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Abstract: A constitutive model able to describe both tensile damage and plastic deformation under
confinement is a prerequisite to numerically simulate the behaviour of sandstone rock under an
impact loading induced in a percussive drilling process. Therefore, model identification under both
tensile and high confinement states is needed. In the present work, an experimental investigation
was carried out in order to determine the mechanical properties of a sandstone rock for the purpose
of advanced constitutive model identification. Different testing methods were used in quasistatic and
dynamic loading regimes. This first part of the study is dedicated to static experiments, whereby three-
point bend tests were first performed to evaluate the quasistatic tensile strength of the rock and its
distribution by employing the Weibull statistics. Secondly, direct compression tests were conducted
to evaluate the stiffness and strength in an unconfined condition. Afterwards, quasioedometric
compression (QOC) tests were carried out in order to obtain the deviatoric and volumetric behaviours
of the material as a function of the hydrostatic pressure (up to 375 MPa). In these QOC tests, the
metallic confinement cell was instrumented with strain gauges to deduce the state of the stress and
strain within the sample. A linear volumetric response along with a continuous increase of strength
with the level of hydrostatic pressure was observed. This experimental work points out that, under
unconfined loading (three-point bending and uniaxial compression), pre-existing structural defects
play a major role leading to a highly scattered behaviour in terms of sample stiffness and ultimate
applied load. On the other hand, under high confinement levels (QOC tests), beyond the nonlinear
response of the curve foot, the influence from structural defects was observed to be small.

Keywords: sandstone; static experiments; constitutive behaviour

1. Introduction

The aim of this study is to investigate the behaviour of Lingulid sandstone rock, with
percussive drilling as the main application of interest. Different testing methods were
used in quasistatic and also dynamic loading regimes [1]. The fragmentation process
generated in geomaterials under percussive loading corresponds to both (mode I and
mode II) fracturing modes induced by tensile stresses and triaxial stress states. For this
reason, it is necessary to consider different constitutive laws that are able to describe both
tensile damage and the confined compression response. One possible candidate for such a
constitutive law is the so-called KST–DFH model. The KST elastoplastic model [2,3] can be
considered to model the confined behaviour of geomaterials and the tensile behaviour can
be described with the DFH probabilistic-damage model [4,5] that takes into account the
critical defects associated to the geomaterial. The KST–DFH model was previously used to
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simulate damage and deformation modes in concrete structures when subjected to impact
loading [6–8] in which high-strain-rate tensile stresses and triaxial stresses were involved.
The KST–DFH model was also successfully employed in a numerical study of granite rock
fragmentation of percussive drilling [9]. As explained in these previous works, the main
parameters of both models can be identified based on static experiments.

As detailed in [5], the DFH multiscale model allows one to describe the probabilistic
behaviour of brittle materials under low stress rates and the deterministic response at high
stress rates. At low stress rates, a failure stress randomly drawn according to the Weibull
model provides the ultimate strength of the considered elementary volume. At high stress
rates, a damage variable is used to describe the fragmentation process involved in brittle
materials at high strain rates in terms of crack inception, crack propagation, and obscuration
of critical defects from propagating cracks (Figure 1a). Crack inception phenomenon can be
described again according to a Weibull distribution where the density of critical defects is a
power law of the applied stress σ(T) Equation (1). In this equation, the input parameters
are m, the Weibull modulus and λ0(σ0)

−m, the scale Weibull parameter. Both Weibull
parameters can be identified from a series of bending tests (about 20 tests) [4,5]. In the DFH
model, a constant crack speed Vcrack is usually assumed for crack propagation. The last
mechanism, called the obscuration of critical defects, corresponds to a shielding process
from propagating cracks. It results from release waves initiated on the lips of the crack.
The release of stresses in the vicinity of the propagating cracks prevents the activation of
other critical defects located in a zone called the “obscuration zone” that is assumed to
grow in a self-similar way. Therefore, the size of the obscured volume Vo(T − t) can be
expressed as function of Equation (2) (in a case of 3D volume) where Vcrack is the crack speed
(Vcrack = 0.38

√
E/ρ) is assumed with the E Young’s modulus and ρ the initial density),

S is a shape parameter (equal to 0.38, cf. [4,5]), T is the current time, and t is the crack
inception time. Finally, a damage variable is proposed (Equation (3)) taking into account
the distribution of critical defects (Equation (1)) and the growth of the obscuration zones
(Equation (2)). Three damage variables are defined, one for each principal direction. This
makes the DFH model an anisotropic damage model.

