
Atmos. Chem. Phys., 20, 805–827, 2020

https://doi.org/10.5194/acp-20-805-2020

© Author(s) 2020. This work is distributed under

the Creative Commons Attribution 4.0 License.

Investigation of the global methane budget over 1980–2017

using GFDL-AM4.1

Jian He1,2, Vaishali Naik2, Larry W. Horowitz2, Ed Dlugokencky3, and Kirk Thoning3

1Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA
2NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
3NOAA Earth System Research Laboratory, Boulder, Colorado, USA

Correspondence: Jian He (jian.he@noaa.gov)

Received: 3 June 2019 – Discussion started: 12 July 2019

Revised: 18 October 2019 – Accepted: 16 December 2019 – Published: 23 January 2020

Abstract. Changes in atmospheric methane abundance have

implications for both chemistry and climate as methane is

both a strong greenhouse gas and an important precursor

for tropospheric ozone. A better understanding of the drivers

of trends and variability in methane abundance over the re-

cent past is therefore critical for building confidence in pro-

jections of future methane levels. In this work, the repre-

sentation of methane in the atmospheric chemistry model

AM4.1 is improved by optimizing total methane emissions

(to an annual mean of 580 ± 34 Tgyr−1) to match surface

observations over 1980–2017. The simulations with opti-

mized global emissions are in general able to capture the ob-

served trend, variability, seasonal cycle, and latitudinal gradi-

ent of methane. Simulations with different emission adjust-

ments suggest that increases in methane emissions (mainly

from agriculture, energy, and waste sectors) balanced by in-

creases in methane sinks (mainly due to increases in OH

levels) lead to methane stabilization (with an imbalance of

5 Tgyr−1) during 1999–2006 and that increases in methane

emissions (mainly from agriculture, energy, and waste sec-

tors) combined with little change in sinks (despite small de-

creases in OH levels) during 2007–2012 lead to renewed

growth in methane (with an imbalance of 14 Tgyr−1 for

2007–2017). Compared to 1999–2006, both methane emis-

sions and sinks are greater (by 31 and 22 Tgyr−1, respec-

tively) during 2007–2017. Our tagged tracer analysis indi-

cates that anthropogenic sources (such as agriculture, energy,

and waste sectors) are more likely major contributors to the

renewed growth in methane after 2006. A sharp increase

in wetland emissions (a likely scenario) with a concomi-

tant sharp decrease in anthropogenic emissions (a less likely

scenario), would be required starting in 2006 to drive the

methane growth by wetland tracer. Simulations with varying

OH levels indicate that a 1 % change in OH levels could lead

to an annual mean difference of ∼ 4 Tgyr−1 in the optimized

emissions and a 0.08-year difference in the estimated tro-

pospheric methane lifetime. Continued increases in methane

emissions along with decreases in tropospheric OH concen-

trations during 2008–2015 prolong methane’s lifetime and

therefore amplify the response of methane concentrations to

emission changes. Uncertainties still exist in the partitioning

of emissions among individual sources and regions.

1 Introduction

Atmospheric methane (CH4) is the second most important

anthropogenic greenhouse gas with a global warming poten-

tial 28–34 times that of carbon dioxide (CO2) over a 100-

year time horizon (Myhre et al., 2013). Methane is also a

precursor for tropospheric ozone (O3) – both an air pollutant

and greenhouse gas – influencing ozone background levels

(Fiore et al., 2002). Controlling methane has been shown to

be a win-win, benefiting both climate and air quality (Shin-

dell et al., 2012). From a preindustrial level of 722 ± 25 ppb

(Etheridge et al., 1998; Dlugokencky et al., 2005), methane

has increased by a factor of ∼ 2.5 to a value of 1857 ± 1 ppb

in 2018 (Dlugokencky et al., 2018), mostly due to anthro-

pogenic activities (Dlugokencky et al., 2011). The global net-

work of surface observations over the past 3–4 decades in-

dicates that methane went through a period of rapid growth

from the 1980s to 1990s, nearly stabilized from 1999 to 2006,
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and then renewed its rapid growth. Here, we estimate the

methane budget and explore the contributions of methane

sources and sinks to its observed trends and variability during

1980–2017.

Methane is emitted into the atmosphere from both anthro-

pogenic activities (e.g., agriculture, energy, industry, trans-

portation, waste management, and biomass burning) and nat-

ural processes (e.g., wetland, termites, oceanic and geolog-

ical processes, and volcanoes), and it is removed from the

atmosphere mainly by reaction with hydroxyl radical (OH)

in the troposphere, with lesser contributions to destruction

by reactions with excited atomic oxygen (O(1D)) and atomic

chlorine (Cl) in the stratosphere and uptake by soils (Saunois

et al., 2016). Measurements of the global distribution of sur-

face methane beginning in 1983 have revealed that atmo-

spheric methane approached steady state during 1983–2006

and has renewed its growth since then. During 1983–2006,

methane growth rates decreased from 12 ppbyr−1 during

1984–1991 to 5 ppbyr−1 during 1992–1998 (Nisbet et al.,

2014; Dlugokencky et al., 2018) and to 0.7 ± 0.6 ppbyr−1

during 1999–2006 (Dlugokencky et al., 2018). After 2006,

methane started increasing again with a growth rate of 5.7 ±

1.2 ppbyr−1 in 2007–2013 and reached 12.6 ± 0.5 ppbyr−1

in 2014 and 10.0 ± 0.7 ppbyr−1 in 2015 (Nisbet et al., 2016;

Dlugokencky et al., 2018). While anthropogenic activities

are widely considered responsible for the long-term methane

increase since preindustrial times (Dlugokencky et al., 2011),

there is no consensus on the drivers for the methane stabiliza-

tion during 1999–2006 and renewed growth since 2007. Pre-

vious studies have attributed the stabilization during 1999–

2006 to the combined effects of increased anthropogenic

emissions with decreased wetland emissions (Bousquet et

al., 2006), decreased fossil fuel emissions (Dlugokencky et

al., 2003; Simpson et al., 2012; Schaefer et al., 2016) or

rice paddies emissions (Kai et al., 2011), stable emissions

from microbial and fossil fuel sources (Levin et al., 2012),

or variations in methane sinks (Rigby et al., 2008; Montzka

et al., 2011; Schaefer et al., 2016). The observed renewed

growth since 2007 has been explained alternatively through

increases in tropical emissions (Houweling et al., 2014; Nis-

bet et al., 2016) such as agricultural emissions (Schaefer et

al., 2016; Patra et al., 2016) and tropical wetland emissions

(Bousquet et al., 2011; Maasakkers et al., 2019), increases in

fossil fuel emissions (Rice et al., 2016; Worden et al., 2017),

decreases in sources compensated by decreases in sinks due

to OH levels (Turner et al., 2017; Rigby et al., 2017), or a

combination of changes in different sources such as increases

in fossil, agriculture, and waste emissions with decreases in

biomass burning emissions (Saunois et al., 2017). These dif-

ferent explanations reflect limitations in our understanding of

recent changes in methane and its budget.

Previous work has generally combined observations of

methane and its isotopic composition (δ13CH4) with inverse

models (top–down), process-based models (bottom–up), or

box models to estimate methane emissions and sinks and

their variability (Bousquet et al., 2006; Monteil et al., 2011;

Rigby et al., 2012; Kirschke et al., 2013; Ghosh et al., 2015;

Schwietzke et al., 2016; Schaefer et al., 2016; Nisbet et al.,

2014, 2016; Dalsøren et al., 2016; Turner et al., 2017; Rigby

et al., 2017). Inverse models use observations to derive emis-

sions, but usually prescribe climatological OH, O(1D), and

Cl levels or loss rates (e.g., Rice et al., 2016; Tsuruta et al.,

2017). Box models, on the other hand, use methane obser-

vations together with those of other proxy chemicals (e.g.,
13C/12C ratio, ethane, carbon monoxide, methyl chloroform)

to provide information on the global methane budget (e.g.,

Schaefer et al., 2016; Turner et al., 2017) but lack informa-

tion on spatial variability or regional characteristics. With

process-based models (e.g., wetlands) and inventories repre-

senting different source types (e.g., fossil fuel emissions) to

drive chemical transport models, the bottom–up approach is

able to estimate the methane budget for all individual sources

and sinks. However, without observational constraints, there

is considerable uncertainty in the total methane emissions

derived from a combination of independent bottom–up es-

timates (Saunois et al., 2016).

