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In this paper a novel method for global analysis of chemical kinetic models is discussed and
applied to auto ignition of high hydrocarbons. It is mainly based on the concept of decomposi-
tion of motions and follows major steps of the ILDM method. However, a very important
difference of the suggested method is its ability of an explicit and global representation of the
system decomposition as a standard singular perturbed system (SPS). The fact that the ILDM
provides local information about the decomposition makes the ILDM quite accurate in descrip-
tion of the slow system dynamics, but for fast motions, which become very important in the
context of ignition.extinction problems, there are up to now no reliable methods based on
ILDM. Therefore, the current work is devoted to developing such a method which can be used
efficiently for global analysis of the reaction mechanisms with subsequent formulation of ex-
plicit reduced models for unsteady combustion regimes like ignition processes. The suggested
method is illustrated by a simple Lindemann kinetic model and then applied successfully to the
auto ignition of a homogeneous n-heptane.air system.

1. Introduction

Mathematical modeling of combustion processes has gained importance in the

recent years due to the requirement of economical use of available energy resour-

ces and reducing the overall pollution impact caused by combustion processes

[1–2]. In order to further improve the technology, more detailed and reliable

modeling of the combustion phenomena is needed. One of the most complicated

parts of such models is obviously the chemical kinetic model.

In order to overcome problems with modeling of combustion processes and

obtain better agreement with experimental data very complex and detailed mathe-
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matical models of chemical kinetics mechanisms are needed. One has to increase

the complexity and the dimension of the physical model. In this way, reaction

mechanisms reach in some cases more than thousand chemical species, which

participate in several thousands of elementary reactions. This leads to very large

dimensions of the partial differential equation systems. As a result typical mathe-

matical models of reacting flows with detailed mechanisms [3] cannot be treated

analytically and even the numerical treatment is limited to academic problems

(see, for instance, results of DNS with detailed chemical kinetics models [4–5]).

Accordingly, the need for reduction methods providing reduced models, which

are simple (low dimensional, less complex etc.), but nevertheless, describe quan-

titatively the underlying combustion process, has increased [6–7]. In this respect

the most important feature of chemical kinetic mechanisms is the existence of

multiple time scales. Although this complicates a lot the numerical treatment of

the reacting flow system due to the stiffness of the resulting mathematical model,

it allows also to construct low-dimensional approximations of the detailed model

describing the so-called long-term and rate limiting dynamics accurately.

There are many realizations of model reduction exploiting this property; only

a very short list of methods is presented below: One of the first methods of a

global model reduction are the Quasi Steady States Assumption (QSSA) and the

Partial Equilibrium Assumption (PEA) [8–9], [10] (see e.g. [11–14] for more

discussions and reviews). Recently, many numerical tools for model reduction

have been developed: Intrinsic Low-Dimensional Manifolds (ILDMs) [15], Com-

putational Singular Perturbation method (CSP) [16], Level Of Importance Index

approach (LOI) [17], sensitivity analysis [18–19] etc. It has to be noted that the

ILDM method [20] combines both the system hierarchy analysis and provides

a complete method of automatic reduced model generation and its subsequent

implementation into CFD codes that uses a tabulation strategy [21].

There are other recent approaches based on different minimization strategies

such as Rate-Controlled Constrained Equilibrium (RCCE) [22] and Minimal En-

tropy Production Trajectories (MEPT) [23], and the Lumping Method (LM) [24],

but they use knowledge about the hierarchical.decomposed structure that has to

be provided by other methods and, consequently, require a time (human resour-

ces) consuming analysis of the hierarchy. The Method of Invariant.Integral
Manifolds (MIM) [25–31] gives a mathematical basis for the most approaches

listed above as well as for different optimization strategies (see e.g. [32]).

Two additional methods have to be mentioned here, namely, the flamelet

[33–34] and the REDIM [35] methods which represent attempts of a systematic

treatment of coupling of the chemical kinetics with the molecular transport proc-

esses [36]. In the current work, however, this coupling is not in the focus of the

study. It is assumed that the transport processes have a negligible influence on

the ignition process which corresponds to a pure homogeneous case with infi-

nitely fast diffusion processes.