On the other hand, the KST model provides a description of both volumetric and devi-
atoric behaviours of geomaterials (rocks and concrete) under confining pressure, where the
deviatoric response corresponds to the increase of the maximum principal stress difference
as function of the hydrostatic pressure (defined as minus the mean of principle stresses)
and the volumetric response is defined as the change of volumetric strain (compaction) as
a function of the hydrostatic pressure. In the deviatoric part, the locus of the yield surface is a
quadratic function of the mean pressure in the principal stress space (Equation (4)), where σeq
is the equivalent (von Mises) stress, P is the hydrostatic stress, and a0, a1, and a2 are constant
coefficients related to the considered material (Figure 1b). A piecewise linear equation of state
linking the volumetric strain to the hydrostatic stress (Figure 1b) is used to describe the collapse
of pores that occurs in the case of porous rocks under high confining pressure. When all pores
are closed, the material exhibits a higher bulk modulus (K f inal) which corresponds to the com-
pacted material. As illustrated in the present paper, both responses can be determined based on
a single quasistatic, quasioedometric compression (QOC) test.

At this stage, it is necessary to mention that there exist other constitutive models, for
example, the Drucker–Prager law [10], which can be utilized in particular cases when the
plastic behaviour of the material deviates from the associative flow. This feature is most
often described by the so-called dilation angle of the material.
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Figure 1. Description of DFH–KST coupled plasticity-damage model. (a) DFH (Denoual–Forquin–Hil)
anisotropic damage model. (b) KST (Krieg–Swenson–Taylor) plasticity model.

A typical rock material that has been constitutively characterised pertinent to the KST–
DFH model is granite, see [11–14]. In particular, this constitutive model was employed
with the application of percussive drilling in mind. Apart from the explicit determination
of material constants and functions, these investigations also showed that pre-existing (or
structural) cracks have a substantial effect on the mechanical response and on the fracture
pattern at, for example, impact loading. Obviously, as these investigations rely on the KST–
DFH model, the material behaviour at both high- and low-strain-rate values were determined.

In a recent study, the effect on the mechanical behaviour of granite from nonassociative
plastic flow was also investigated [15,16]. In particular, in [16], it was shown that the
direction of the plastic flow has a significant influence on the mechanical response at
spherical indentation. Indeed, not only is it important to account for nonassociativity, but
also to determine change of the plastic flow direction at different values on the hydrostatic
pressure. In the constitutive modelling, a Drucker–Prager law was employed together with
a variable dilation angle. The influence from changing nonassociativity is, of course, a
feature that can be of great interest also for other types of rock materials [17].

In the present work, an important experimental campaign was conducted using a
sandstone rock provided by the international company Epiroc Rock Drills to identify
the mechanical behaviour of this rock material. Three types of static experiments were
used to obtain first the Weibull parameters associated to the DFH model and second
the parameters related to the KST plasticity model describing the response under high
confinement. In particular, a comparison between the results from the direct compression
tests and quasioedometric tests highlights the influence from structural defects at different
loading conditions. It should be emphasized that, although many of the experiments
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conducted are designed to determine material parameters in the above-discussed KST–DFH
material model, the obtained results can also be used for a complete mechanical material
description when other types of constitutive models are considered. Furthermore, previous
works pertinent to the mechanical characterisation of sandstone are also numerous [18–22].

2. Sample Preparation

Samples are created starting from two sandstone blocks provided by Epiroc Rock
Drills: one cubic, see Figure 2, and the other cylindrical. By analysing the fracture pattern,
it is possible to observe that the cubic block contains several pre-existing cracks that are
spreading along the whole block. The different colours of the rock give us indicative
information about the bedding planes associated to the material deposition. From the
cylindrical block, cylindrical specimens are cored for the compression tests and quasi-
oedometric tests. This block seems to present a different mineral composition and crack
pattern when observing the surface. However, it does not present large defects and there
is no evidence of bedding planes in the volume. Each sample has been rectified with a
rectifier machine to guarantee the correct parallelism and planar surfaces in the samples.
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Figure 2. Block of sandstone provided from the Epiroc Rock Drills.