Bottom–up global Earth system models (ESMs) that real-

istically simulate the physical, chemical, and biogeochemical

processes, as well as interactions and feedbacks among these

processes, are useful tools to characterize the global methane

cycle and quantify the global methane budget and impacts on

composition and climate. Dalsøren et al. (2016) investigated

the evolution of atmospheric methane by driving a chemi-

cal transport model with bottom–up emissions. While their

model results are able to match the observed time evolution

of methane without emission adjustments, surface methane is

largely underpredicted in their study. Ghosh et al. (2015) op-

timized bottom–up emissions to investigate methane trends;

however, OH trends and interannual variability were not con-

sidered in their chemical transport model. Here, we apply a

prototype of the full-chemistry version of the Geophysical

Fluid Dynamics Laboratory (GFDL) new-generation Atmo-

spheric Model, version 4.1 (AM4.1; Zhao et al., 2018a, b;

Horowitz et al., 2020) to investigate the evolution of methane

over 1980–2017. Our main objectives are to improve the rep-

resentation of methane in GFDL-AM4.1, to comprehensively

evaluate the model performance of methane predictions with

an improved representation of the methane budget, and to in-

vestigate possible drivers of the methane trends and variabil-

ity. This paper is structured as follows: Sect. 2 describes the

modeling approach, emission inventories, and observations

used for model evaluation. Results of the model evaluation,

global methane budget analysis, and model sensitivities are

presented in Sect. 3. Finally, Sect. 4 summarizes the results

and discusses the implication of these results.
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2 Methodology and data

2.1 Model description and initialization

We use a prototype version of the new-generation GFDL

chemistry–climate model, GFDL-AM4.1 (Zhao et al., 2018a,

b; Horowitz et al., 2020). A detailed description of the

physics and dynamics in AM4.1 is provided by Zhao et

al. (2018a, b). The version of AM4.1 with full interac-

tive chemistry used in this work is described by Schnell et

al. (2018). In its standard form, this model setup consists of a

cubed-sphere finite-volume dynamical core with a horizontal

resolution of ∼ 100 km and 49 vertical levels extending from

the surface up to ∼ 80 km. The model’s lowermost level is

approximately 30 m thick. The chemistry and aerosol physics

in this model have been updated from the previous version

(GFDL-AM3; Naik et al., 2013a), as described by Mao et

al. (2013a, b) and Paulot et al. (2016). There are a total of

102 advected gas tracers and 18 aerosol tracers, 44 photol-

ysis reactions, and 205 gas-phase reactions included in the

chemical mechanism in this version of AM4.1 to represent

tropospheric and stratospheric chemistry.

The standard AM4.1 configuration uses global annual-

mean methane concentrations as a lower boundary condition

to simulate the atmospheric distribution of methane. This

modeling framework does not allow for the full characteri-

zation of the drivers of methane trends and variability, nor

does it capture latitudinal or seasonal variations in methane.

To overcome this issue, we updated AM4.1 to be driven

by methane emissions. Table 1 provides information on the

methane emission datasets used in this work. Our initial es-

timates of surface emissions from anthropogenic sources –

including agriculture (AGR), energy production (ENE), in-

dustry (IND), road transportation (TRA), residential, com-

mercial, and other sectors (RCO), waste (WST), and inter-

national shipping (SHP) – are from the Community Emis-

sions Data System (CEDS, version 2017-05-18; Hoesly et

al., 2018) developed in support of the Coupled Model Inter-

comparison Project Phase 6 (CMIP6) for 1980–2014. Emis-

sions for 2015–2017 are from a middle-of-the-road scenario

of Shared Socioeconomic Pathways targeting a forcing level

of 4.5 Wm−2 (SSP2–4.5), developed in support of the Sce-

narioMIP experiment within CMIP6 (Gidden et al., 2019).

Biomass burning (BMB) emissions are from van Marle et

al. (2017) for 1980–2014 and from SSP2–4.5 for 2015–2017,

and they are vertically distributed over seven ecosystem-

dependent altitude levels between the surface and 6 km

above the surface, following the methodology of Dentener

et al. (2006). Anthropogenic and biomass burning emissions

are represented by monthly gridded emissions including sea-

sonal and interannual variability. Natural emissions include

wetland (WET) emissions from the WetCHARTs version 1.0

inventory (Bloom et al., 2017), ocean (OCN) emissions from

Brasseur et al. (1998) with nearshore methane fluxes from

Lambert and Schmidt (1993) and Patra et al. (2011), termites

(TMI) from Fung et al. (1991), and mud volcanoes (VOL)

from Etiope and Milkov (2004) and Patra et al. (2011).

Wetland emissions and ocean emissions are climatological

monthly means without interannual variability. The remain-

ing natural emissions are based on a climatological annual

mean (repeated every month without seasonal variability).

Time series of the total emissions and emissions from ma-

jor sectors over 1980–2017 are shown in Fig. 1. Trends in

total emissions are primarily driven by trends in ENE, AGR,

and WST emissions. Although wetlands are in reality a major

contributor to interannual variability in methane emissions

(Bousquet et al., 2006; Kirschke et al., 2013), our use of cli-

matological wetland emissions causes the interannual vari-

ability in our methane emissions to be dominated by BMB

emissions. Anthropogenic and biomass burning emissions of

other short-lived species also follow the CEDS and SSP2–4.5

inventories. Natural emissions of other short-lived species

are from Naik et al. (2013a). Biogenic isoprene emissions

are calculated interactively following Guenther et al. (2006).

The methane sinks considered in AM4.1 include oxidation

by OH, Cl, and O(1D) and dry deposition. Since the model

does not represent tropospheric halogen chemistry, it does

not consider removal of methane by Cl in the troposphere, a

sink that remains poorly constrained (Hossaini et al., 2016;

Gromov et al., 2018; Wang et al., 2019). The dry deposition

flux of methane is estimated based on a monthly climatology

of deposition velocities (Horowitz et al., 2003) calculated

by a resistance-in-series scheme (Wesely, 1989; Hess et al.,

2000) and used to mimic methane loss by soil uptake, which

accounts for about 5 % of the total methane sink (Kirschke et

al., 2013; Saunois et al., 2016).

In this work, we included 12 additional methane

tracers tagged by source sector to attribute methane

from agriculture (CH4AGR), energy (CH4ENE), industry

(CH4IND), transportation (CH4TRA), residents (CH4RCO),

waste (CH4WST), shipping (CH4SHP), biomass burning

(CH4BMB), ocean (CH4OCN), wetland (CH4WET), ter-

mites (CH4TMI), and mud volcanoes (CH4VOL). The trac-

ers are emitted from corresponding sources and undergo the

same chemical and transport pathways as the full CH4 tracer.

For analysis, we combine CH4IND, CH4TRA, CH4RCO,

and CH4SHP as other anthropogenic tracers (i.e., CH4OAT),

and we combine CH4OCN, CH4TMI, and CH4VOL as other

natural tracers (i.e., CH4ONA).

Initially the model was spun up in a 50-year run with re-

peating 1979 emissions driven by 1979 sea surface tempera-

tures and sea ice until stable atmospheric burdens of methane

and tagged tracers were obtained. After spin-up, several sets

of simulations were conducted for 1980–2017 to quantify

the methane budget and investigate the impacts of changes

in methane sources and sinks on methane abundance (see

Sect. 2.3). All model simulations are forced with interannu-

ally varying sea surface temperatures and sea ice from Taylor

et al. (2000), prepared in support of the CMIP6 Atmospheric

Model Intercomparison Project (AMIP) simulations. Hori-

www.atmos-chem-phys.net/20/805/2020/ Atmos. Chem. Phys., 20, 805–827, 2020
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Table 1. Emission inventories used in this study.

Source category Database Temporal variability References

Anthropogenic
CEDS v2017-05-18 1980–2014 monthly data Hoesly et al. (2018)

SSP2–4.5 2015–2017 monthly data Gidden et al. (2019)

Biomass burning
BB4MIP 1980–2014 monthly data van Marle et al. (2017)

SSP2–4.5 2015–2017 monthly data Gidden et al. (2019)

Wetlands WetChart v1.0 Climatological monthly mean (with

seasonal variability) for 1980–2017

Bloom et al. (2017)

Ocean MOZART Climatological monthly mean (with

seasonal variability) for 1980–2017

Brasseur et al. (1998)

Nearshore TransCom-CH4 Climatological annual mean (no

seasonal variability) for 1980–2017

Lambert and Schmidt (1993), Patra et al. (2011)

Termites NASA-GISS Climatological annual mean (no

seasonal variability) for 1980–2017

Fung et al. (1991)

Mud volcanoes TransCom-CH4 Climatological annual mean (no

seasonal variability) for 1980–2017

Etiope and Milkov (2004), Patra et al. (2011)

zontal winds are nudged to the National Centers for Environ-

mental Prediction (NCEP) reanalysis (Kalnay et al., 1996)

using a pressure-dependent nudging technique (Lin et al.,

2012).

2.2 Observations

We evaluate the simulated methane dry-air mole fraction

(DMF) against a suite of ground-based and aircraft observa-

tions to thoroughly evaluate the model-simulated spatial and

temporal distribution of methane. To evaluate surface CH4,

we use measurements from a globally distributed network of

air sampling sites maintained by the Global Monitoring Divi-

sion (GMD) of the Earth System Research Laboratory at the

National Oceanic and Atmospheric Administration (NOAA)

(Dlugokencky et al., 2018). The global estimates are based

on spatial and temporal smoothing of CH4 measurements

from 45 surface marine boundary layer (MBL) sites. Loca-

tions of the MBL sites are shown in Fig. S1 in the Supple-

ment, and information for each MBL site is listed in Table S1

in the Supplement. First, the average trend and seasonal cycle

are approximated for each sampling site by fitting a second-

order polynomial and four harmonics to the data. We char-

acterize deviations from this average behavior by transform-

ing the residuals to frequency domain, then multiplying by a

low-pass filter (Thoning et al., 1989; Thoning, 2019). Zonal

and global averages are determined by extracting values at

synchronized times steps from the smoothed fits to the data,

then fitting another curve as a function of latitude (Tans et

al., 1989). We divide these fits into sine (latitude) = 0.05 in-

tervals, which define a matrix of zonally averaged CH4 as a

function of time and latitude. The same sampling and pro-

cessing approach (Thoning et al., 1989; Tans et al., 1989)

is applied to the simulated monthly mean methane DMF to

calculate global and zonal averages to facilitate consistent

model–observation comparison. In addition to the compari-

son with global estimates from MBL sites, we also evaluate

model performance at individual GMD sites to investigate re-

gional emission representation. For site-specific evaluation,

we sample the model grid cell at the location of the corre-

sponding site and at the model layer with height closest to

the altitude of the corresponding site.