This study focuses mainly on developing a tool of kinetic mechanism analy-

sis that globally explores the hierarchy (multi scales) of the system with its
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subsequent application to model reduction. By further extending a coordinate-

free version of the decomposition framework and applying a linearization strat-

egy the tool for automatic hierarchy analysis is emerged. The method is validated

on a very important test case – the self ignition problem.

This paper is organized as follows: the second section will be devoted to an

introduction to the mathematical modeling of chemical kinetic mechanisms

within the framework of model reduction. Next, the suggested method of global

system analysis will be discussed and presented by a simple example. Then, the

so-called global quasi-linearization procedure (GQL) is applied to the self-igni-

tion problem of the n-heptanes.air combustion system.

2. Mathematical formulation and problem statement

A typical mathematical model of a reacting system under consideration (pure

homogeneous system) is presented by a system of ordinary differential equations

that describes the chemical system evolution based on the mass action law. These

reaction equations describe the evolution of the thermo-chemical state vector in

linear vector space ψ = (ψ1,...,ψn) in time, where ψj represents such quantities as

the pressure of the mixture, the enthalpy, the mass fraction.mole concentration

of chemical species or their specific mole numbers. In vector notation the system

of governing equations of a homogeneous system can be written as

(1)

Here the so-called chemical source term F represents the chemical source. It

describes the evolution of ns chemical species (n = ns + 2, with two additional

variables describing thermodynamic properties) participating in nr elementary

chemical reactions. Additionally, positive invariance of the domain Ω is assumed

to ensure a dissipative nature of the reaction mechanism. Now, we present a

short outline of meaning of the system reduction from a mathematical point of

view. In general a final aim of model reduction is a reformulation of the system

(1) in an appropriate reduced form by introducing the reduced space θ =

(θ1,...,θm), m / n such that the solution of the system (1) will be accurately

described by the following reduced model

(2)

The main question then arises: how do the systems (1) and (2) relate to each

other, namely, what is the relation between the detailed ψ = (ψ1,...,ψn) and re-

duced spaces θ = (θ1,...,θm). Thus, in principle, one needs to describe a relation

between these spaces in order to reduce the system. If the reduced space can be

represented by a low-dimensional manifold in the detailed linear vector space,

which is given in explicit form

(3)
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then the system (1) is restricted.projected to the manifold M yielding

(4)

The Moore-Penrose pseudo inverse ψθ
+
(θ) [37–38] has been used in (4), which

is a well defined function unless the tangent space TM given by ψθ(θ) degener-

ates.

Obviously, the reduction of a given arbitrary system with prescribed dimen-

sion and accuracy is almost always impossible in principle, but fortunately, sys-

tems governed by chemical reactions have certain properties that, nevertheless,

make the model reduction possible. The existence of various time scales is a

known feature of chemically reacting flows, both in experiments and detailed

model simulations it is observed that not the entire possible range of the thermo-

chemical state space is typically accessed by the system states (solutions), but

only a part of it. This part normally has a low-dimensional structure or can be

efficiently approximated by low-dimensional manifolds.

The information about low-dimensional manifolds with certain properties

(invariant, attractive, unstable, slow, fast etc.) is important for model reduction.

An efficient reduced model should not only allow the estimation or approxima-

tion of the needed reduced space or manifold (the manifold containing the re-

duced system dynamics), but also provide us with the tool for its analysis with

respect to the properties above.

To some extent, the existing methods answer the questions above, for in-

stance, in order to obtain a low-dimensional approximation of the accessed space

by the system (1) different simplifying assumptions have been introduced. The

QSSA, for example, assumes that some of the species are already in steady state

(their right hand sides (RHSs) equal to zero), while the PEA defines the reduced

dynamics by applying the assumption that some elementary reactions are in par-

tial equilibrium, meaning that the rates of forward and reverse reactions are

equal. Other methods like the ILDM (as well as the CSP, sensitivity analysis

etc.) suggest using the local information (eigenvalues and invariant eigenspaces

of the Jacobi matrix of the source term), while others use the concept of invariant

manifolds [30], [35].

In the following, the so called GQL method of systematic analysis of kinetic

mechanisms and low-dimensional manifolds useful for model reduction is dis-

cussed and applied to formulate the reduced model to the ignition problem.