The block chosen for the three-point bending test is the cubic one. To evaluate the
characteristics associated to the rock material avoiding the pre-existing defects, each sample
has been cut along the same direction starting from the same face. Each sample has been
rectified by using abrasive paper to guarantee a planar surface for the supports.

In the following sections below, three types of static tests performed presently are
described. To summarize, the static experimental campaign is composed of:

• Eighteen three-point bending tests;
• Four uniaxial compression tests;
• Five quasioedometric tests using a Schenk press.
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3. Three-Point Bending Tests

The tensile failure of brittle materials depends on the microstructure in terms of the
flaw density and failure stress distribution [23]. A series of three-point bending tests were
conducted to characterise the ultimate tensile strength of the rock under static loading
and to identify the parameters for the DFH model (Weibull parameters). This test was
performed with an Instron press 100 kN, which has a level of accuracy of 0.5% (Figure 3).
The test is conducted in a set-up with a loading pin that can tilt in two directions and
with two fixed supports. The test is displacement-driven, and for this reason it is possible
to investigate the crack evolution. The velocity is assigned to V = 3.6 µm/min and it is
sufficiently slow to avoid any dynamic effect, and the results are captured each 0.1 s. The
sample has a loaded volume b × h × L = 20 × 40 × 120 mm3 and is positioned in a way to
guarantee at least 20 mm out of the pins support. Several specimens presented different
pre-existing cracks before the test. For this reason, the tensile surface was chosen in order
to avoid their presence on the tensile surface. The tensile strength is calculated based on
the nominal stress given by three-point bend test theory according to:

σmax =
3FmaxL

2bh2 (5)

where Fmax is the maximum applied load. From the experimental results, it is possible to
observe that the maximum load varies from 121 N to 605 N, providing tensile strengths
ranging from 0.673 MPa to 2.98 MPa. The reason behind the large difference in the results
is most certainly due to the presence of structural defects and pre-existing cracks. In a
large part of experiments, a failure crack develops near the middle support, so in the
region where the maximum tensile stress is reached. However, it is observed that when
pre-existing cracks are close to the middle support, they can drive the specimen to failure
(cf. Figure 4). The bending tests results are listed in Table 1. It should be clearly mentioned
that when structural defects and pre-existing cracks are present, Equation (5) only gives a
qualitative measure on the tensile strength.
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Figure 4. Crack pattern after the three-point bending in the sample #17. Top view: specimen before
the test. Bottom view: tensile face and front face after the test. The structural defect that led to the
failure appears in the red box.

Table 1. Results of bending tests conducted with the sandstone rock.

Sample Rank σf [MPa] ln(σf ) Pf = (i − 0.5)/N ln(−ln(1 − Pf ) σw [MPa]

#2 1 0.673 −0.396 0.028 −3.569 2.01

#13 2 1.011 0.011 0.083 −2.442 m

#7 3 1.133 0.125 0.139 −1.900 2.77

#14 4 1.139 0.130 0.194 −1.531 Veff [mm3]

#17 5 1.334 0.288 0.250 −1.246 3377

#12 6 1.439 0.364 0.306 −1.009

#15 7 1.660 0.507 0.361 −0.803

#5 8 1.997 0.692 0.417 −0.618

#3 9 2.053 0.720 0.472 −0.448

#10 10 2.069 0.727 0.528 −0.287

#18 11 2.194 0.786 0.583 −0.133

#1 12 2.401 0.876 0.639 0.018

#6 13 2.637 0.970 0.694 0.170

#4 14 2.787 1.025 0.750 0.327

#9 15 2.793 1.027 0.806 0.493

#8 16 2.877 1.057 0.861 0.680

#11 17 2.985 1.094 0.917 0.910

#16 18 2.989 1.095 0.972 1.276

The probability of failure Pf associated to each test is calculated by sorting the experi-
mental results of tensile failure stress. The function Y = ln(−ln(1 − Pf)) is plotted as function
of the logarithm of tensile failure stress in Figure 5, from which the slope corresponding to
the Weibull modulus is deduced. The effective volume is calculated by using the formula:

Ve f f =
bhL

2(m + 1)2 (6)
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denotes each failure stress calculated according to Equation (5).

The obtained Weibull parameters are the following:
Weibull modulus: m = 2.77
Mean strength: σw = 2.01 MPa
Effective volume: Veff = 3377 mm3

The low Weibull modulus corresponds to the strong scatter in the obtained failure stresses.