To investigate background tropospheric methane variabil-

ity, we compare the simulated vertical profiles with aircraft

measurements from the High-performance Instrumented Air-

borne Platform for Environmental Research (HIAPER) Pole-

to-Pole observation (HIPPO) campaigns from January 2009

to September 2011 (Wofsy et al., 2011, 2012). A total of 787

profiles were flown during five campaigns with continuous

profiling between approximately 150 and 8500 m altitudes,

but also including many profiles up to 14 km altitude. For

each HIPPO mission, we spatially sample the model con-

sistent with the observations and average the model for the

months of the campaign to create climatological monthly

means.

2.3 Simulation design

We conduct several sets of hindcast simulations for 1980–

2017, as listed in Table 2, to quantify the methane budget

and investigate the contributions of sources and sinks to the

trend and variability of methane. The model simulation us-

ing the initial methane emissions inventory (Einit) described

in Sect. 2.1 was found to largely underestimate the methane

Atmos. Chem. Phys., 20, 805–827, 2020 www.atmos-chem-phys.net/20/805/2020/
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Figure 1. Time series of methane emissions from the initial methane

inventories (a) and optimized methane emissions on anthropogenic

sectors (S0Aopt, b) and wetland sectors (S0Wopt, c) for the period

of 1980–2017. The emissions for major sectors are shown on the

left y axis, including the agriculture sector, energy production sec-

tor, waste sector, biomass burning sector, wetland sector, ocean and

nearshore fluxes, termites, mud volcanoes, and other sources (i.e.,

industrial processes, surface transportation, international shipping,

residential, commercial, and others). The total methane emissions

from the initial emission inventories and optimization (black line)

are shown on the right y axis.

Table 2. List of simulations conducted using GFDL-AM4.1 to ex-

plore trends and variability in methane.

Simulations Description

S0Aopt Standard AM4.1 configuration, but with opti-

mized anthropogenic emissions for 1980–2017

S0Wopt Standard AM4.1 configuration, but with opti-

mized wetland emissions for 1980–2017

S0A06 S0Aopt emissions for 1980–2005, with repeat-

ing 2006 S0Aopt anthropogenic emissions for

2006–2014 and adjusting wetland emissions for

2006–2014 to ensure the total emissions are the

same as optimized totals

S0Comb S0Aopt emissions for 1980–2005 and S0Wopt

emissions for 2006–2014

S1Wopt AM4.1 configuration with low OH levels

(LNOx emissions scaled by a factor of 0.5) and

optimized wetland emissions for 1980–2017

S2Wopt AM4.1 configuration with high OH levels

(LNOx emissions scaled by a factor of 2) and

optimized wetland emissions for 1980–2017

DMF by 126 ppb (see Figs. S2 and S3 in the Supplement).

Assuming that this mismatch is due to a bias in the simulated

methane budget, we can either increase methane sources or

decrease methane sinks to match the observations. We per-

form several optimization simulations that explore the sen-

sitivity of methane to uncertainties in emissions of methane

and levels of OH, the dominant sink for methane. Because

OH trends and variability depend on a number of factors,

including temperature, water vapor, O3, and emissions of ni-

trogen oxide (NOx), carbon monoxide (CO), and volatile or-

ganic compounds (VOCs), it is not straightforward to per-

turb OH. Previous work has shown that interannual variabil-

ity of global OH is highly correlated with NOx from light-

ning (Fiore et al., 2006; Murray et al., 2013). Therefore, we

apply scaling factors to lightning NOx (LNOx) emissions to

indirectly adjust OH levels without influencing its variabil-

ity. The LNOx emissions are calculated interactively as de-

scribed by Horowitz et al. (2003) as a function of subgrid

convection parameterized in the model. The climatological

global mean LNOx emission simulated by standard AM4.1

is about 3.6 TgNyr−1, within the range of 2–8 TgNyr−1 es-

timated by previous studies (e.g., Schumann and Huntrieser,

2007). We additionally apply scaling factors (e.g., 0.5 and

2.0) to LNOx emissions, producing LNOx at the lower and

upper limits of the estimated range for sensitivity simulations

described below.

We test the sensitivity of simulated methane to changes

in OH using (1) standard OH levels simulated by AM4.1 (re-

ferred to as “S0”), (2) low OH levels via application of a scal-

ing factor of 0.5 to the default LNOx emission calculations

www.atmos-chem-phys.net/20/805/2020/ Atmos. Chem. Phys., 20, 805–827, 2020
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(referred to as “S1”), and (3) high OH levels via application

of a factor of 2 to the default LNOx emission calculation (re-

ferred to as “S2”). For each OH option, we begin with initial

methane emissions and then optimize global total emissions

as described below to match simulated methane with surface

observations. Different OH levels lead to different estima-

tions of the optimized total emissions, which provide a mea-

sure of uncertainties in our optimized total methane emis-

sions.

The estimates of optimized emissions are based on com-

parison of simulated surface methane with NOAA GMD

MBL observations. We apply a simple mass balance ap-

proach to optimize global total methane emissions, following

the methodology of Ghosh et al. (2015). In this approach, we

calculate an increment 1E, by which global emissions need

to be modified for each year. We do so by converting the dif-

ferences in surface methane DMFs between observations and

model estimates to the differences in methane burden growth

rate and in total methane loss. We iterate the optimization

process a couple of times to account for the methane–OH

feedback until the simulated surface methane DMF matches

the observations. Unlike inverse modeling studies (Houwel-

ing et al., 2017), we do not optimize emissions for each grid

cell. Instead, we uniformly scale emissions for particular sec-

tors (as described below) globally for each year by the rate

of the optimized emission total (Eopt = Einit + 1E) to the

initial emissions (Einit). We assume that the spatial distribu-

tion of methane emissions from the initial emission inven-

tories is the best available information we have. Consider-

ing the large uncertainties in the anthropogenic and wetland

emissions, we perform two simulations for the standard (S0)

LNOx scenario, in which we achieve the optimized emis-

sion totals by scaling either anthropogenic and biomass burn-

ing sources only (referred to as “Aopt”) or the wetland sec-

tor only (referred to as “Wopt”). The purpose of conduct-

ing these simulations is to investigate the impact of opti-

mizing emissions from different sectors on methane predic-

tions. For the Aopt case, eight anthropogenic sectors (i.e.,

AGR, ENE, IND, TRA, RCO, WST, SHP, and BMB) are

uniformly scaled by the ratio of 1E to total anthropogenic

emissions (1E/Eanthro.), keeping the fractions of individual

sources unchanged. For the Wopt case, wetland emissions

are rescaled to increase this source by 1E. For S1 and S2

scenarios, we scale the wetland sector only. The total Eopt

emissions are the same for both Aopt and Wopt cases. Time

series of optimized total emissions and emissions from major

sectors from S0Aopt and S0Wopt over 1980–2017 are shown

in Fig. 1. As shown in Fig. 1, the emission optimization to

match observations resulted in higher interannual variability

in total emissions than in the initial emissions. Although the

interannual variability of methane emissions is mainly domi-

nated by that from wetland and biomass burning, it could also

exist in anthropogenic emissions due to the dependence of

microbial methane sources, such as rice paddies, on soil tem-

perature and precipitation (e.g., Knox et al., 2016). Because

the purpose of S0Aopt is to investigate the role of changes in

total anthropogenic emissions (including BMB) rather than

individual sectors, we applied this interannual variability to

all anthropogenic sectors, which we acknowledge introduces

some unrealistic interannual variability in the anthropogenic

emissions. We chose this experimental construct to limit the

number of sensitivity simulations.

Based on evidence from δ13CH4, recent studies suggest

increasing wetland emissions may be responsible for the re-

newed growth of methane (Dlugokencky et al., 2009; Nis-

bet et al., 2016). We perform two additional sensitivity sim-

ulations to test the possibility of wetland emissions driving

the renewed methane growth during 2006–2014. One sim-

ulation is driven by repeating 2006 S0Aopt anthropogenic

and biomass burning emissions for 2006–2014 but adjust-

ing wetland emissions to ensure that the total methane emis-

sions are the same as in S0Wopt (or S0Aopt), which would

imply that the increases in methane emissions are only due

to the increases in wetland emissions. This sensitivity sim-

ulation is referred to as “S0A06”. Another sensitivity sim-

ulation is driven by a combination of emissions for S0Aopt

and S0Wopt as follows: S0Aopt emissions for 1980–2005

and S0Wopt emissions for 2006–2014. This simulation is re-

ferred to as “S0Comb”.

3 Results and discussions

3.1 Model evaluation

The detailed model evaluation for S0Aopt and S0Wopt is

discussed below. We first evaluate the mean climatological

spatial distribution and seasonal variability simulated by the

model and then evaluate the trends and variability.

3.1.1 Climatological evaluation

Figure 2 shows the model bias and correlation coefficient

of simulated climatological mean surface methane DMF

against NOAA GMD surface observations (Dlugokencky et

al., 2018) for 1983–2017. The mean seasonal cycle at indi-

vidual GMD sites is shown in Fig. S4 in the Supplement.

GMD sites with at least 20 years of observations are selected

for model climatological evaluation. Information about these

sites is shown in Table S2 in the Supplement. As shown

in Fig. 2a, simulations with optimization of either anthro-

pogenic (S0Aopt) or wetland (S0Wopt) emissions are gener-

ally able to reproduce surface methane DMF with model bi-

ases within ±30 ppb at most sites. Both S0Wopt and S0Aopt

simulate methane DMF relatively well over the Southern

Hemisphere. Going from south to north, the low bias in

methane DMF decreases and becomes a high bias over the

tropics. Simulated methane in both S0Aopt and S0Wopt

is biased moderately high over the tropical Pacific Ocean

(by up to ∼ 40 ppb), indicating possible overestimation of

methane emissions over the tropics and possible underes-
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Figure 2. Model bias (a) and correlation coefficient (b) of simulated climatological mean surface methane concentrations against NOAA

GMD observations for the 1983–2017 time period. GMD sites with at least 20-year observations are selected for model climatological

evaluation. In panel (a), each red square or blue “X” represents model mean bias by S0Aopt or S0Wopt at the corresponding GMD site.

