are much greater than the

differences seen within Europe. However, substructure

within Europe is clearly indicated by Table 1. Note that

although the values of Fst between the European popula-

tions are small (from 0.006 between Spanish and Russian

Table 1 Fst statistics calculated between each pair of countries: Spain (Sp), France (Fr), Belgium (Be), Sweden (Sw), Norway
(No), Germany (Ge), Romania (Ro), Czech (Cz), Slovakia (Sl), Hungary (Hu), Poland (Po), Russia (Ru), and the four HapMap
cohorts CEU, CHB, JPT and YRI

Sp Fr Be UK Sw No Ge Ro Cz Sl Hu Po Ru CEU CHB JPT

Fr 0.0008
Be 0.0015 0.0002
UK 0.0024 0.0006 0.0005
Sw 0.0047 0.0023 0.0018 0.0013
No 0.0047 0.0024 0.0019 0.0014 0.0010
Ge 0.0025 0.0008 0.0005 0.0006 0.0011 0.0016
Ro 0.0023 0.0017 0.0018 0.0028 0.0041 0.0044 0.0016
Cz 0.0033 0.0016 0.0013 0.0014 0.0016 0.0024 0.0003 0.0016
Sl 0.0034 0.0017 0.0015 0.0017 0.0019 0.0026 0.0005 0.0014 0.0001
Hu 0.0030 0.0015 0.0013 0.0016 0.0020 0.0026 0.0004 0.0011 0.0001 0.0001
Po 0.0053 0.0032 0.0028 0.0027 0.0023 0.0034 0.0012 0.0028 0.0004 0.0004 0.0006
Ru 0.0059 0.0037 0.0034 0.0032 0.0025 0.0036 0.0016 0.0030 0.0008 0.0007 0.0009 0.0003
CEU 0.0026 0.0008 0.0005 0.0002 0.0011 0.0012 0.0006 0.0028 0.0014 0.0016 0.0016 0.0026 0.0031
CHB 0.1096 0.1094 0.1093 0.1096 0.1073 0.1081 0.1085 0.1047 0.1080 0.1069 0.1058 0.1086 0.1036 0.1095
JPT 0.1118 0.1116 0.1114 0.1117 0.1095 0.1103 0.1107 0.1068 0.1102 0.1091 0.1079 0.1108 0.1057 0.1117 0.0069
YRI 0.1460 0.1493 0.1496 0.1513 0.1524 0.1531 0.1502 0.1463 0.1503 0.1498 0.1490 0.1520 0.1504 0.1510 0.1901 0.1918
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samples down to 0.00008 between Czech and Slovak

samples), the standard errors of the estimates are such that

these are all significantly different from zero with Po0.05.

A PCA was performed on the same set of samples and on

the same marker panel. The first 110 PCs were significant at

the 5% level as evaluated using the Tracy–Widom test on

the eigenvalues.10 However, the first few components

stand out from the others, with the graph of percentage

of variance contributed per component flattening out after

the first four (Figure 1).

Scatter plots of the first two components (Figure 2a)

show that these components explain the main differences

between the Asian, European and African samples. Focus-

ing just on the European samples (Figure 2b) shows some

within-European structure, with Russian, UK and Spanish

samples marking the ‘east’, ‘north-west’ and ‘south-west’

extremes of the European cluster. There is, however, no

clear separation of the individual countries on this plot.

Repeating the PCA analysis omitting the African and

Asian HapMap samples, it is possible to get a clearer view of

the within Europe variation. With the European samples

only, the number of significant PCs stayed at almost the

same level (107 vs 110), with the first two PCs contributing

6.0 and 2.3%, respectively, of the variance because of the

significant PCs (0.21 and 0.08% of the variance because of

all components) (Figure 1). The scatter plot of the first two

components (Figure 3) show a clear East–West and North–

South gradient respectively, with a striking correlation

between the geographic position of the countries and the

position of the samples from each country on the PCA plot.

Interestingly, the first two components of the European-

only PCA are almost identical to components 3 and 4 from

the PCA, including all four HapMap cohorts (the absolute

value of the correlations between the relevant components

from the two analyses are both 0.999, data not shown).