3. Singular perturbed systems and the global quasi-
linearization (GQL) method

A simple mathematical model for the decomposition of motions leads to a very

special system representation of the system (1) as a Singular Perturbed System

(SPS) [39–40]



On Investigation of a Hierarchical Structure … 465

(5)

with the so-called slow variables U = (U1,...,Ums
), which are assumed to change

slowly compared to fast ones V = (V1,...,Vmf
), ms + mf = n, due to the presence

of the system small parameter 0 < ε / 1. Then, the SPS theory can be used

systematically as a natural mathematical construction and tool for the system

analysis. Namely, one has the fast motions.manifolds automatically estimated

by

(6)

with the leading order of magnitude of the system small parameter ε describing

the difference in time scales. They obviously depend on the initial system state

(U0,V0) because the slow variables during the fast transient period are estimated

to be “frozen”.

The slow system manifold is then approximated (to the leading order) by

(7)

Note, however, that higher order approximations follow from the application of

the SPS theory in a straightforward way [40]. The stability analysis of the slow

manifold is related to the following eigenvalue problem for points on the mani-

fold (7)

(8)

where DVFf(U,V) is the mf ! mf matrix of partial derivatives of the fast subsys-

tem with respect to the fast variable V and λ are eigenvalues of this matrix (see

e.g. [41] for more detailes). Accordingly, knowledge about global fast manifolds

is very important in the stability analysis of a reduced model described by a slow

manifold. Now, depending on the investigated dynamical regime one can use (6)

or (7) as a manifold equation for the explicit form (3) and proceed with the

reduction procedure (4).

In this way the problem of reduction reduces to the problem of how to

identify this special representation. Clearly, by assuming only one particular

asymptotical limit and performing non-dimensionalization, it might be possible

(as in the simple Lindemann model below) to obtain a representation (5) of the

system (1) analytically. But, in the general case, for more complex and practical

systems (with large dimension, non-linearity, stiffness etc.) it is either very time.
human.computational recourses consuming or even prohibitive in some cases.

At present, there is no universal method which solves this problem in a general

case.

In our previous work [42], a general framework of model reduction by de-

composition of motions has been suggested. It is based on a coordinate free

approach. Instead of its representation by a system of ODEs, the Singular Per-

turbed Vector Field (SPVF) is introduced. Thus the very complex problem in a
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general case becomes treatable under some additional hypothesis about the linear

structure of fast manifolds. An algorithm to construct a linear transformation to

the form above has been suggested in [41]. In the current paper the algorithm is

discussed using a simple model and then applied to the very important case of

combustion processes (auto-ignition) in order to verify the method and explore

its capabilities.

3.1 A simple model system

Being a very simple example, the Lindemann model illustrates the discussion

above and can be considered as a motivation for the current study. Lindemann

established the mechanism for unimolecular reactions (see e.g. [43]) by introduc-

ing a third body M:

(9)

where A is the reactant, A* is the excited reactant and P the product. This yields

the following well known mathematical model:

(10)

It can be seen from (10) that only two equations are linearly independent. This

leads to a 2D problem. Furthermore, in order to make the system non-linear for

illustration purposes we consider the third body molecules M to be the same

ones as A, i.e. [M] = [A]. Thus, after reformulation, simplification and non-

dimensionalization [41], [44] the resulting mathematical model is represented by

(11)

where x = [A*].[A]0, y = [A].[A]0 are normalized concentrations and τ = k2
+
t

dimensionless time; the additional assumptions k1
+
= k1

K
and the rate limiting
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Fig. 1. Phase portrait of the Lindemann system with the vector field and trajectories at arbitrary
initial conditions for ε = 0.2. The dashed green line represents the QSSA slow curve approxima-
tion.

second step ε = k2
+
/ k1

+
< < 1 of the reaction mechanism have been made for

simplicity.

3.2 Conventional analysis

This example can be analyzed easily by conventional asymptotic methods due

to the presence of the small system parameter 0 < ε / 1 yielding a decomposi-

tion of motions. In this example, all methods listed in the introduction, when

they are rigorously applied, are capable of a satisfactory description of the slow

system manifold (up to perturbations of order O(ε) in the asymptotical limit).