Root-mean-square error (RMSE) is shown for all the GMD sites in panel (a). In panel (b), each red square or blue “X” represents correlation

of climatological seasonal variability by S0Aopt or S0Wopt at the corresponding GMD site. Spatial correlation (R) is shown for all the GMD

sites in panel (b).

timation in tropical OH levels. Large positive biases occur

at Key Biscayne (KEY, 25.7◦ N, 80.2◦ W) and Mace Head

(MHD, 53.3◦ N, 9.9◦ W) for both S0Wopt and S0Aopt, likely

due to a model sampling bias, with the model grid box over-

lapping land while samples are collected with onshore winds.

Over middle and high latitudes of the Northern Hemisphere,

the simulated surface methane DMF shows low and high bi-

ases at individual sites, possibly due in part to uncertainties

in the local emissions. As shown in Fig. 2b, both S0Aopt

and S0Wopt are able to capture the methane seasonal cy-

cle at most sites (with a correlation coefficient (R) larger

than 0.5 for about 80 % of sites). Both S0Aopt and S0Wopt

are able to reproduce the methane seasonal cycle over the

Southern Hemisphere. However, both S0Aopt and S0Wopt

show poor performance in the seasonal cycle over the south-

ern tropical Pacific Ocean, with R < 0.5 (e.g., POCS10 and

POCS15 in Fig. S4 in the Supplement), but they show good

performance in the seasonal cycle over the northern tropi-

cal Pacific Ocean, with R = 0.9 (e.g., POCN05, POCN10,

and POCN15 in Fig. S4). Poor performance also exists at a

few sites in middle and high northern latitudes (e.g., Terceira

Island, Ulaan-Uul, Park Falls, Mace Head, and Stórhöfði

shown in Fig. S4), mainly due to overestimates of methane

during summer. The major differences in simulated methane

seasonal cycles between S0Aopt and S0Wopt occur over the

Northern Hemisphere, with slightly better performance by

S0Wopt over the Pacific Ocean and by S0Aopt over conti-

nental sites (e.g., Ulaan-Uul, Mt. Waliguan, Wendover, and

Niwot Ridge). Uncertainties in the seasonality of methane

emissions, OH abundances, and long-range transport could

lead to biases in the seasonal cycle. In general, both S0Aopt

and S0Wopt are able to capture the methane latitudinal gradi-

ent (e.g., R = 0.9). This suggests that the spatial distribution

of methane in emissions is reasonable on the large scale de-

spite uncertainties in representing local sources.

To investigate background tropospheric methane variabil-

ity, Fig. 3 shows the bias in the simulated vertical distribu-

tion of methane with respect to HIPPO observations for the

S0Aopt and S0Wopt simulations. S0Aopt and S0Wopt simu-

lations produce very similar methane profiles. Both S0Aopt

and S0Wopt match observed methane profiles very well over

the Southern Hemisphere. Compared to HIPPO measure-

ments, methane in both simulations is consistently high over

the tropical Pacific Ocean (by up to ∼ 50 ppb) from the sur-

face to 700 mb during all HIPPO campaigns. These biases

decrease with altitude and decrease with latitude except for

in summer. In the Northern Hemisphere, both S0Wopt and

S0Aopt simulations capture observed methane from near the

surface to 700 mb, but are generally biased low, except in

summer when they are biased high, especially at midlati-

tudes. Midlatitude background methane is affected by both

high-latitude and low-latitude air masses on synoptic scales.

Biases over these regions could result from many processes

(e.g., overestimation of the summer emissions, insufficient

OH levels, and model transport). In general, the relative dif-

ferences between the simulated methane profiles and HIPPO

measurements are within 2 % over most regions, demonstrat-

ing the capability of the improved GFDL-AM4.1 for simu-

lating tropospheric methane.
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Figure 3. Comparison of vertical distribution of methane from S0Aopt and S0Wopt simulations with measurements from individual HIPPO

campaigns. Months of campaign are given at the top left of the individual plots.

3.1.2 Time series evaluation

As described in Sect. 2.2, we fit a function consisting of

yearly harmonics and a polynomial trend, with fast Fourier

transform and low-pass filtering of the residuals, to the

monthly mean methane DMF (Thoning et al., 1989; Thon-

ing, 2019) to estimate the time series and growth rates dis-

cussed below. The comparisons of simulated global mean

background surface methane time series and growth rates to

NOAA GMD observations are shown in Fig. 4. Both S0Wopt

and S0Aopt predict similar global mean surface methane

DMF, time series, and growth rates, since the global methane

budget (emissions and sinks) is the same in the two sim-

ulations. S0Wopt and S0Aopt are also able to reproduce

global annual mean surface methane DMF (with root-mean-

square error (RMSE) = 10.4 ppb in S0Wopt and 11.6 ppb in

S0Aopt) over 1983–2017, which is expected from emission

optimization. Meanwhile, both simulations are able to repro-

duce the methane time series very well (with R = 1.0 in both

S0Wopt and S0Aopt) over different latitude bands as shown

in Fig. 4. The major discrepancies in surface methane DMF

between model simulations and observations are mainly over

low latitudes, especially the tropics, where the RMSE is

greater than 20 ppb. Over the high northern latitudes, both

S0Aopt and S0Wopt reproduce background methane DMF

very well with RMSE less than 10 ppb. Over the high south-

ern latitudes, both S0Aopt and S0Wopt underestimate back-

ground methane DMF by up to 35 ppb in the 1980s, which

could be due in part to the fewer observational sites in the

Southern Hemisphere used for emission optimization during

this time period. In general, the agreement between the evo-

lution of the simulated and observed global methane DMFs

Table 3. Comparisons of simulated methane growth rates

(annual mean ± standard deviation) with observed methane growth

rates (ppb yr−1).

1984–1991 1992–1998 1999–2006 2007–2017

Observed 11.7 ± 1.4 5.5 ± 3.5 0.7 ± 3.1 7.0 ± 2.7

S0Aopt 13.7 ± 3.2 5.4 ± 3.4 1.3 ± 4.1 6.1 ± 2.7

S0Wopt 13.6 ± 3.4 5.4 ± 3.6 1.3 ± 4.4 6.1 ± 2.6

increases our confidence in the optimized methane emission

trends used in this work.

Table 3 summarizes methane growth rates during 1984–

1991, 1992–1998, 1999–2006, and 2007–2017. S0Aopt and

S0Wopt simulate very similar methane growth rates as

their emission totals are the same. During 1984–1991, both

S0Aopt and S0Wopt slightly overestimate methane growth

rates by ∼ 2 ppbyr−1, possibly due to fewer available ob-

servations used for emission optimization during this time

period than afterwards. After 1991, the simulated methane

growth rates are in general comparable to the observations

(with annual mean difference within ±1 ppbyr−1). The ma-

jor discrepancies in the simulated methane growth rates and

observations occur over the tropics and high northern lat-

itudes as shown in Fig. 4. Over the tropics, both S0Aopt

and S0Wopt overestimate methane growth rates (by about

5–10 ppbyr−1) during 1984–1990 when there were limited

observations available but are able to reproduce methane

growth rates relatively well afterwards. Agreement of the

methane growth rate is worse in the Northern Hemisphere

than in the Southern Hemisphere, especially at high north-
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Figure 4. Comparison of GFDL-AM4.1 simulated methane concentrations and growth rates with NOAA GMD surface observations. For

the upper plot in each panel, the dashed line represents smoothed trends (i.e., 12-month running mean) from deseasonalized monthly data.

A meridional curve (Tans et al., 1989) was fitted through NOAA GMD site observations to get the latitudinal distribution of methane. A

function fit consisting of yearly harmonics and a polynomial trend, with fast Fourier transform and low-pass filtering of the residuals is

applied to the monthly mean methane DMF (Thoning et al., 1989; Thoning, 2019) to approximate the long-term trend. For the lower plot in

each panel, the growth rates are calculated from the time derivative of the dashed line in the corresponding upper plot.

ern latitudes, mainly due to the large bias during 1984–1988

and a slight shift in peak growth (or peak decrease) during

1997–2005. The number of observational MBL sites does

not provide adequate coverage of the globe, especially in

the 1980s, which could have different impacts on the North-

ern Hemisphere and Southern Hemisphere when optimizing

global total emissions. In general, S0Aopt estimates slightly

better methane growth rates than S0Wopt, especially over

30–90◦ N. The biases in methane growth rates also suggest

a need to refine regional emissions.