From the PCA with all samples, the first two components

contribute 432% of the variance because of the 110

significant components. We can therefore estimate that

roughly a third of the genetic variance in the samples is

because of differences between the Asian, African and

European samples, despite the much larger numbers of

European samples when compared with Africa and Asia. It

is important, however, not to regard the variation within

Europe as insignificant as Figure 3 shows that there is a

considerable European substructure.

The correlations between the SNPs and the largest

components showed that large numbers of markers on all

chromosomes were significantly correlated with the com-

ponents. There were, however, some genomic regions that

stood out. The SNP with the highest w
2 for the first PC

(showing an East–West gradient) was in the region of

lactase (LCT), although there was a broad support for this

component on all chromosomes (Figure 4a). The second

PC (with the North–South gradient), however, had three

genomic regions that stood out as being highly correlated

to the PC (Figure 5b): LCT, HLA and HERC2 (which is

associated with iris color,23–25). Although the SNP test

statistics indicate genomic regions that are more important

than others in producing the gradients seen in Figure 3, it

should be noted that there are 424000 SNPs scattered

throughout the genome that achieve genome-wide sig-

nificance level for correlation with the first two compo-

nents (w2Z26 for a genome-wide error rate of 0.05 after

Bonferroni correction for multiple tests), with 420000 of

these being for component 1. Indeed, the three genomic

regions discussed above are not necessary to produce the

pattern in Figure 3. To show this, the above PCA analysis

was repeated after removing all markers from panel 1

within 10Mb of each of LCT, HLA and HERC2, and the

correlations between the first two PCs from the full marker

panel analysis and the corresponding PCs from the reduced

marker panel analysis were both Z0.995 (Table 3). The

scatter plot of the first two PCs from the reduced marker

panel analysis was almost identical to Figure 3 (data not

shown), as would be expected given the high correlations

between the PC weights. This is not surprising as even after

removing the markers within 10Mb of the obvious peaks

in Figure 4, the number of markers that achieve global

significance only dropped by B800.

A recent study using PCA on GWA data in European

samples5 observed a PC that appeared to be largely because

of an inversion at around location 9Mb on chromosome

8p. This region has been identified earlier26,27 as containing

an inversion, and has LD extending over a 4Mb region

around the inversion in the samples used for this study.

The effects of this inversion were less apparent in this study

because of the exclusion of markers in strong LD from the

marker panel; before this filtering being applied the same

observation was made of three clusters in a PC (fifth PC

from an analysis with European samples only) strongly

linked to chromosome 8p (data not shown). It should be

noted that the division of samples into the three clusters

was independent of population origin, indicating that the
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Figure 1 The percentage variance contributed by the first 25 PCs
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and from the European populations alone.
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frequency of the inversion does not vary greatly between

the European populations in this study.

A large case–control study15 on UK samples identified

markers in 12 autosomal regions showing large allele

frequency differences between individuals from 12 differ-

ent UK regions. Of these 12 genomic regions, seven

contain SNPs that were significantly associated with PCs

1 or 2 in this study, and a further four regions show SNPs

that were just under the threshold for global significance

(Table 2). This study therefore detected 11 out of 12 of the

genomic regions identified as correlating with geographic

regions within the United Kingdom as involved in

East–West and North–South gradients covering all of

Europe. In addition, this study finds many more regions

correlated with these gradients. It is likely that the larger

geographical spread of the samples used in this study gives

increased power to detect such regions compared with

earlier studies.

The PCA on the European samples only was repeated

using the low-frequency and common SNP panels (panels 2

and 3) to investigate the effect of the marker allele frequency

spectrum on the detected population structure. The plots of

the first two PCs from the PCA using these two panels can be

seen in Figures 5a and b. It can be seen that although the

separation of the countries is less clear than with the full

panel, both the low-frequency SNP and common SNP panels

give the same overall picture with the first two components

corresponding to an East–West and North–South geo-

graphic axis. The correlations between the larger PCs from

the different marker panels range from 0.8 to 0.95 (Table 3),

and again indicate that, at least for the first two compo-

nents, the smaller panels are capturing much of the

information. This does not, however, extend to the smaller

components; the PCA with the low-frequency and high-

frequency panels had only six and two significant PCs,

respectively, compared with 107 with the full marker panel.
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The PCA using the European samples was repeated using

panel 4, with just 391 markers selected to predict just the

first two PCs from the original European PCA. The scatter

plot of the first two components (Figure 5c) shows that the

general features of the two gradients in Figure 4 are

recovered, but with a significant loss of resolution. The

absolute value of the correlations between the first two

components from the full panel and the ‘minimal’ panel

were 0.95 and 0.80.