For instance, in the QSSA any of the variables can be considered to be at the

steady state: both
1
εy(y K x) K x = 0 or

1
εy(y K x) = 0 yield a reasonable ap-

proximation of the slow system manifold, which goes asymptotically close to

the x = y line (see Fig. 1, green line). The partial equilibrium assumption (PEA)

corresponds to the second equation above, since the second reaction is considered

as a rate limiting one, while the first reaction is at partial equilibrium along the

slow manifold.curve (see Fig. 1 for illustration). Application of other methods

will also differ in the first order O(ε) terms one from the other. Thus, in principle,

whenever the system small parameter is asymptotically small there is no problem

with the slow system dynamics, the reduced space can be easily obtained, how-

ever problems begin when one needs to project an initial state of the system in

the whole state space ((x,y) plane in this example) onto the curve representing

the slow system dynamics and the system small parameter has small but finite

values (see Fig. 1 for illustration). In order to make it consistent with the system

dynamics the global fast motions (directions) or more specifically the way the
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system relaxes onto the slow manifold should be analyzed as well. For the model

system, it can be estimated by x + y ≈ cons, because the following change of

variables

(12)

brings the system (11) to the standard SPS form (5)

(13)

This representation and the presence of the system small parameter means that

u = x + y will be “frozen” (almost constant) during the fast transient period of

the relaxation process towards the slow system manifold approximated by the

RHS of the “fast” variable ν = y, namely, ν(2ν – u) = y(y – x) = 0. In the

considered limit, the representation (13) explicitly shows that during the fast

transient period of the system behavior the concentration of the excited reactant

A* will increase.decrease proportionally to the reactant A (along the line u = x

+ y = const) until the concentration approximately equalize (x – y ≈ 0) and then

the product will be build up until both concentration will be exhausted.

3.3 General formulation of GQL, choice of the reference set

To start an introduction and discussion of the method of analysis suggested in

this work, let us formulate the main assumption that allows using a coordinate

free framework [42]. By now only the case of linear fast manifolds can be

efficiently resolved by the Global Quasi-Linearization procedure [41]. It is based

on linear approximations of the vector field defined by the RHS of (1), which

are capable of identifying the hierarchy and globally redefine the discrepancy in

time scales of the sub-processes inside a priory fixed domain in the state space.

Accordingly, the core idea of the GQL is the identification of fast manifolds or

subspaces in the linear vector space of the system (1).

An essence of the approach is the following procedure: in order to find the

fast subspace, we suggest to identify a set of n points in the defined domain in

the state space {ψ1,...,ψn} 2 Ω, which is called a reference set and study proper-

ties of images of all vectors in the set under the vector field F(ψ) (see Eq. (1)

for definitions). Accordingly, if the system (1) has an internal hierarchy in the

considered domain then it can be investigated and discovered by properties of

linear mapping T: ψi
/ F(ψi) , which is given by the matrix (see analysis of the

Lindemann problem below)

(14)

Now, if all points {ψ1,...,ψn} are chosen properly (see discussion of the choice

below) the linear structure of the transformation matrix T should contain the
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information about the system hierarchy as well as about the fast subspace. Obvi-

ously, the crucial point of the method is associated with the choice of the refer-

ence set. In order to make a particular “representative” choice which provides

us with the best fit of the vector field F(ψ) by a linear transformation Tψ and to

overcome problems of artificial degeneration of the transformation matrix T the

following procedure is proposed (see e.g. [41] for more details)

• By performing a quasi-stochastic uniform distribution, an “initial set” SN
consisting of points uniformly distributed in the domain Ω is formed

• Then, a mean value of a vector field over the sequence SN is calculated

Now, a subset of SN is taken as follows

The set SK is called a “separated set” and consists of points, which are “far away”

from the system’s slow manifold in the following sense. The norm of the vector

field at these points has values above average level and can therefore safely be

used to evaluate the fast subspace (consider e.g. the vector field in Fig. 1 in the

vicinity of the x = y line). Note that in the vicinity of the slow system manifold

the system hierarchy cannot be measured, thus any subset of a length of n of the

control set SK can be used as the reference set to obtain T, but there is a second

problem of degeneration of the chosen subset of the separated set if some of the

points will be close one to another. This can lead to degeneration of the matrix

[ψ1,...,ψn] in (14) and, consequently, to a wrong decomposition. Therefore, not

every subset of SK can be applied safely as the reference set.