S0Aopt and S0Wopt simulate very similar surface

methane DMF, and their comparison with NOAA GMD ob-

servations at individual sites shows both simulations to be

biased low over Southern Hemisphere sites, but the low bias

decreases northward (Fig. S5 in the Supplement). The simu-

lations are biased moderately high (by up to ∼ 40 ppb) over

tropical regions (e.g., POCS15, POCS10, SMO, POCS05,

POCN00, CHR, and POCN05). These sites are mainly re-

mote sites, and surface methane DMF represents background

methane levels. The overestimates are likely due to overesti-

mation of emissions over Southeast Asia (e.g., Saeki and Pa-

tra, 2017; Patra et al., 2016; Thompson et al., 2015), which

could affect these remote sites through transport. However,

the model predicts surface methane DMF relatively well at

Ascension Island (ASC, 8◦ S, 14.4◦ W), which is also a re-

mote site without impacts from East Asia. The high biases
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Figure 5. Time series of global methane burden (black line, left

y axis), methane sources (red line, right y axis), and methane sinks

(blue line, right y axis) by S0Wopt.

over the tropics suggest a need to improve regional emis-

sions (e.g., Southeast Asia). Moderate overestimates also oc-

cur at Mahé (SEY, 4.7◦ S, 55.5◦ E), a location that could be

affected by air masses from polluted areas over the tropics

and Northern Hemisphere. Over middle and high latitudes of

the Northern Hemisphere, both S0Aopt and S0Wopt simulate

surface methane DMF relatively well at most sites, except

at Key Biscayne (KEY, 25.7◦ N, 80.2◦ W), Tae-ahn Penin-

sula (TAP, 36.7◦ N, 126.1◦ W), Park Falls (LEF, 45.9◦ N,

113.7◦ W), and Mace Head (MHD, 53.3◦ N, 9.9◦ W). KEY,

MHD, and TAP are sampled under onshore winds, whereas

LEF is affected by local sources and transport. The high bi-

ases at these sites could be due in part to model sampling

bias (e.g., model grid box overlapping land while samples

are collected at the coast with onshore winds) and uncer-

tainties in local emissions (e.g., possible overestimation in

the emissions over East Asia). In general, both S0Wopt and

S0Aopt are able to reproduce the surface methane DMF and

capture the monthly variations at most sites (e.g., with R

greater than 0.5 at 98 % of total sites and with RMSE less

than 30 ppb at 74 % of total sites). As shown in Fig. S5,

S0Aopt in general better estimates methane time series and

growth over low latitudes of the Southern Hemisphere (e.g.,

Tutuila) and middle to high latitudes of the Northern Hemi-

sphere (e.g., Assekrem, Key Biscayne, Weizmann Institute

of Science, Wendover, Niwot Ridge, Ulaan-Uul, Park Falls,

Cold Bay, Ocean Station M, and Alert) than S0Wopt. Based

on the site-level comparisons between S0Wopt and S0Aopt,

anthropogenic emissions over Southeast Asia are likely over-

estimated in both S0Aopt and S0Wopt, while they could be

underestimated at Mt. Waliguan and Niwot Ridge in S0Wopt

but be reasonably well represented in S0Aopt.

3.2 Global methane budget

Figure 5 shows time series of optimized total emissions,

global sink, and global burden of methane based on S0Wopt.

Since global totals in the S0Aopt and S0Wopt simulations

are very similar, we only show the budget for S0Wopt. As

depicted in Fig. 5, the simulated global methane burden

steadily increases from 1980 to 1992, with a growth rate of

39 Tgyr−1. During 1993–1998, the global methane burden

growth slows with a growth rate of 16 Tgyr−1. The sim-

ulated growth rate in global methane burden decreases to

4 Tgyr−1 during 1999–2006 while it increases to 16 Tgyr−1

during 2007–2017 and reaches over 20 Tgyr−1 during 2014–

2016. The changes in the global burdens are due to the im-

balance between methane emissions and sinks. As shown

in Fig. 5, the optimized emissions in general increase dur-

ing 1980–2017, with an annual mean of 580 ± 34 Tgyr−1

(mean ± standard deviation), and show much larger interan-

nual variability during 1991–1993 and 1997–2000, which is

likely due to the strong El Niño events during 1991–1992

and 1997–1998 as well as the Mt. Pinatubo eruption in 1991

(Dlugokencky et al., 1996; Bousquet et al., 2006; Bândă et

al., 2016). Although there is an overall increasing trend in

total global emissions, growth in annual mean emissions has

increased from the 1980s (with an annual emission growth

rate of 3.9 Tgyr−1) to the 1990s (4.4 Tgyr−1), but decreased

to 0.3 Tgyr−1 during 2000–2006, and increased again to

2.3 Tgyr−1 during 2007–2017. Interannual variability of the

optimized emissions mainly results from interannual vari-

ability in simulated OH levels during emission optimization.

Uncertainties in the interannual variability of simulated OH

levels and therefore methane sinks could lead to uncertainties

in the interannual variability of the optimized emissions.

Unlike methane emissions, the methane sink increases

during 1980–2007, with relative stabilization during 2008–

2014 but a resumed increase during 2015–2017. The annual

mean methane sink during 1980–2017 is 560 ± 44 Tgyr−1

(mean ± standard deviation). The trends in methane sink are

affected by the changes in both methane and OH levels (as-

suming that other sinks are minor) and temperature. Fig-

ure 6 shows the tropospheric OH anomalies with respect

to 1998–2007. An interesting finding is that AM4.1 pre-

dicts higher OH levels during 2008–2014 than 1998–2007 by

3.1 %, whereas previous studies applying multispecies inver-

sion with a box-model framework (e.g., Rigby et al., 2017;

Turner et al., 2017) suggest a decline in OH levels after 2007.

However, a recent study by Naus et al. (2019) found a shift to

a positive OH trend over 1994–2015 after applying bias cor-

rections based on a 3-D chemical transport model to a similar

box-model setup. In addition, OH levels simulated by AM4.1

decrease from 2013 to 2015 but increase again afterwards,

leading to an increase in methane sinks during 2015–2017.

As shown in Fig. 5, larger methane emissions than sinks dur-

ing 1980–1998 lead to an increase in methane burden. A

relative balance between methane sources and sinks during

1999–2006 leads to the methane stabilization. Compared to

1999–2006, both methane sources and sinks are greater dur-

ing 2007–2017, but methane emissions outweigh sinks after

2007, leading to renewed methane growth.
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Table 4. Global methane budget (Tg CH4 yr−1) during 1980–2017.

Period of time 1980–1989 1990–1999 2000–2009 2008–2017 1999–2006 2007–2017

Sourcesa

Natural sources 203 [203–282] 203 [203–297] 203 [203–288] 203 [203–277] 203 [203–297] 203 [203–277]

203 [150–267]b 182 [167–197]b 218 [179–273]b 215 [176–248]d

355 [244–466]c 336 [230–465]c 347 [238–484]c 371 [245–488]e

214 [176–243]d

369 [245–485]e

Natural wetlands 166 [166–245] 166 [166–260] 166 [166–251] 166 [166–240] 166 [166–260] 166 [166–240]

167 [115–231]b 150 [144–160]b 175 [142–208]b 178 [155–200]d

225 [183–266]c 206 [169–265]c 217 [177–284]c 149 [102–182]e

180 [153–196]d

147 [102–179]e

Other natural sources 37 37 37 37 37 37

35 [21–47]d 37 [21–50]d

222 [143–306]e 222 [143–306]e

Oceans 9.5 9.5 9.5 9.5 9.5 9.5

18 [2–40]c

13 [9–22]e

Termites 20 20 20 20 20 20

Mud volcanoes 7.5 7.5 7.5 7.5 7.5 7.5

Anthropogenic sources 289 [289–368] 311 [311–405] 340 [340–425] 379 [379–452] 328 [328–422] 377 [377–450]

348 [305–383]b 372 [290–453]b 335 [273–409]b 357 [334–375]d

308 [292–323]c 313 [281–347]c 331 [304–368]c 366 [348–392]e

331 [310–346]d

334 [325–357]e

Agriculture and waste 159 [159–203] 172 [172–224] 185 [185–232] 201 [201–240] 181 [181–233] 200 [200–239]

208 [187–220]b 239 [180–301]b 209 [180–241]b 219 [175–239]d

185 [172–197]c 188 [177–196]c 200 [187–224]c 206 [191–223]e

202 [173–219]d

192 [178–206]e

Biomass burning 13 [13–16] 18 [18–24] 15 [15–18] 14 [14–17] 15 [15–20] 14 [14–17]

19 [15–32]e 17 [14–26]e

Fossil fuels 104 [104–132] 107 [107–139] 127 [127–159] 151 [151–180] 120 [120–153] 150 [150–179]

94 [75–108]b 95 [84–107]b 96 [77–123]b 109 [79–168]d

89 [89–89]c 84 [66–96]c 96 [85–105]c 127 [111–154]e

100 [70-149]d

110 [93–129]e

Other anthropogenic sources 14 [14–17] 14 [14–18] 13 [13–16] 13 [13–16] 12 [12–16] 13 [13–16]

1Ef,g 47 [23–79] 60 [36–94] 52 [29–85] 39 [16–73] 57 [34–93] 40 [17–73]

Sinksg

Total chemical loss 486 [462–519] 540 [516–573] 577 [553–610] 592 [569–626] 570 [546–603] 592 [568–625]

490 [450–533]b 525 [491–554]b 518 [510–538]b 518 [474–532]d

539 [411–671]c 571 [521–621]c 604 [483–738]c

505 [459–516]d

595 [489–749]e

OH loss 442 [419–476] 486 [462–519] 526 [502–559] 543 [519–576] 519 [495–552] 542 [519–576]

468 [382–567]c 479 [457–501]c 528 [454–617]c

553 [476–677]e

O(1D) loss 38 47 43 42 44 42

46 [16–67]c 67 [51–83]c 51 [16–84]c

31 [12–37]e
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Table 4. Continued.