The final PCA was performed on the same set of

European samples using marker panel 5, which had

48587 SNPs that were in common between the Infinium

Hapmap300k panel and the Affymetrix 500k panel. The

correlations between the first PCs and second PCs from the

two analyses were 0.99 and 0.98, and the scatter plots of

the first two PCs were visually almost identical to Figure 3

(not shown), showing that a panel selected from the

intersection between the two common genotyping plat-

forms for Illumina and Affymetrix can detect most of the

detail detected using all markers in panel 1.

Although the genetic variation within Europe is less than

the variation between samples from different continents

(Table 1), the variation within individual countries is still

great enough to potentially give false-positive results in

association studies if not taken into account. For example,

there were 252 samples from Dresden and 222 samples

from Munich among the samples analyzed that were

plotted together as German samples. Figure 6 shows the

plots of the first two PCs showing the distribution of the

samples from these two cities. A case–control study

drawing cases from Dresden and controls from Munich is

at risk of false-positive results because of the differences

between samples from the two cities. Considering the

Dresden and Munich samples as cases and controls,

respectively, the median single marker w2 statistic is 0.493

compared with an expected 0.456; hence the Genomic

control lambda parameter28,29 is 1.08 indicating an infla-

tion that would need to be accounted for in an association

study. This indicates that even if both cases and controls

are collected from within a single country, it might be

necessary to make corrections for population stratification.

This effect would be much stronger if samples were

collected from different countries, even if all samples were

correctly classified as being European/Caucasian.

The extent of LD as a function of distance in the sample

populations was investigated using the r2 measure in

different populations. It is known that there is a bias in

the estimation of LD with low sample sizes;30,31 small

sample sizes lead to an overestimation of r2 when LD is low.

This bias can be seen in Figure 7a, which shows the decay

curves estimated from subsets of 25, 50, 100, 500 and 1000

samples selected from the French cohort. The smaller

sample sizes show a slower decay, which is because of an

overestimation of r2 when LD is low with small sample

sizes. The curves for 500 and 1000 samples are very close,

showing that this effect is small for larger samples. To avoid

the sample size effect from influencing the population

comparison, only the five largest populations (UK, France,

Germany, Poland and Russia) were examined in detail for

LD, with a random subset of 500 samples being taken from

each population to equalize the sample sizes. The esti-

mated decay curves show little difference between the five

populations (Figure 7c and d), and the empirical 95%

distributions of the LD estimates are large such that the

differences are not significant (data not shown). More

variance was seen between different chromosomes than
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between the different populations; for example, chromo-

some 22 shows a faster decay in LD with distance than

most of the other chromosomes. This is shown in Figure 7b

for the French population, but the same holds true for the

other populations.

Predicting sample origin

The method to predict the origin of unknown samples

using the PCA was tested with the European samples by

using 80% of the samples selected at random to generate a

model for the populations, and using this to predict the

relative probabilities of population membership for the

remaining 20% of the samples.

A summary of this analysis is presented in Table 4, which

shows the relative probabilities of samples being in a given

target population, averaged over all test samples origi-

nating from each population. In all cases (averaged over

samples with the same origin), the target population with

the highest posterior probability is that corresponding to

the origin of the sample, with neighboring countries

typically having the next highest probabilities. For exam-

ple, for test samples from UK, the posterior probability of a
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UK origin was 0.95 with the next highest scoring target

populations being Belgian, German and French; the

probability for Slovak samples being Slovak was 0.45,

whereas the probability of the Slovak samples being either

Czech or Hungarian was 0.47.

Table 4 also shows the median and empirical 95% CI of

the distance measure for test samples from each origin

population. The distance measure is a measure of the

distance in standard deviations from a sample to the center

of the closest matching population. The median distance

measure for all groups is low, as is to be expected since an

appropriate target population is available for each test

sample. This will not always be the case, and it can arise

that a test sample may come from a population not

represented in the training set. To test the behavior of the

method in this case, a second analysis was performed taking

each population in turn, removing the samples belonging to

the test population from the training set, generating the

model for the remaining populations, and then estimating

the probabilities of population membership from the

resulting model. The results for this analysis are shown in

Table 5. The European samples all show the highest

posterior probabilities for populations geographically close

to the ‘true’ origin, with the median distance measure still

being low (although higher than shown in Table 4). This

indicates that the method works even when there is not an

exact population match present in the training set.