4. Direct Compression Tests

The compressive apparatus used for the direct compression tests is a Schenck press
of maximum capacity: 1 MN. The test is displacement-driven to compute the postpeak
behaviour of the material. A LVDT is placed to provide an external measurement of the
displacement (see Figure 6). A knee join is used to compensate any parallelism defect
between contact surfaces. The velocity assigned to the press was 0.05 to 0.07 mm/s. The
specimens used in direct compression tests are cylinders, 45.4 mm in diameter and 140 mm
in length, cored out from large blocks by drilling and with ground ends. The selected
height–diameter ratio, about 3:1 (3.08), exceeds the value usually considered (2:1) to better
observe the influence of potential structural defects. However, according to several authors,
the effect of length-to-diameter ratio of a rock core specimen on uniaxial compressive
strength (UCS) is concluded to be small in the range (2:1–3:1) [24]. In addition, since
uniaxial compression tests are not used directly in the identification of the KST–DFH model,
the length-to-diameter ratio is not studied further.
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Figure 6. Compression test setup used with the Schenck press in 3SR lab.

The experimental results are gathered in Table 2. The stress–strain curves of specimens
#1, #2, #3, and #5 are plotted in Figure 7. All of them exhibit a nonlinear response up
to about 30 MPa. Afterwards, the response becomes linear until the peak providing a
quasistatic Young’s modulus in compression of about 32.06 GPa in average value. The very
low compression strength of test #5 is assumed to be the result of a structural defect that
initiates the macroscopic failure in compression, and accordingly may not be considered
as a valid material property. In conclusion, despite the care taken to perform these exper-
iments, uniaxial compression tests show significant variations in the measured Young’s
modulus and important scatter regarding the ultimate strengths and stress–strain curve
foots that are supposed to result from structural defects within the tested samples. Both the
nature of structural defects (thickness, length, and cohesion strength) and their orientation
might have contributed to the scatter observed regarding the peak and prepeak response.
The strain corresponding to the curve foot (ranging from 7 × 10−4 to 1.4 × 10−3) could
correspond to one or two horizontal structural defects with an opening of 0.1 mm. This
gap will be considered as input in a numerical simulation in a parallel study [1].

Table 2. Results of simple compression tests.

Sample Max Force (kN) Compression
Strength (MPa)

Young’s
Modulus (GPa) Stress Rate (MPa/s)

#1 105.3 65.06 30.33 3.12

#2 169.5 104.98 38.87 1.50

#3 125.4 77.49 27.04 1.22

#5 58.25 35.86 32.00 1.22

Average 70.85 32.06 1.765
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5. Quasioedometric Compression Tests

The behaviour of sandstone rock under high confining pressure was investigated
in the present work by means of a quasistatic quasioedometric test [25]. The vessel is
designed with an internal radius of 40.40 mm and a height of 60 mm, and it is made of
very-high-yield-stress stainless steel. The setup for the test is realised in several steps:
each sample is first rectified with a rectifier to ensure planar and parallel top and bottom
surfaces. The cylindrical surface of the sample is covered with a thin layer of Chrysor®

(which is an epoxy bicomponent resin) to eliminate any internal gap. In this way, any
possible error related to geometrical defects becomes negligible. At this point, the sample
is gently directed toward the vessel, and after 24 h, the setup can be tested. A special
experimental device, developed in [26], is used to guarantee the centring of the vessel,
fixing at the same time the two plugs (see Figure 8a).

The experiments have been performed with a Schenk press. The test is displacement-
driven with a velocity v = 6 µm/s until reaching an axial force fairly close to the maximum
load of the operating capacity of the machine (about 1 MN). Vertical strain in the sample
ε
(spec)
axial is measured from three independent LVDTs after subtracting the displacement

resulting from the press stiffness deduced from the applied load. The vessel is instrumented
with three strain gauges so the external hoop strain is measured (εz=0

θθ , εz=±22.5
θθ ) at three

positions along the vessel axis: one strain gauge is placed in the middle of the vessel
(z = 0) and two strain gauges are located near the top and bottom surfaces (z = ±22.5 mm)
to control the barrelling of the confining cell (Figure 8b).
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A series of numerical simulations were conducted to deduce the relationship between
the inner radial stress at the sample–ring interface as function of the hoop strain on the outer
surface of the ring (εz=0