Period of time 1980–1989 1990–1999 2000–2009 2008–2017 1999–2006 2007–2017

Cl loss 5 7 7 7 8 7

25 [13–37]c 25 [13–37]c 25 [13–37]c

11 [1–35]e

Soils 13 14 14 14 14 14

21 [10–27]b 27 [27–27]b 32 [26–42]b 38 [27–45]d

28 [9–47]c 28 [9–47]c 28 [9–47]c

34 [27–41]d

30 [11–49]e

Totalsg

Sum of sources 539 [515–571] 574 [549–608] 595 [572–628] 621 [598–655] 589 [565–625] 620 [597–653]

551 [500–592]b 554 [529–596]b 548 [526–569]b 545 [522–559]d

663 [536–789]c 649 [511–812]c 678 [542–852]c 703 [570–842]e

572 [538–593]d

737 [593–880]e

Sum of sinks 499 [475–532] 554 [530–586] 591 [567–624] 606 [583–640] 584 [560–617] 606 [582–639]

511 [460–559]b 542 [518–579]b 540 [514–560]b 556 [501–574]d

539 [420–718]c 596 [530–668]c 632 [592–785]c

540 [486–556]d

625 [600–798]e

Imbalance 40 [39–40] 20 [19–22] 4 [4–5] 15 [15–15] 5 [5–8] 14 [15–14]

30 [16–40]b 12 [7–17]b 4 [−11–36]d 16 [0–47]d

8 [−4–19]b

Atmospheric growth 36 19 4.8 16.7 3.5 16.6–17.2

34b 17b,h 6b,h 18.7 ± 2.7h 1.9 ± 1.6h 18.9 ± 1.7h

32h

a The decadal mean values are based on initial emission inventories. The lower and upper limits of the ranges are based on the minimum and maximum among all the optimized

emission scenarios (i.e., S0Aopt, S0Wopt, S1Aopt, S1Wopt, S2Aopt, and S2Wopt) conducted in this work.
b Values are based on the Kirschke et al. (2013) top–down approach.
c Values are based on the Kirschke et al. (2013) bottom–up approach.
d Values are based on the Saunois et al. (2020) top–down approach.
e Values are based on the Saunois et al. (2020) bottom–up approach.
f 1E is calculated based on the methodology of Ghosh et al. (2015).
g The ranges are based on the low-OH (S1Wopt) and high-OH cases (S2Wopt), and the decadal mean values shown in the table are based on the default OH (S0Wopt).
h The observed atmospheric growth rates (Tg yr−1) are estimated based on a few MBL sites (Dlugokencky et al., 2018), which are not the same as the Imbalance Row (based on

the entire globe).

Table 4 provides a summary of the decadal mean methane

budget for 1980–2017. Compared to Kirschke et al. (2013)

and Saunois et al. (2020), total natural emissions from the

initial emission inventories (203 Tgyr−1) are at the lower

range of top–down estimates during this period, except for

the 1990s, when they are slightly greater than top–down es-

timates but still much lower than the bottom–up estimates.

Since there is no observational constraint on bottom–up es-

timates, total natural emissions are simply summed over in-

dependent individual sources, which could be overestimated

in the bottom–up approach considering the relatively large

uncertainties in each individual source. In addition, in the

bottom–up estimate from Kirschke et al. (2013) and Saunois

et al. (2016), some other natural sources, such as freshwa-

ter, are not included in the initial emission inventories in

this work; however, they are likely double counted in the

bottom–up estimates (e.g., high-latitude inland waters are

likely also considered as wetland areas) as pointed out in

Saunois et al. (2020). The natural emissions estimated in

this work (e.g., 203–297 Tgyr−1) are much more compara-

ble to previous top–down estimates (e.g., 150–273 Tgyr−1

as shown in Kirschke et al., 2013), which demonstrates con-

fidence in the natural source estimates. Total anthropogenic

emissions from the initial emission inventories are overall

within the range of top–down or bottom–up estimates, ex-

cept for 1980–1989, when they are less than the estimates

in Kirschke et al. (2013). The low values in the 1980s re-

sult mainly from low estimated emissions from agriculture

and waste sectors in the CEDS inventory. With the optimized

global total emissions, the total sources used in this work and

the total sinks estimated by AM4.1 are in the range of either

top–down or bottom–up estimates by previous studies. As a
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Figure 6. Time series of global tropospheric OH anomalies with re-

spect to 1998–2007. Results of Montzka et al. (2011) are shown in

dark purple (with the mean interannual variability of OH as ±2.3 %

for the period of 1998–2007). Results of Rigby et al. (2017) derived

from NOAA observations are shown in light blue (with the mean in-

terannual variability of OH as ±2.3 % for the period of 1998–2007

and ±2.6 % for the period of 1980–2014), and those derived from

AGAGE observations are shown in dark blue (with the mean inter-

annual variability of OH as ±3.0 % for the period of 1998–2007

and ±3.1 % for the period of 1980–2014). Results from Turner et

al. (2017) are shown in green (with the mean interannual variability

of OH as ±2.0 % for the period of 1998–2007 and ±2.5 % for the

period of 1980–2014). Results from Naus et al. (2019) are shown in

dark green (with the mean interannual variability of OH as ±1.2 %

for the period of 1998–2007 and ±1.8 % for the period of 1994–

2014). OH anomalies in this work are shown in red (with the mean

interannual variability of OH as ±2.2 % for the period of 1998–

2007 and ±4.1 % for the period of 1980–2014).

result, the imbalance between total emissions and total sinks

estimated in this work is, overall, within the range of esti-

mates by previous studies, although we find a smaller imbal-

ance than previous estimates for the 2000s and afterwards.

The atmospheric growth rates simulated by the model (sam-

pled identically as for observations) are also comparable to

the observed atmospheric growth rates.

3.3 Source-tagged tracers

In this section, we apply the Mann–Kendall (M–K) test

to estimate the linear trend of global mean source-tagged

tracers and total methane for 1983–1998, 1999–2006, and

2007–2017 to investigate possible drivers of total methane

trends. Figure 7 compares the trends of source-tagged trac-

ers and total methane from S0Aopt and S0Wopt during each

time period. For S0Aopt, total methane increases strongly at

10.5 ppbyr−1 during 1983–1998. The tagged anthropogenic

tracers all show increasing trends during 1983–1998 despite

the increases in OH levels, with dominant increasing trends

by CH4AGR and CH4WST consistent with emission trends.

Since wetland emissions and other natural emissions are kept

constant every year in S0Aopt, with increases in OH levels

during 1983–1998, all tagged natural tracers show a weak

decreasing trend. During 1999–2006, total methane shows a

small increasing trend of 1.0 ppbyr−1, due to the increasing

trends of CH4ENE and CH4WST compensated by the de-

creasing trends of other source-tagged tracers. The increas-

ing trends of CH4ENE and CH4WST are mainly driven

by the increases in the emissions from energy and waste

sectors in S0Aopt, whereas the decreasing trends of other

source-tagged tracers are mainly driven by the increases

in OH levels. Compared to the rapid growth during 1983–

1998, only CH4ENE growth rate shows a small increase dur-

ing 1999–2006 (2.6 vs. 2.2 ppbyr−1 in 1983–1998), with

all other tracers showing a decrease in their growth rates.

Despite higher anthropogenic emissions during 1999–2006

than previous periods, the sinks are also higher, leading to

a relative stabilization. During 2007–2017, total methane

shows a renewed increasing trend of 5.3 ppbyr−1, domi-

nated by a strong increasing trend of CH4ENE (5.9 ppbyr−1)

and smaller increasing trends of CH4AGR and CH4WST.

Compared to 1999–2006, there is a significant increase in

CH4ENE growth rate with smaller increases in CH4AGR

growth rate during 2007–2017. Although the CH4WST

growth rate decreased in 2007–2017, the continued increas-

ing trend of CH4WST together with those of CH4AGR

and CH4ENE contribute to the renewed growth in methane.

The results from S0Aopt suggest that globally anthropogenic

tracers dominate total methane trends during the entire sim-

ulation period. During the 1980s and 1990s, emissions from

agriculture, energy, and waste sectors are the major contribu-

tors to the methane increase. During 1999–2006, when atmo-

spheric methane stabilizes, increases in methane sinks and

methane sources alternatively dominate the trend for differ-

ent tracers. Compared to 1999–2006, higher emissions from

agriculture, energy, and waste sectors during 2007–2017 are

the major drivers for the renewed growth in methane, with

the energy sector as the largest contributor.

The source-tagged tracers behave slightly differently in

S0Wopt. For S0Wopt, total methane shows an increasing

trend similar to that of S0Aopt. During 1983–1998, the

tagged anthropogenic tracers all show increasing trends ex-

cept CH4ENE, with overall smaller increasing trends than

those in S0Aopt. CH4WET shows a strong increasing trend

(7.0 ppbyr−1), dominating the total methane trend. This is

mainly because wetland emission growth is larger than an-

thropogenic emission growth due to the emission optimiza-

tion in S0Wopt during this period. During 1999–2006, sim-

ilar to S0Aopt, the total methane trend results from the in-

creasing trends of CH4ENE and CH4WST compensated by

the decreasing trends of other source-tagged tracers. Dur-

ing this time, CH4WET shows a slightly decreasing trend

(−0.8 ppbyr−1), reflecting the slightly greater CH4WET

sinks (226 Tgyr−1) than emissions (223 Tgyr−1). Similar to

S0Aopt, only CH4ENE shows an increase in its growth rate

during this time period compared to previous time periods.

During 2007–2017, the total methane trend is dominated by

the increasing trends of CH4AGR, CH4ENE, and CH4WST,

with CH4ENE as the largest contributor, similar to S0Aopt.