Having to re-run the PCA with both old and new samples

together has the disadvantages of being computationally

intensive, especially if the training set is large, and requires

that the individual genotypes of all individuals in the

training set are available, which may not always be

the case. Using the approach outlined here to estimate

the component weights for new samples, the origins of the

HapMap samples were estimated using the European

samples as the training set. The results of this analysis are

also given in Table 5. The HapMap CEU samples have, on

average, a probability of 0.72 of being from the United

Kingdom, with Germany and Belgium and, to a lesser

extent, Norway and Sweden, accounting for the remaining

cases. None of the HapMap CEU samples appeared to have a

non-European origin. For the other HapMap populations,

the classification procedure assigned 100% of the YRI

samples to France, and almost 100% of the CHB and JPT

samples to Russia. However, the distribution of the distance

measure for the four populations was quite different. For

the CEU samples, the median and 95% CI of the distance

measure were 0.41 (0.11–1.01), whereas for the YRI, CHB

and JPT populations, the median and 95% CIs were 19.3

(18.0–20.6), 17.7 (15.9–19.3) and 18.0 (15.4–19.6), respec-

tively. Therefore, although attempting to classify the origin

of a sample that comes from a population not contained in

the original PCA can give a false classification, the distance

measure makes it clear that the sample is far from the other

known members of that population.

To compare the PCA-based method with existing

Bayesian clustering methods, a similar analysis to that

above was performed using the program STRUCTURE.8 To

avoid the computational difficulties of running STRUC-

TURE with marker panel 1, both the PCA-based method

and STRUCTURE were run using the 391 marker panel

(panel 4). The results of these analyses are presented in

Table 6. It can be seen that while the PCA method with

panel 4 did not perform as well as the full panel, over all

test samples the true country of origin always had the
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highest posterior probability, and the posterior was con-

centrated in the true country of origin and close neighbors.

For example, the average probability that UK test samples

were classified as being from the United Kingdom was 55%

rather than 92% with the full panel. However, the smaller

panel assigned a high probability to a larger region around

the true country of origin. For example, the probability of

the UK samples being French, Belgian, UK or Norwegian

was 493%.

STRUCTURE also correctly identified the true region for

the unknown samples (Table 6). However, it performed less

well than the PCA approach in that the probability

distribution for all populations was more diffuse, with a

lower probability assigned to the true country of origin.

Table 2 SNPs with maximum correlations to PC 1 or PC 2 in genomic regions identified in Consortium WTCC15 as
containing markers with significant allele frequency differences between different geographic regions in the United Kingdom

Chromosome Genes Region (Mb) SNP Position PC P-value

2q21 LCT 135.16–136.82 rs1446585 136 123949 2 8.1E�125
4p14 TLR1, TLR6 and TLR10 38.51–38.74 rs6531684 38617025 1 1.0E�41
4q28 137.97–138.01 rs2612131 137 977142 2 8.2E�01
6p25 IRF4 0.32–0.42 rs1473602 373722 1 9.6E�21
6p21 HLA 31.1–31.55 rs2844513 31496193 2 6.3E�49
9p24 DMRT1 0.86–0.88 rs7047524 864129 1 2.0E�05
11p15 NAV2 19.55–19.7 rs10741780 19556547 1 6.5E�09
11q13 NADSYN1 and DHCR7 70.78–70.93 rs3794060 70865327 1 1.7E�08
12p13 DYRK4, AKAP3, NDUFA, RAD51AP1 and GALNT8 4.37–4.82 rs11063148 4400998 1 3.6E�18
14q12 HECTD1, AP4S1 and STRN3 30.41–31.03 rs7157080 30623471 1 1.8E�06
19q13 GIPR, SNRPD2, QPCTL, SIX5, DMPK and DMWD 50.84–51.09 rs4803866 51026795 1 3.8E�06
20q12 38.3–38.77 rs6029180 38612337 2 2.6E�06

Table 3 Pearson correlations between the first and second principal components calculated with the full marker panel and
with the alternate panels

Reduced SNP panel Rare SNP panel Common SNP panel Joint Illumina/Affymetrix SNP panel

PC 1 PC 2 PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

Full panel
PC 1 1.000 �0.180 0.934 �0.062 0.963 �0.001 0.995 �0.108
PC 2 �0.161 0.995 �0.110 0.806 �0.159 0.878 �0.154 0.981
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Taking the same example as for the PCA approach, the

probability of UK samples being assigned to the United

Kingdom was just 24%, and their probability of being

either French, Belgian, UK or Norwegian was 61%.