• To solve the problem with degeneration we have to take a subset of vectors

such that it spans the simplex of the volume which is comparable to the volume

of the domain Ω. Therefore, we build up the sequence of GQL approximations

(14) Tj, j = 1,...,k based on subsets of the control set

and select only those subsets {ψ(j–1)n+1,...,ψjn}, which have det[ψ(j–1)n+1,...,ψjn]

above the average level over all subsets

•Now, in order to define the final GQL Tj) from the “control set” SC we

choose the one giving the best decomposition (small parameter) for a given
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dimension m of the reduced model [41]. The eigenvalues analysis of the GQL

Tj) answers whether there is a discrepancy in time scales, as a gap between

eigenvalues λ1,...,λm,λm+1,...,λn, -λi- ≤ -λi+1-, or not. Finally, the system small pa-

rameter can be estimated by this gap as ε =
-λm-

-λm+1-
.

After the reference set is properly specified the rest is simple and follows

the main steps of the ILDM method [45]. The invariant subspaces Zs,(n×ms) and

Zf,(n×mf) of the group of relatively “small” eigenvalues Λs,(ms×ms) (with

λ1, ...,λms
on the diagonal) and of the group of “large” ones Λf,(mf×mf) (with

λms+1,...,λn on the diagonal) globally form the basis of the decomposed system as

(15)

thus, the decomposed system in explicit form reads

(16)

3.4 GQL analysis of the simple model

In this subsection, in order to illustrate and give more details of the main steps

of the suggested GQL method the model example (11) is considered

(17)

Now, to implement the method we should define two points (reference set) [41]

(xi,yi)
T, i = 1,2 in Ω = [0,1]2 and then find a linear transformation that transfers

these points into their images under the vector field given by the system’s RHS:

(18)

This transformation is given by the following formula

(19)

Hence, we obtain the linear map T which coincides (gives same result) with

the non linear map F on the reference set. It is easy to check for a chosen ψi =

(xi,yi)
T, i = 1,2 that
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The result of the GQL analysis implementation is summarized in Fig. 2,

where two cases of the reference set are presented. The left figure shows the

resolved decomposed structure based on an arbitrary choice of the reference set

ψ1 = (0.6, 0.2)T and ψ2 = (0.1, 0.7)T providing with Z̃f = (K0.57 0.87) and Z̃s =

(0.66 0.81) which were chosen to satisfy partial requirements of the choice proce-

dure above (they are “far away” from the slow curve and span the volume which

is compared to the domain), but certainly they are not optimal. The right figure

represents the result based on the accurate choice ψ1 = (0.006, 0.98)T ψ2 = (0.447,

0.843)T of the reference sequence as described in subsection 3.2 with Z̃f =

(K0.77 0.62) and Z̃s (K0.67 K0.74) correspondingly.

The fast manifolds.directions are calculated by the corresponding invariant

subspaces (15) by u = Z̃s ψ0 = const, whilst the system slow manifold.curve is

approximated by Ff(u,v) = Z̃f F((ZsZf)(v
u
)) = 0. This can be seen in Fig. 2 where

both realizations are shown in the original coordinates ψ = (x,y) by black and

blue lines correspondingly. There are three main observations we would like to

underline here. It can be seen clearly that the GQL method represents the real

system behaviour much better (blue curve) than the standard QSSA assumption

(green curve). The first observation concerns the accuracy of the result given by

the arbitrary choice. The sine of the angle between Z̃s for these different choices

equals ~0.08 that means the deviation of fast manifolds is of order O(ε) (ε =

0.2). By comparing intersection points of the blue slow lines with the line y = 1

in Fig. 2 one can see as well that the deviations of the slow curves are of the

same order.