On the other hand, CH4WET shows a significant decreasing

trend during this period, with CH4WET sinks (217 Tgyr−1)

larger than emissions (206 Tgyr−1). Compared to 1999–
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Figure 7. Estimated global linear trends for source-tagged tracers and total methane (TOT). The source-tagged tracers include tracers for the

agriculture sector (AGR), energy sector, (ENE), waste sector (WST), biomass burning sector (BMB), other anthropogenic sectors (OAT),

wetland sector (WET), and other natural sectors (ONA). The grey bar represents the total methane trend from NOAA GMD observations.

In panels (a) and (c) (i.e., S0Aopt and S0Wopt), the trends are estimated for the periods of 1983–1998, 1999–2006, and 2007–2017. In

panels (b) and (d) (i.e., S0A06 and S0Comb), the trends are estimated for the period of 2007–2014, with 1999–2006 trends from S0Wopt

and S0Aopt.

2006, there is a significant increase in CH4ENE growth rate

with a noticeable increase in CH4AGR growth rate during

2007–2017. Although the CH4WST growth rate also de-

creased in 2007–2017, similar to S0Aopt, the continued in-

creasing trend of CH4WST together with those of CH4AGR

and CH4ENE contribute to the renewed growth in methane.

On the other hand, CH4WET shows a significant decrease

in its growth rate during this time period compared to 1999–

2006, mainly due to lower emissions (206 Tgyr−1 in 2007–

2017 vs. 223 Tgyr−1 in 1999–2006) imposed in this sce-

nario. Compared to the S0Aopt results, S0Wopt suggests

CH4WET as the largest contributor for the methane trends

during the 1980s and 1990s, mainly due to emission opti-

mization of different sectors. However, both scenarios sug-

gest CH4AGR, CH4WST, and CH4ENE are the major con-

tributors to the renewed growth in methane, with CH4ENE

as the largest contributor.

As shown in Figs. 5 and 6, OH levels slightly decrease

and methane sinks are relatively stable during 2007–2013,

but large interannual variability exists during 2013–2017.

Decreasing OH levels could lead to increases in methane

lifetime and therefore methane buildup. Combined with in-

creases in the emissions, methane starts to increase again

during this period. However, it is difficult to separate the con-

tributions from methane emissions and sinks as optimized

methane emissions are based on methane mass balance (e.g.,

changes in methane loss would act as a feedback on esti-

mates of optimized total emissions). Nevertheless, it is clear

that the decrease in OH levels alone (e.g., if emissions are

kept constant) would not be enough to reproduce the renewed

growth. The remaining question is then as follows: which

emission sectors are the major contributors to the renewed

growth from 2007 to 2017? Both S0Wopt and S0Aopt sug-

gest that the agriculture, waste, and energy sectors are the

major contributors to renewed methane growth. However,

both cases depend largely on the initial emission inventory

and the scaling methods chosen. For example, S0Wopt re-

lies on the emission growth of other sectors from the ini-

tial emission inventory, which means if the emission growth

of a certain sector is overestimated or underestimated in the

initial emission inventory, it would lead to different results.

Therefore, we conducted two additional sensitivity simula-

tions (i.e., S0A06 and S0Comb as described in Sect. 2.3)

with different emission growths for anthropogenic and wet-

land sectors as in S0Aopt and S0Wopt for 2006–2014.

The trends for source-tagged tracers and total methane by

S0A06 and S0Comb are shown in Fig. 7. Interestingly, in

S0A06, where anthropogenic and biomass burning emissions

are kept constant every year for 2006–2014, anthropogenic

tracers, particularly CH4ENE and CH4WST, still show in-

creasing trends during 2007–2014, whereas CH4WET shows

a small decreasing trend despite rising emissions. As OH lev-

els slightly decrease during this time (but are still higher than

1999–2006), with constant emissions except for wetland, one

might expect possible increasing trends in all tagged trac-

ers except CH4WET. In fact, major anthropogenic tracers

such as CH4AGR, CH4ENE, CH4WST, and CH4BMB in-

crease over 2007–2014 in S0A06, but at a slower rate than

in S0Wopt (and S0Aopt) due to no emission growth for

these tracers. On the other hand, the decreasing OH levels
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Figure 8. Time series of global tropospheric OH levels (left y axis,

dashed line) and methane OH loss (right y axis, solid line) from

S0Wopt (purple), S1Wopt (blue), and S2Wopt (brown) in panel (a)

and time series of methane tropospheric lifetime from S0Wopt (pur-

ple), S1Wopt (blue), and S2Wopt (brown) in panel (b).

(Fig. 6) would lead to a smaller methane sink and therefore

higher methane concentrations. Since methane loss is pro-

portional to the product of OH levels and methane concen-

trations, and concentrations of CH4WET are much greater

than other source-tagged tracers, the loss of CH4WET is

also much greater than other tracers. Higher CH4WET loss

(223 Tgyr−1) than CH4WET emissions (222 Tgyr−1) leads

to a slightly decreasing trend in CH4WET. In other words,

despite the increasing source contributions from wetlands to

total methane emissions, the relative contributions of wet-

land tracer to total methane abundance are declining. Com-

pared to 1999–2006, there are major increases in the growth

rates of CH4ENE and CH4BMB, with a smaller increase in

CH4AGR and CH4OAT growth rates, which drives the re-

newed methane growth. Meanwhile, CH4WET is still de-

clining during 2007–2014 (−1.1 ppbyr−1), but at a larger

decrease rate than for 1999–2006 (−0.8 ppbyr−1). Never-

theless, S0A06 results suggest that the renewed growth dur-

ing 2007–2014 is contributed by the increased growth rates

of CH4ENE, CH4BMB, and CH4AGR as well as increas-

ing trend of CH4WST, mainly due to higher anthropogenic

emissions than 1999–2006 and decreases in OH levels dur-

ing 2008–2014. The results also suggest OH trends play an

important role in determining the increasing trend of total

methane since emissions of the energy and waste sectors are

kept constant in this sensitivity simulation. In addition, in-

creases in wetland emissions alone are not able to drive in-

creases in CH4WET over this period, as CH4WET sinks are

equally important for determining the trend in CH4WET.

Our analysis also suggests that increased emissions from

other microbial sources (e.g., agriculture and waste) are

needed to match the observed negative trend in δ13CH4 since

2007 (Nisbet et al., 2019).

The trends for source-tagged tracers and total methane

behave differently in S0Comb, where we combine S0Aopt

emissions for 1980–2005 and S0Wopt emissions for 2006–

2014. During 2007–2014, all anthropogenic tracers show

decreasing trends except CH4ENE (2.8 ppbyr−1), whereas

CH4WET shows a significant increasing trend (5.9 ppbyr−1)

and dominates the total methane trend. This is mainly due to

lower anthropogenic emissions during this period than previ-

ous periods, allowing sinks of anthropogenic methane trac-

ers to start to take over their trends except for CH4ENE. At

the same time, significantly higher wetland emissions dur-

ing this period than previous periods dominate the increas-

ing trend of CH4WET. Interestingly, even with the same

wetland emissions in S0Wopt and S0Comb for 2006–2014,

CH4WET shows different trends. This is mainly because the

CH4WET concentrations at the beginning of 2006 are much

lower in S0Comb than in S0Wopt. Therefore, CH4WET

loss is much lower in S0Comb (190 Tgyr−1) compared to

S0Wopt (220 Tgyr−1) over this time, leading to an increas-

ing CH4WET trend in S0Comb, but a decreasing trend in

S0Wopt. Compared to 1999–2006, there is a significant in-

crease in CH4WET growth rate with a minor increase in

CH4ENE growth rates during 2007–2014, which drives the

renewed growth in methane. S0Comb results suggest the

need for a sharp increase in wetland emissions with a con-

comitant sharp decrease in anthropogenic emissions in 2006

to drive the methane growth by wetland tracer. It is a likely

scenario for a sharp increase in wetland emissions consid-

ering the interannual variability. However, it is a less likely

scenario for a concomitant sharp decrease in anthropogenic

emissions as both top–down and bottom–up inventories in-

dicate anthropogenic emissions increasing over the 2000s.

A more likely scenario is that both anthropogenic and wet-

land emissions increase (i.e., higher during 2007–2014 than

1999–2006). However, in that case, the dominance of wet-

land emissions in driving the total methane trend would de-

crease based on our analysis.

3.4 Sensitivity to OH levels

As described in Sect. 2.3, we perform two additional simula-

tions for low and high OH levels (i.e., S1 and S2) for 1980–

2017 to investigate the sensitivity of methane predictions to

different OH levels. For both OH cases, the interannual vari-

ations in OH levels are the same as in S0 because the sim-

ulations are driven by the same meteorology. Figure 8a and

b show global tropospheric OH concentrations, OH-driven

www.atmos-chem-phys.net/20/805/2020/ Atmos. Chem. Phys., 20, 805–827, 2020



820 J. He et al.: Investigation of the global methane budget using GFDL-AM4.1

methane loss, and tropospheric methane lifetime for the three

cases (i.e., S0, S1, and S2) in which wetland emissions are

optimized (Wopt; Aopt has a very similar global OH trend

to Wopt). Compared to S0, scaling LNOx production in the

model by a factor of 0.5 leads to a reduction in simulated

annual global mean OH levels by −6.4 % and an increase in

methane lifetime by 0.5 years in S1 over 1980–2017; scal-

ing by a factor of 2 leads to an increase in simulated annual

global mean OH by +9.1 % and a decrease in methane life-

time by 0.7 years in S2. The global mean OH levels increase

from 1980 to 2008 (by 3.6 %, with respect to the 1980 level),

decrease from 2008 to 2015 (by 2.3 %, with respect to the

2008 level), and increase from 2015 to 2017 (by 4.6 %, with

respect to the 2015 level). However, compared to the 1998–

2007 average, OH levels during 2008–2015 and 2015–2017

are still greater by 2.5 % and 1.3 %, respectively. Changes

in OH levels depend on a number of factors (e.g., tempera-

ture, water vapor, O3, NOx , CO, and VOCs). Therefore, OH

is influenced by the specific chemistry and forcing data used

in the model. Nevertheless, our estimates in OH trends and

variabilities from all three cases are quite comparable to the

those estimated by the Chemistry Climate Model Initiative

(CCMI) models (e.g., Zhao et al., 2019). Since emission op-

timization is also based on methane sinks, the total optimized

emissions in S1 are lower than those in S0 by about 4.1 %

(with an annual mean of −24 Tgyr−1), and the total opti-

mized emissions in S2 are higher than those in S0 by about

5.8 % (or 33 Tgyr−1). This indicates that a 1 % change in OH

levels could lead to about 4 Tgyr−1 difference in the opti-

mized emissions. Increasing methane loss due to OH is simu-

lated for 1980–2007 in the three cases due to increases in OH

and methane concentrations (except over the stabilization pe-

riod when methane was not increasing but OH was increas-

ing). During 2007–2013, the simulated decrease in OH levels

combined with increasing methane concentrations leads to

relative stabilization in OH-driven methane loss in the three

cases. The large interannual variability in OH levels during

2013–2017 dominates the interannual variability in methane

OH loss despite the continued increases in methane.