For a final example, we return to the German samples

that were discussed earlier. These samples were a part of an

Asthma GWA study17 and in addition to the control

samples used in this study, there were also 676 German

cases. The above procedure was used to generate the

component weights for the case samples without running

the PCA with the case samples included, allowing the case

samples to be added to the plot in Figure 6. The sample

classification was also performed; this predicted that 60%

of the case samples were German with the others coming

from other central or western countries, which is close to

the figure for the German controls in Table 4. The plot of

the first two components for the control samples and the

case samples is shown in Figure 8, and confirms the

classification results.

Discussion
For case–control studies to be effective, it is important in

general that the cases and controls are matched as far as

possible with respect to their genetic backgrounds. A

striking feature of the samples used for this study is how

well the geographic origin of the samples appears to

correlate with the genetic origin, so that separating the

samples by country of origin or on the basis of genetic

measures gives similar results. The only major deviation

from this pattern is with the Romanian samples that

appear to be closer to the Spanish samples (further ‘west’)

than their geographic position would indicate. This could

be because of the historical close ties between Romania and

Italy, but further studies would be required to confirm this.

The relatively compact form of most of the individual

country clusters in Figure 3 and the overall compact nature

of the pan-European cluster in Figure 2 show the high

quality of the geographic origin information in its ability

to predict genetic relatedness. This is not always the case,

and in situations where sample origin information is

unreliable or missing, the ability to use the genetic

information to match cases and controls would be very

valuable.

The fine population structure within Europe, which can

be detected using PCA techniques (Figure 3), is notable for

the close correspondence with the geographical location of

the sample origins. The two largest PCs from the European-

only analysis are closely correlated with an East–West and

a North–South geographic gradient, respectively. The
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Table 4 Each horizontal line in the table shows the proportions of test samples originating from a given country that were assigned to each possible target
country

Populations Distance Spain France Belgium United Kingdom Norway Sweden Romania Germany Hungary Slovakia Czech Poland Russia

Spain 1.13 (0.12–2.32) 0.945 0.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
France 0.85 (0.20–2.62) 0.085 0.515 0.270 0.105 0.000 0.000 0.004 0.014 0.007 0.000 0.000 0.000 0.000
Belgium 0.56 (0.13–2.20) 0.000 0.086 0.854 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
United Kingdom 0.67 (0.20–2.67) 0.000 0.009 0.027 0.947 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000
Norway 0.87 (0.30–2.78) 0.000 0.000 0.000 0.000 0.991 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sweden 0.73 (0.28–2.13) 0.000 0.000 0.000 0.000 0.099 0.901 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Romania 0.60 (0.22–1.90) 0.000 0.000 0.000 0.000 0.000 0.000 0.960 0.000 0.040 0.000 0.000 0.000 0.000
Germany 0.78 (0.22–3.27) 0.000 0.000 0.102 0.004 0.029 0.022 0.008 0.644 0.003 0.003 0.177 0.008 0.000
Hungary 0.68 (0.22–1.71) 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.051 0.546 0.292 0.090 0.000 0.000
Slovakia 0.78 (0.20–3.10) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.077 0.220 0.453 0.250 0.000 0.000
Czech 0.65 (0.16–2.28) 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.052 0.161 0.205 0.484 0.062 0.000
Poland 0.74 (0.14–2.26) 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.002 0.009 0.025 0.021 0.802 0.134
Russia 0.65 (0.13–3.01) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.008 0.000 0.040 0.944

Overall, 20% of the samples from each country were treated as test samples; these samples were not used to generate the population model.