The second observation can be made concerning the accuracy of the slow

manifold near the origin, which in this case is a singular point of a parabolic

type (one eigenvalue of the Jacobi matrix is zero). In this case even the standard

expansions of the SPS theory fail to approximate the slow manifold in the vicin-

ity of such points. The GQL method overcomes this difficulty and estimates the

slow manifold quite reasonably near the origin (see Fig. 2). Finally, the suggested

form of the GQL (13) allows to use the algorithm to the system in dimensional

form because it is scaling invariant, and, therefore proper non-dimensionalization

and normalization problems are automatically overcome [41].



472 V. Bykov and U. Maas

Fig. 2. The left figure shows the results of the GQL analysis for the arbitrary choice, the right
figure corresponds to the accurate choice of the reference points. Black solid lines are fast
system directions starting at (0,1); blue curves show the GQL zero’s order approximations of
the system slow manifold; green lines indicate the QSSA slow curve.

4. n-heptane auto-ignition problem

4.1 Problem definition

In this section the method of global analysis outlined in the previous sections is

applied to the homogenous auto-ignition in the n-heptane.air system. The ele-

mentary kinetic mechanism of this system is relatively well studied (see e.g.

[46–49] for more references), and moreover, the complex two stage ignition of

a stoichiometric mixture represents a quite interesting and challenging task for

any reduction procedure.

Two stage auto-ignition occurs in the so-called Negative Temperature Coeffi-

cient (NTC) regime due to the fact that the oxidation process slows down while

the temperature slightly increases (see Fig. 3). In the second stage, the formation

of H2O2 becomes more important, which then slowly dissociates to OH radicals

[46] leading to the second stage of thermal runway. For the analysis we have

used the nr = 56 step skeletal mechanism with ns = 35 species of [47]. It is

comparatively small but, nevertheless, until the second stage of the ignition it

describes the kinetics qualitatively and quantitatively reasonably well (see e.g.

[47] for detail and Fig. 3 for illustration). Figure 4 shows further comparisons

of the chosen kinetic mechanism with the others given by LLNL [48] and Golov-

ichev [49] of ns = 159 and ns = 57 species correspondingly. Note that although
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Fig. 3. Time histories of some species and temperature of n-heptane self ignition at initial
temperature of T0 = 833 K and pressure 13.5!105 Pa.

Fig. 4. Temperature time histories of different detailed mechanisms of n-heptane self ignition
at initial temperature of T0 = 833 K and constant pressure 13.5!105 Pa.

all these mechanisms are well accepted they predict ignition delay times varying

by a factor of 3.
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Fig. 5. State space projection onto H2O2 – CH2O – OH space with detailed system solution
trajectory shown by the red line, 2D GQL slow manifold is the green mesh, red cubes are the
reference set, cyan line with spheres is the reduced model solution trajectory.

4.2 GQL implementation

Now, we use the Global Quasi Linearization (GQL) procedure to set up a decom-

posed system (15) for the auto-ignition problem above. The first difficulty with

the implementation is a definition of a positively invariant domain (domain of

interest) in the state.composition space. To overcome this problem, numerical

solutions using the detailed mechanism have been used similar as suggested in

[41].

The domain of interest has been defined by a system trajectory yielding the

maximum values for the species molar numbers over this trajectory for all spe-

cies. The detailed system solution is analyzed until the middle stage of the second

delay time in order to insure that the domain of interest will cover the essential

part of the ignition and will not include the slow processes close to the equilib-

rium point. In this respect the domain definition problem becomes a crucial point

because the information on the vector field near the equilibrium, where the major

products have been already build up, is not important for the ignition stage,

therefore the random points are selected from the domain of the state space close

to the trajectory during the ignition phase (see Fig. 5 for illustration).

Another known problem, that has to be resolved during the implementation,

is the determination of the reduced system’s dimension. In order to accurately
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predict the delay time one needs to keep the overall dimension of the reduced

model relatively high in comparison, for instance, to a flame propagation prob-

lem. This is because the flame propagation process is mainly controlled by a few

rate limiting slow reactions, which are described reasonably well by relatively

low dimensional slow manifolds [45]. At the same time to describe the ignition

process important fast modes have to be included in the reduced model as well.