All three simulations show a similar trend for tropo-

spheric methane lifetime, with a decreasing trend from 1980

to 2007 (−0.04 yryr−1 in S0, −0.05 yryr−1 in S1, and

−0.03 yryr−1 in S2), a clear increasing trend during 2011–

2015 (0.08 yryr−1 in all three simulations), and a decreas-

ing trend during 2015–2017 (−0.2 yryr−1 in all three sim-

ulations). The mean tropospheric methane lifetime due to

OH loss for 1980–2017 is 9.9 ± 0.4 years in S0Wopt, which

is about 0.5 years lower than S1Wopt (10.4 ± 0.5 years)

and about 0.7 years higher than S2Wopt (9.2 ± 0.3 years),

due to different OH levels and therefore methane sinks, but

with similar methane burdens. This indicates that a 1 %

change in OH levels could lead to about a 0.08-year dif-

ference in the tropospheric methane lifetime. The mean tro-

pospheric methane lifetime simulated by the three simula-

tions is within the uncertainty range of model estimates of

9.3±0.9–9.8±1.6 years (Voulgarakis et al., 2013; Naik et al.,

2013b) and in general comparable to the observation-derived

estimates of 9.1±0.9 years for the present day (Prather et al.,

2012), with a slightly higher estimate by S1Wopt. All simu-

lations show an increase in methane lifetime during 2011–

2015, which could be a signal of the methane feedback on its

lifetime (Holmes, 2018) in the model. Continued increases in

methane emissions (Fig. 5) during this time, along with de-

creases in tropospheric OH concentrations (Fig. 8), lengthen

the lifetime of methane and therefore amplify methane’s re-

sponse to emission changes. If methane emissions continue

to increase, we can expect stronger increases in atmospheric

methane due to the amplifying effect of the methane–OH

feedback as occurred in the significant increases in methane

growth rates during 2014 and 2015.

4 Conclusions

In this work, we thoroughly evaluate the atmospheric

methane budget simulated by the GFDL atmospheric chem-

istry model AM4.1 and apply the model to attribute the

drivers of changes in global methane over the past 4 decades.

We simulate methane and related tracers for 1980–2017 by

driving the model with gridded emissions compiled from

various sources. To match the long-term record of surface

methane measurements, we optimize global total methane

emissions using a simple mass balance approach. Our op-

timized global total methane emissions are within the range

of estimates by previous studies (both bottom–up and top–

down). The GFDL-AM4.1 simulations with emissions fol-

lowing two different optimizations (anthropogenic sources

and wetlands) both reproduce observed global methane

trends and variabilities, despite the different contributions

from anthropogenic and wetland emissions. This, therefore,

suggests that accurate estimates of global total emissions and

of their interannual variability are critical in predicting the

global methane trend and its variability, despite uncertain-

ties in the estimates of individual sources. In addition, both

simulations are in general able to capture the spatial distri-

bution and seasonal cycle of methane as observed by NOAA

GMD sites and vertical distribution of methane as measured

from aircraft, demonstrating the reasonable spatial and tem-

poral representations of the optimized emissions derived in

this work.

We then explore the contributions of changes in methane

sources and sinks to methane trends and variability over

1980–2017. The simulation with optimization of anthro-

pogenic emissions shows increasing anthropogenic emis-

sions to drive the rapid methane growth during the 1980s

and 1990s, whereas the simulation with optimization of wet-

land emissions also shows wetland to be one of the major

contributors during these periods. However, both simulations

suggest increases in methane sources (mainly from agricul-

ture, energy, and waste sectors), balanced by the increases in
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methane sinks (mainly due to increases in OH levels), lead

to methane stabilization during 1999–2006 and that the agri-

culture, energy, and waste sectors are the major contributors

to the renewed growth in methane after 2006.

Two additional sensitivity simulations further investigate

the contributions of wetlands to the renewed methane growth

during 2007–2014. The simulation with repeating 2006

emissions for all the sectors except wetland shows a declin-

ing contribution of wetland tracer to total methane abundance

despite the increasing contribution of wetland emissions to

total emissions, because sinks are equally important for de-

termining the tracer trend. Results from a simulation with

combined optimizations (i.e., 1980–2005 optimized anthro-

pogenic emissions and 2006–2014 optimized wetland emis-

sions) suggest that a sharp increase in wetland emissions (a

likely scenario) with a concomitant sharp decrease in anthro-

pogenic emissions (a less likely scenario) would be required

starting in 2006 to drive the methane growth by the wetland

tracer.

Two additional sensitivity simulations, with low and high

OH levels (by scaling LNOx production in the model by a

factor of 0.5 and 2), further investigate methane OH loss

and tropospheric methane lifetime. In general, OH trends

dominate methane OH loss trends during different methane

growth periods except 2007–2013, when methane OH loss

shows little change due to the decrease in OH levels com-

bined with the increase in methane concentrations. The re-

sults also indicate that a 1 % change in OH levels could

lead to about a 4 Tgyr−1 difference in the optimized emis-

sions and a 0.08-year difference in the estimated tropospheric

methane lifetime. The increasing methane lifetime during

2011–2015 in all the OH sensitivity simulations indicates

a possible methane feedback on its lifetime in the model.

Continued increases in methane emissions along with de-

creases in tropospheric OH concentrations extend the life-

time of methane and therefore amplify methane’s response

to emission changes.

Essentially, the global atmospheric methane trend is driven

by the competition between its emissions and sinks. Our

model results suggest that the methane stabilization during

1999–2006 is mainly due to increasing emissions balanced

by increasing sinks, whereas the renewed methane growth

during 2007–2013 is mainly due to increasing sources com-

bined with little change in sinks despite small decreases in

OH levels. The significant increases in methane growth dur-

ing 2014–2015 are mainly due to increasing sources com-

bined with decreasing sinks. Most of the model simulations

conducted here suggest that increases in energy sources drive

the renewed methane growth, in agreement with previous

studies (e.g., Rice et al., 2016; Hausmann et al., 2016; Wor-

den et al., 2017), with the second largest contributor from

the waste sector and third largest contributor from the agri-

culture sector, consistent with the shift in the isotopic ratio

δ13CH4. However, optimization of emissions from anthro-

pogenic sources depends on the “shares” of individual an-

thropogenic sectors in the initial emission inventories. Un-

certainties in these shares could lead to uncertainties in the

emission adjustment for each anthropogenic sector. Recent

studies using methane isotopic composition suggest that re-

newed growth in methane since 2007 is more likely due to

the increases in biogenic sources (e.g., Schaefer et al., 2016)

as δ13CH4 is shifting to more negative values after increasing

during the 1980s and 1990s and remaining relatively stable

during 1999–2006. However, this shift could also imply in-

creases in isotopically lighter fossil fuel emissions, decreases

in isotopically heavy sources (e.g., biomass burning), or in-

creases in both microbial and fossil fuel emissions but with

increases in microbial emissions stronger than those from

fossil fuel sources (Nisbet et al., 2019). It is quite possible

that, rather than the energy sector, the increases in the agri-

culture and waste sectors could be the largest contributors to

the renewed growth in methane. In that case, it is possible

that the growth of agriculture and waste emissions could be

underestimated in the optimized emissions, while the growth

of energy emissions could be overestimated.

The optimized emission totals estimated in this work rep-

resent temporal and spatial distribution of total methane

sources reasonably well. However, the emission adjustments

are either applied to anthropogenic (including biomass burn-

ing) sectors only (uniformly to all anthropogenic sectors)

or to the wetland sector only. Uncertainties therefore exist

on the distribution of the emission adjustments to individual

sectors. Without accurate estimates of emissions from indi-

vidual sources, it would be difficult to attribute the methane

trend and variability to specific sectors. The application of

methane isotopes and additional observational constraints

(e.g., ethane and δ13CH4) could potentially help better par-

tition the emission adjustments to different sectors. In addi-

tion, the spatial distribution of optimized emissions depends

on the spatial information in the initial emission inventories.

Uncertainties in the spatial distribution from the initial emis-

sion inventories may remain in the optimized emissions. Our

model evaluation suggests that the optimized inventory may

overestimate tropical emissions. A process-based emission

model (e.g., wetland emissions) coupled with AM4.1 may

better represent the spatial and temporal patterns of the emis-

sions than prescribed in the present work.
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