Table 5 Each horizontal line in the table shows the proportion of samples originating from a given country that were assigned to each possible target
country

Populations Distance Spain France Belgium United Kingdom Norway Sweden Romania Germany Hungary Slovakia Czech Poland Russia

Spain 1.33 (0.47–2.26) 0.987 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
France 1.28 (0.28–3.80) 0.188 0.658 0.134 0.001 0.000 0.002 0.011 0.004 0.001 0.001 0.001 0.000
Belgium 0.89 (0.25–2.62) 0.015 0.783 0.173 0.000 0.000 0.000 0.030 0.000 0.000 0.000 0.000 0.000
United Kingdom 1.39 (0.53–3.52) 0.000 0.233 0.730 0.013 0.001 0.000 0.020 0.001 0.001 0.002 0.000 0.000
Norway 1.25 (0.41–4.33) 0.000 0.000 0.000 0.158 0.823 0.000 0.019 0.000 0.000 0.000 0.000 0.000
Sweden 1.90 (0.49–6.17) 0.000 0.000 0.000 0.000 0.335 0.000 0.654 0.000 0.000 0.000 0.000 0.011
Romania 3.77 (1.52–7.65) 0.000 0.010 0.000 0.000 0.000 0.000 0.916 0.074 0.000 0.000 0.000 0.000
Germany 1.35 (0.41–3.90) 0.000 0.015 0.164 0.065 0.051 0.072 0.025 0.019 0.004 0.579 0.007 0.000
Hungary 0.84 (0.22–2.83) 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.074 0.688 0.208 0.005 0.000
Slovakia 0.80 (0.24–2.92) 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.028 0.362 0.511 0.084 0.000
Czech 0.83 (0.21–3.05) 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.091 0.229 0.598 0.072 0.000
Poland 1.12 (0.39–2.70) 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.001 0.009 0.084 0.048 0.854
Russia 1.94 (0.49–8.37) 0.000 0.002 0.000 0.000 0.000 0.000 0.011 0.004 0.008 0.007 0.000 0.968
CEU 0.41 (0.11–1.01) 0.000 0.000 0.106 0.724 0.028 0.017 0.000 0.124 0.000 0.000 0.000 0.000 0.000
CHB 17.7 (15.9–19.3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
JPT 18.0 (15.4–19.6) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.012 0.000 0.000 0.977
YRI 19.3 (18.0–20.6) 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The table shows the results when perfect matches were not available, ie, the samples from each country were analyzed using a model created without any samples from that country.
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presence of a North–South gradient with which LCT is

associated has been reported in several European studies

using whole genome data, and a strong East–West gradient

has also been reported in earlier studies.7,11 Although it is

interesting that the regions most highly associated with

the North–South gradient are LCT, HLA and HERC2, it

Table 6 Comparison of the PCA-based and STRUCTURE methods to assign origins to the unknown samples using panel 4
(391 markers)

Origin Spain France Belgium United Kingdom Norway Sweden Romania Germany Hungary Slovakia Czech Poland Russia

PCA approach
Spain 0.67 0.16 0.11 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00
France 0.28 0.27 0.26 0.10 0.02 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00
Belgium 0.06 0.14 0.47 0.22 0.04 0.02 0.02 0.04 0.00 0.00 0.00 0.00 0.00
United Kingdom 0.00 0.07 0.13 0.55 0.18 0.02 0.00 0.03 0.00 0.00 0.01 0.00 0.00
Norway 0.00 0.00 0.05 0.26 0.43 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sweden 0.00 0.00 0.00 0.09 0.45 0.32 0.00 0.05 0.00 0.00 0.09 0.00 0.00
Romania 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.00 0.18 0.00 0.00 0.00 0.00
Germany 0.03 0.01 0.08 0.05 0.10 0.16 0.05 0.17 0.09 0.09 0.17 0.00 0.00
Hungary 0.00 0.02 0.00 0.00 0.00 0.04 0.12 0.08 0.21 0.37 0.09 0.06 0.00
Slovakia 0.00 0.00 0.00 0.00 0.00 0.06 0.03 0.09 0.19 0.34 0.12 0.14 0.03
Czech 0.00 0.00 0.00 0.00 0.03 0.05 0.00 0.13 0.14 0.32 0.19 0.09 0.05
Poland 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.13 0.09 0.32 0.42
Russia 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.07 0.03 0.26 0.61

