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Abstract: As a highly effective welding method, PPCA-TIG (Powder Pool Coupled Activating Flux–
Tungsten Inert Gas) welding aims to achieve automated activation of TIG welding through the use of
suitable activating fluxes. However, due to the unique transitional behavior of activating elements,
the mechanism of PPCA-TIG is a little bit different from common activating TIG welding. In this
research, a two-dimensional model is established to investigate the effect of four activating fluxes
(TiO2, SiO2, MnO2, CaF2) on arc morphology and force. A series of welding experiments is performed
to study the impact of the different activating elements on the molten pool. The results show that
the increase in the penetration of TiO2 is related to the high arc temperature and great arc force
and electromagnetic force in the molten pool. The problem of the softening of 3003 aluminum alloy
welded joints is solved. Other activating fluxes are less effective than TiO2. The addition of calcium
fluoride significantly affects penetration. The use of TiO2, SiO2 and MnO2 changes the molten pool
viscosity and affects the molten pool oscillation, thus affecting the weld quality.

Keywords: PPCA-TIG welding; numerical simulation; complete penetration; activating fluxes;
softened welded joints

1. Introduction

TIG (Tungsten Inert Gas) welding is employed extensively in modern industry, espe-
cially for joining important structures and non-ferrous metals, owing to its stable welding
arc, the purity of the molten metal, the beautiful weld surface, and its perfect weld quality.
All of these merits are a result of the use of non-consumable tungsten electrodes and inert
shielding gases. Regrettably, these same qualities lead to shallow weld penetration and a
low deposition rate of filler wire when using this welding process. Tungsten electrodes
can only carry a limited amount of current. Particularly for the welding of aluminum,
magnesium, and their alloys, alternating-current TIG arcs are usually used to remove the
thin dense surface oxide film in the EP (electrode positive) half duration, as well as to
prevent the burning of the tungsten electrode in the EN (electrode negative) half dura-
tion. This further decreases the weld penetration, and lowers the welding efficiency. To
resolve this problem, new variations of the TIG welding method have continuously been
researched, developed, and applied in recent decades, including obtaining high efficiency
through constricting welding arc [1,2], coupling multi-electrode arcs [3], utilizing high
current with forced water-cooling tungsten electrodes [4], and employing a high-frequency
pulse current [5].

As a prominent and representative method, activating TIG welding has attracted
considerable attention. By introducing activating elements in the form of activating fluxes
or activating gases, this method is able to greatly increase weld penetration with low heat
input. Activating TIG welding methods can be divided into three categories according to
the method of introducing the activating elements; specifically, with activating flux [6–8],
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with activating gas [9,10], or with activating flux generated in situ from activating gas [11].
It is expected that the mechanism by which the introduced activating elements dramatically
increase weld penetration arises from its effects on the arc and the flow of molten pool
metal. The Marangoni convection effect is enhanced by arc contraction or variations in the
surface tension temperature gradient of the molten pool, causing inward and downward
flow of the metal. This is conducive to improving the weld depth [12–14]. However, there
is no consensus on which is the main mechanism for various material combinations of base
metals and activating materials (gas or flux).

Introducing activating flux through fluxes is well known, especially for AF-TIG (acti-
vating flux) welding. This is the most well-studied and widely used activating TIG welding
method. Sometimes the abbreviation A-TIG welding is used to denote the entire activating
TIG welding process. In this method, activating fluxes are brushed or sprayed onto the
metal surface before common TIG welding is carried out. This method improves the weld
penetration of common TIG welding by up to 2–3 times. In addition, by using this method,
it is possible to completely penetrate a 12-mm-thick steel plate [15]. Unfortunately, this
flux application process is typically manual, hindering the automation of the welding
procedure, which has led to novel variations in the activating TIG welding method being
proposed. Among these variations, Powder Pool Coupled Activating TIG (PPCA-TIG)
welding shows great potential [8]. It employs double layers of shielding gases. The inner
and outer double-layer gas channels are narrower than the traditional TIG welding torch.
In addition, inert gas is introduced into channels to protect the welding area. Powder
particles of the activating flux are sent into the arc space through the outer gas channel,
and are finally transferred into the molten pool. The comprehensive effect of the activating
fluxes passing through the arc–pool coupling system is a dramatic increase in welding
penetration, contributing to high welding efficiency. The introduction of activating ele-
ments in PPCA-TIG welding varies considerably from traditional activating TIG welding.
In common TIG welding, the base metal melts, forming a molten pool before the activating
flux melts. The surface particles then melt into liquid and enter the molten pool. PPCA-TIG
welding uses fine powder to send the activating flux particles into the arc space through
coaxial powder feeding. The particles are first subjected to the effects of the arc, and melt,
evaporate and ionize. The activating elements interact with the molten pool metal in an
atomic state on the surface of the molten pool. Then, they are distributed with the flow in
the molten pool by means of the internal circulation of the liquid metal.