θθ ) and the sample height (h) that is deduced from the initial sample
height h0 and sample axial strain. The identification procedure and related assumptions
are described in [25]. The obtained equation is the following:

σ
(spec)
radial = −Pσ(h)εz=0

θθ with Pσ(h) = a2h2 + a1h + a0 (7)

In the case of steel ring with an inner radius of 40.40 mm, an outer radius of 80 mm, and
a height of 60 mm, the following parameters should be used: a2 = 1.06·1014,
a1 = −1.2·1013, a0 = 6.19·1011. In the same way, the average radial strain in the sample

can be deduced from the outer hoop strains and as a function of the axial strain considering
the barrel effect [25]:

ε
(spec)
radial =

2
3

(
1 − εaxial

(
1 +

εaxial
2

))
α0

0εz=0
θθ +

(1 + εaxial)
2

3
α22.5

25 εz=22.5
θθ (8)



Appl. Sci. 2022, 12, 10806 11 of 16

where α0
0 and α22.5

25 are the parameters set based on a numerical simulation describing the
barrelling deformation of the ring (α0

0 = 2.745, α22.5
25 = 2.20). Once the radial strain of the

specimen is known, the average axial stress may be computed:

σ
(spec)
axial = − Faxial

A0(1 + εradial)
2 (9)

where A0 is the initial specimen’s section area and Faxial is the axial force applied to the
specimen, obtained either from the press load sensor. Finally, the hydrostatic pressure, the
deviatoric stress, and the volumetric strain within the sandstone sample are deduced:

P(spec) = −
σ
(spec)
axial + 2 σ

(spec)
radial

3
(10)

σ
(spec)
dev =

∣∣∣σ(spec)
axial − σ

(spec)
radial

∣∣∣ (11)

ε
(spec)
vol = ε

(spec)
axial + 2 ε

(spec)
radial (12)

Finally, the deviatoric stress can be plotted as function of the hydrostatic pressure
providing the deviatoric response, and the hydrostatic pressure can be plotted as function
of the volumetric strain providing the volumetric response.

This testing technique and processing methodology was successfully applied to the
static or dynamic characterisation of the confined behaviour of microconcrete [26,27], com-
mon and high-strength concrete [28,29] and granite rock [12] under hydrostatic pressure up
to 800 MPa. Five experiments were conducted in the present work. The initial dimensions
and calculated density of the samples are gathered in the Table 3.

Table 3. Initial dimensions and calculated density of the samples tested in quasioedometric compression.

Test h (mm) d (mm) Mass (g) Density (kg/m3)

#1 49.07 40.01 149.9 2430

#2 50.05 40.30 145.5 2280

#3 49.74 40.33 153.1 2409

#4 50.09 40.38 152.1 2371

#5 49.83 40.27 150.6 2372

Average 2372.4

The change of axial stress, radial stress, deviatoric stress, and hydrostatic pressure
provided in test #1 are reported in Figure 9. As in the uniaxial compression tests, despite
carefully subtracting the nonlinear displacement resulting from the press stiffness, a non-
linear response is observed in the first 50 MPa of axial stress. Beyond this point, both axial
and radial stresses are continuously increasing. However, given the small level of radial
stress compared to axial stress, the deviatoric stress reaches 600 MPa for a hydrostatic
pressure of 300 MPa. The deviatoric responses (change of deviatoric stress as function of
the hydrostatic pressure) of tests #1 to 5 are compared in the Figure 10a. Above 100 MPa,
the increase of deviatoric stress with hydrostatic pressure is observed to be almost linear.
Finally, at a given pressure of 300 MPa, the difference of deviatoric stress (comparing
samples #5 and #2) is less than 10% that is really low compared to the scatter observed in
bending and uniaxial compression tests. The hydrostatic pressure is plotted as function of
the volumetric strain in the Figure 10b. The nonlinear foot of the curve can be explained
by a mechanism of pre-existing crack closure. Next, a linear response is observed with a
slope (bulk modulus) of about 21.6 GPa. A change of slope seems to appear from 250 to
280 MPa, respectively, in specimens #1 and 2. However, higher level of hydrostatic pressure
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should be considered to confirm of this change would correspond to a real mechanism
(pore collapse, crack closure).
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The maximum values of axial strain, axial stress, radial strain, radial stress, deviatoric
stress, and hydrostatic stress reached during each test are gathered in Table 4. Note that
the scatter of the results is significantly smaller in this situation, compared to uniaxial
compression tests for instance, as the structural cracks are closed throughout these tests.
Finally, the five experiments provide very similar confined responses. Quasioedometric
tests can be used to identify the parameters associated to the KST model. The deviatoric
response deduced from the KST model is compared to the experimental data of sample #1
in the Figure 10a. The considered parameters are reported in Table 5, where a0, a1, and a2
are coefficients satisfying Equation (4).