Structure
Spain 0.44 0.21 0.09 0.03 0.02 0.02 0.08 0.02 0.03 0.02 0.02 0.01 0.01
France 0.18 0.21 0.14 0.12 0.06 0.05 0.06 0.06 0.04 0.03 0.03 0.02 0.02
Belgium 0.11 0.17 0.20 0.12 0.06 0.06 0.05 0.09 0.04 0.03 0.04 0.02 0.02
United Kingdom 0.04 0.10 0.13 0.24 0.14 0.10 0.03 0.07 0.03 0.03 0.04 0.02 0.02
Norway 0.02 0.06 0.05 0.16 0.32 0.11 0.02 0.09 0.03 0.03 0.05 0.03 0.04
Sweden 0.01 0.04 0.06 0.14 0.20 0.20 0.02 0.08 0.04 0.05 0.05 0.07 0.05
Romania 0.09 0.08 0.05 0.03 0.02 0.02 0.40 0.04 0.06 0.06 0.08 0.04 0.03
Germany 0.05 0.08 0.07 0.09 0.08 0.09 0.06 0.11 0.08 0.07 0.09 0.07 0.06
Hungary 0.04 0.05 0.04 0.04 0.03 0.03 0.10 0.07 0.18 0.09 0.14 0.10 0.10
Slovakia 0.03 0.03 0.05 0.03 0.04 0.04 0.06 0.09 0.12 0.10 0.12 0.15 0.14
Czech 0.03 0.05 0.04 0.04 0.04 0.04 0.06 0.09 0.11 0.12 0.14 0.13 0.11
Poland 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.08 0.08 0.09 0.25 0.29
Russia 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.06 0.07 0.09 0.23 0.39

Each horizontal line in the table shows the proportion of test samples originating from a given country that were assigned to each possible target
country. Overall, 20% of the samples from each country were treated as test samples; these samples were not used to generate the population model.
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Figure 8 The scatter plot of the first two PCs of the European populations including the (German) Asthma cases using their estimated component
weights.
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must be noted that these are just extreme examples of

regions being associated with the gradient, and removing

these regions had no discernible effect on the plot of the

first two PCs.

It should be noted that explaining the observed

gradients in terms of human population history is proble-

matic. What is clear from the results is that there is a strong

correlation between genetic and physical proximity, but

there are several possible reasons why this should be the

case.32 Making inferences about population history from

the data presented here is also difficult as there has been an

ascertainment bias in the selection of SNPs, notably toward

common SNPs, which can bias any conclusions drawn

from the data.33 However, the main conclusion of this

study – that there is a strong correlation between genetic

and physical proximity that can be used to ‘map’ unknown

samples – is not dependent on the frequency spectrum of

allele frequencies as shown by our tests with the low allele

frequency and high allele frequency marker panels.

In order that the approaches described here for identify-

ing sample origins or matching controls to cases be useful,

it would be necessary that both the reference set of samples

and the test set are genotyped for the set of markers used

for the original PCA. We have shown that the two gradients

are detected with much smaller number markers (391

instead of 129 673 used for the original analysis). However,

reducing the number of SNPs does reduce the resolution to

detect population structure, and many fewer significant

components are found. In addition, the panel with 391

markers did not perform as well at predicting sample origin

(Table 6); the reason for which is clear when the increased

overlap between countries is seen in Figure 5.

The PCA-based approach, however, appeared to work

better than the Bayesian clustering approach implemented

in STRUCTURE when applied to the same panel of 391

markers (Table 6). In addition, the STRUCTURE analysis

with panel 4 (391 markers) required 3 days of computing

time (3GHz Athlon processor) as opposed to several hours

for the PCA approach, and this drops to minutes if the

method for approximating the component weights for new

samples is used. This makes the PCA approach more

practical as a routine part of QC or statistical analysis

workflows.

A point to note is that the panel made exclusively of

markers with MAFo¼0.05 performed slightly worse than

an equivalently sized panel of exclusively very common

markers (MAFZ0.485), measured by the correlation be-

tween the first two components of the reduced marker sets

and those from the full marker set, but the PCA with the

low-frequency marker panel detected more significant

components (6 vs 2 for the common marker panel).