This feature is shown in the Fig. 5, where the 2D GQL approximation of the

slow system manifold is presented together with the detailed and the reduced

model solutions trajectories as well as with the reference set used for the GQL

analysis. One can see that during the first ignition and the transient second delay

period where H2O2 and CH2O are being formed, the system solution deviates

significantly from the 2D slow manifold. However, close to equilibrium the 2D

manifold represents the system quite well.

The steps of the GQL analysis are the following:

• Definition of the domain of interestΩ by detailed system trajectory analy-

sis;

• Choice of the optimal reference set for the GQL inΩ;

• Eigenvalues and eigenspaces analysis of the GQL approximation of the

vector field;

• Explicit decomposition of the system by using invariant subspaces;

• Integration of the system confined to the GQL approximation of the slow

system manifold yielding the reduced model;

• Comparison to the detailed system solutions for different initial tempera-

tures and pressures for validation purpose.

4.3 Results and discussion

In this section, important details of the implementation scheme given above

together with the outcome of the GQL analysis are presented and discussed.

Ignition delay times of the original and reduced models will be compared for

verification of the selected model. Different definitions of the domain have been

tried, but the most simple and obvious turned out to be the following

(20)

here ψi(t) are components of a typical detailed reference solution (except those

whose values are conserved) and t* is the time corresponding to the half of the

second transient period of the overall delay (see Fig. 3). Then, an accurate choice

of the reference set has been performed as described in [41] yielding the reduced

model dimension as ms = 20 – nc = 14, where nc = 6 is a number of the conserved

quantities, which corresponds to the mf = 17 dimensional fast manifolds structure

(n = ms + mf + nc = 37). The gap between the eigenvalues of the GQL based on

the reference set defines the system small parameter as ε = 3.42!10K2. Next,

the invariant subspaces of the GQL define the decomposition (16). Now, in order
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Fig. 6. Temperature dependence of the ignition delay time and the relative error. Black lines
with filled circles are the reduced model delay time prediction; red dashed lines are the detailed
model results.

to compare the detailed and reduced models the system has been integrated on

the GQL approximation Ff(U,V) = 0 of the ms-dimensional slow manifold ac-

cording to

(21)

In the following results of the solution of two systems (1) and (21) are

compared, where the second fully corresponds to the integration of the system

on the 14-dimensional slow manifold (excluding the conserved quantities i.e. it

is considered in the reacting space only) which defines a 14-dimensional reduced

model for the ignition process. Figure 6 compares the two delay times for initial

relatively low temperatures ranging from 800 K to 1300 K. It shows relative

errors of the reduced model estimations as well. One sees that there are some

deviations for high temperatures and pressures because the delay time becomes
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Fig. 7. Shows pressure dependence of the ignition delay time with the relative error. Black
lines with filled circles are the reduced model delay time prediction; red dashed lines are the
detailed model results.

very small, but they are still within an acceptable level of accuracy. It is interest-

ing that the relative error in most of the range is less than a few percent and

smaller than the differences in the results obtained from different mechanisms

shown in Fig. 4.

Finally, Fig. 7 summarizes the performance of the reduced model with re-

spect to pressure variations. Once again one sees the very high accuracy of the

reduced model even for considerably high pressures, especially in the case there

was no optimization of the method implemented for different pressures.

5. Conclusions

An efficient algorithm of the global analysis of the chemical kinetic mechanisms

has been presented and applied to the problem of self ignition. It is based on the

natural assumption of the decomposition of motions. It decouples the fast mo-
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tions.processes and as a result reduces the system’s dimension and stiffness of

such models making them treatable numerically even for complex reacting flow

problems. A method which realizes this strategy has been presented and applied

to an auto-ignition process. The main feature of the novel approach compared to

other approaches is its global character and the capability of approximating not

only the slow system manifolds (used to reduce the system), but the explicit

decomposition and the fast manifolds as well. The GQL and its detailed imple-

mentation scheme is presented and fully illustrated by the planar model of the

Lindeman system.

The skeletal chemical reaction mechanism (35 species, 56 reactions) for n-

heptane.air auto-ignition problem is considered for rigorous verification. The

reduced model is formulated and studied on a basis of special system representa-

tion as a standard SPS system. The global analysis yields the 14-dimensional

reduced model. The simulations of the ignition times are in very good agreement

with those obtained with the detailed mechanism.
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