According to parameters provided in Table 5, the yield strength corresponding to a
uniaxial compression loading path (σyield

dev = P/3) would be 106.4 MPa, which is not far
from the strength of sample #2 in uniaxial compression (105 MPa). The cut-off pressure
(corresponding to σ

yield
dev = 0) is −2.07 MPa, which is not far from the mean tensile strength

measured in bending tests (2.01 MPa).
A piecewise linear function is proposed to describe the volumetric response in the

KST model (Figure 10b). The related parameters (ε(i)v , P(i)) and final slope (K f inal) are also
gathered in Table 5.
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Table 4. Maximum values of sample radial µ-strain, axial stress, radial stress, deviatoric stress,
hydrostatic pressure, and volumetric strain in quasioedometric compression tests.

Tests
Max. Axial

Strain (× 1000)
(abs. val.)

Max. Radial
Strain (× 1000)

Max. Axial
Stress (MPa)

(abs. val.)

Max. Radial
Stress (MPa)

(abs. val.)

Max.
Deviatoric

Stress (MPa)

Max.
Hydrostatic

Pressure
(MPa)

Max. Volumetric
Strain (× 1000)

(abs. val.)

#1 21.6 0.915 716.3 110.2 607.0 312.0 19.9

#2 18.8 0.676 775.8 101.0 677.4 325.7 17.6

#3 19.2 0.787 774.0 107.5 668.2 329.6 17.7

#4 19.5 0.882 774.9 129.0 647.6 344.0 17.8

#5 19.5 0.879 774.0 107.5 668.2 329.6 17.7

Table 5. Identification of the parameters of KST model.

Deviatoric Behaviour Volumetric Behaviour

a0(MPa2) 400 ε
(i)
v

(i = 1,2,3) 0; −5 × 10−4; −2.5 × 10−3

a1(MPa) 200 P(i) (MPa) 0; 10.8; 25

a2 3.2 K f inal (GPa) 21.6

6. Conclusions—Identification of the KST–DFH Model Based on Static Experiments

In a percussive drilling process, tensile stresses and highly confined stress states are
induced beneath the indenter. In the present work, three types of static experiments were
conducted in order to identify the parameters of the KST–DFH model in view of modelling
a sandstone rock subjected to impact loading or indentation operation. The results can be
summarised as follows:

On the one hand, bending tests have been conducted to characterise, respectively, the
quasistatic tensile strength of the sandstone rock. These tests showed an elastic–brittle
response with a strong scatter on the failure stresses, confirming the relevance of the DFH
constitutive model to represent this behaviour. The experimental data demonstrates the
major influence played by structural defects leading to low strength and high scatter, obviously
complicating material characterisation in view of identifying a given constitutive model.

In the same way, uniaxial compression tests show a nonlinear response in the curve–
foot part along with highly scattered Young’s modulus and ultimate strength, again illus-
trating the influence of structural defects.

On the other hand, quasioedometric compression tests conducted to characterise the
deviatoric and volumetric responses of sandstone at hydrostatic pressure up to 350 MPa
show a continuous increase of deviatoric strength and a quasilinear volumetric response
with a slope close to the expected elastic bulk modulus once the curve–foot is exceeded.
In addition, the results of the five tests are remarkably reproducible. In conclusion, under
confinement, the influence of structural defects seems to be small. This is in sharp contrast
to the situation at uniaxial compressive testing and bending testing where the strength of
the material varies considerably due to structural defects. Finally, the observed pressure-
dependent response is well caught by the KST constitutive model.

In conclusion, according to static experimental results, it is concluded that in uncon-
fined situation pre-existing structural defects play a major role in the response of Lingulid
sandstone. On the other hand, under confinement, these structural defects have a much
smaller influence. Therefore, these defects have to be accounted for in the model identification
strategy prior to simulating numerically any industrial process such as percussive drilling.
The influence of structural defects at high loading rates is discussed in a parallel paper [1].
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