Although the question of the minimum number of

markers required to detect the first n components is an

interesting one,6,34 we are more concerned with samples

genotyped for GWA studies, and these are typically typed,

at least initially, on one of the standard panels such as the

Illumina HumanHap 300 or Affymetrix Mapping 500k

marker sets. The PCA that we performed with a marker set

formed from the intersection between the Illumina

HumanHap 300 and Affymetrix Mapping 500k panels is

therefore particularly interesting as it shows that a

common panel is almost equally good at detecting the

first few components as the full 129 673 SNP panel;

therefore, at least for purposes of identifying sample

origins, samples typed on either platform can be included

in the same analyses.

The results of this study are encouraging for the use of

shared control samples in European case–control studies.

With or without the origin of the samples, it is possible to

locate a set of case samples on a genetic origin map such as

Figure 3 on the basis of their genotypes, and use this

information to select a suitable set of control samples for

the study. Any residual discrepancies between the cases and

controls owing to imperfect matching can be corrected for

by performing a PCA on the cases and selected control

samples and correcting for the diversity detected through

the PCs.22

The example given of the asthma cases illustrates how

this approach could be used in practice. If the cases were of

unknown origin, Figure 8 or the classification approach

allows a quick identification of suitable control samples.

Even if the sample origins were known, in this case it

would have been possible to use additional controls from

other populations such as the United Kingdom, French or

Belgian to augment the power of the study and, poten-

tially, reduce false positives by better matching of controls

to the cases. For example, the original German samples for

the Asthma study (673 controls and 676 cases) were used to

replicate an association signal on chromosome 17.17 The

top SNP from the initial analysis on chromosome 17 was

rs7216389, and a w
2-test of association for this marker with

the German Asthma data set gives an uncorrected P-value

of 1.9E�7, which improves to 3.1E�9 if an adjustment is

made for population structure by regressing on the

significant PCs.22 The analysis of sample origins indicates

that Belgium and Czech samples are the closest match to

the German samples. Performing the analysis using the

Belgium and Czech samples as addition controls improves

the corrected and uncorrected P-values to 1.3E�8 and

3.1E�10, respectively. Note that the correction for popula-

tion structure reduces the GC lambda value from 1.1 to 1.0

in the original analysis and from 1.14 to 1.0 in the analysis

with the Belgium and Czech samples. Although in this case

sufficient control samples were available from the original

study, it can be seen how using the methods described in

this paper to identify suitable pre-genotyped controls could

significantly increase the power for association studies.

In this study, we described how new genotyped samples

can be located on a pre-existing plot of PCs without

requiring to perform the PCA for all samples together, and
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without needing the individual genotypes of the original

data set. This approach has obvious practical advantages

over performing a new PCA, but there are potential pitfalls.

The main pitfall is applying this technique to a new set of

samples that are sufficiently distinct from the training set

such that the original PCA is no longer a close approxima-

tion to the joint PCA of the old and new samples together.

The extreme example discussed in this study was to try and

classify non-European HapMap samples using the Eur-

opean samples for the PCA and as a training set for the

classification model. The Yoruban and Asian samples were

identified as belonging to the countries on the south and

east edges, respectively, of the European cluster, and the

distance measure clearly indicates that they do not fit well

into any of the proposed populations. It cannot be

assumed that outliers will always be easily detectable in

this way. This drawback could be avoided by adding as

much diversity as possible into the initial training set.

Using the European samples in addition to all four HapMap

populations as a training set does not have an adverse

effect in this data set on the ability to distinguish between

different European populations, but does allow correct

identification of the HapMap African and Asian samples

(data not shown). A generally useful resource for localizing

and matching samples should, therefore, contain a wide

range of genetically different samples so that most new

samples can be quickly and successfully mapped.

In conclusion, we have shown that using PCA techni-

ques it is possible to detect fine-level genetic variation in

European samples. The genetic and geographic distances

between samples are highly correlated, resulting in a

striking concordance between the scatter plot of the first

two components from a PCA of European samples and a

geographic map of sample origins. We have shown how

this information can be used to predict the origin of

unknown samples in a rapid, precise and robust manner,

and that this prediction can be performed without

requiring access to the individual genotype data on the

original samples of known origin.

The marker panels used in this study, and the summary

information on the control samples required to perform

the classification of new samples can be obtained on

application to the corresponding author.
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