In the process of PPCA-TIG welding, the periodic changes in the AC arc plasma
characteristics are expected to greatly affect the transition behavior of activating flux
powders in the arc. This consequently affects the formation and properties of the weld.
Successfully researching the characteristics of AC TIG arc plasma in consideration of the
structure of a PPCA-TIG welding torch is crucial for achieving industrial application.
Cantin and Francis experimentally studied the arc of the AC TIG welding of aluminum,
estimating the arc power by means of an equation that included the current recorded using
a Hall effect probe and the voltage between the welding torch and the workpiece [16]. Hu
et al. measured and analyzed the dynamic variations in electron density near zero current
and at current crossing zero for an AC TIG arc with a square wave and a sinusoidal wave
based on modern intensified charge-coupled device (ICCD) spectral instrument, and found
that there was still a high electron density in the arc during current crossing zero [17]. Yang
et al. believed that for the AC TIG arc measured through the ICCD spectral instrument, the
electron density demonstrated hysteresis during the current crossing zero stage of different
welding waveforms that was related directly to the current and the change rate of the arc
input power [18]. However, due to the complex physical and chemical processes in the
welding arc, it is difficult to measure many of the properties and dynamic behaviors of
the arc using experimental means. Numerical simulation is a fruitful research method for
analyzing arc plasma characteristics. Various models of welding arcs, including different
numbers of dimensions (2D and 3D) [19–21], shielding gases (argon, helium, nitrogen, and
so on) [22,23], electrode tip shapes [24,25], and current waveforms (constant and pulsing
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current) [26,27], have been established. Unfortunately, few works in the literature have
focused on the simulation of alternating-current arc behaviors, owing to the complexity
of alternating-current arcs compared to direct-current arcs. An AC (alternating-current)
arc model of plasma arc welding has only been developed by Tashiro et al., with EN ratios
of 0.65 and 0.45, which was used to determine the variation in the maxima of plasma
temperature, electrode temperature, and the axial velocity of the plasma over time [28]. In
addition, beyond the field of welding, several scholars have also carried out simulation
research of AC arcs on fault arcs [29,30] and furnace arcs [31,32].

In the present paper, based on actual welding conditions, a two-dimensional transient
arc plasma model is established to assess the behaviors of AC arcs of PPCA-TIG welding. In
addition, the effects of changing the structure of the welding torch on the arc characteristics
are studied. In addition, periodic changes in arc plasma characteristics are analyzed. The
effect of using different activating elements on the arc–molten pool system and the reasons
for increased penetration of the two activating fluxes were analyzed.

2. Experimental Procedure

A diagram of the experimental platform is shown in Figure 1. Figure 2 shows the
PPCA-TIG torch and a diagram representing the coaxial powder feeding and welding
process. The torch and powder are made by our research team. The arc length is 3 mm, and
other welding parameters are shown in Table 1. The diameter of the tungsten electrode
is 2.4 mm. The base metal is a 3003 aluminum alloy plate (200 mm × 100 mm × 8 mm),
with a composition as shown in Table 2. The welding parameters were derived from
previous studies on PPCA-TIG welding [33]. Four activating fluxes (SiO2, TiO2, MnO2,
CaF2, purchased from Sinopharm Chemical Reagent Co., Ltd., Beijng, China) are used, with
a particle size of 1 µm. The supply rate of the powders is 1 g/min. High speed camera,
OLYMP US I-Speed 3, purchased from BeiJing Cnrico Technology Co., Ltd., China, is used
for recording the behaviors of cathode spots during the process of electrode positive (EP)
polarity To keep the arc stable, the camera shoots after 10 s of arc ignition, and the camera is
tilted down towards the molten pool; the camera parameters are presented in Table 3. The
current waveform is recorded by the data logger, and sent to the computer; the welding
signal acquisition system is shown in Figure 3.
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Table 1. Welding parameters.

Current Speed
mm·min−1

Inner Gas
Flow

L/min

Outer Gas Flow
L/min EP/EN Shielding Gas

170 A, AC
50 HZ 80 10 12 3/7 Argon (99.99%)

Table 2. Camera parameters.

Camera FPS Shutter Shooting Time (s) Shooting Distance (cm) Angle of Depression

OLYMPUS I-Speed 3 40,000 10 4.66 0.3 30◦

Table 3. 3003 aluminium alloy compositions (wt%).

Si Cu Zn Mn Mn Al

0.6 0.05–0.2 0.1 1.0–1.5 0.7 Margin
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3. Mathematical Model

The calculation domain is shown in Figure 4. Owing to the axisymmetric structures
of the welding torch and the arc, a 2D computational domain is employed to improve the
calculation efficiency. Figure 4a shows the calculation domain of PPCA-TIG welding, and
Figure 4b shows the calculation domain of common TIG welding. In PPCA-TIG welding,
the radius of the computational domain is 11 mm. The diameter of the tungsten electrode
is 2.4 mm. The tip of the tungsten electrode is hemispherical, with a radius of 1.2 mm. The
ABON area represents the tungsten electrode, CDEF is the inner nozzle, GHIJ is the outer
nozzle, BC is the inlet of inner gas, FG is the inlet of outer gas, ML is the surface of the
molten pool, and ANM is the axis of symmetry. Compared with PPCA-TIG welding, the
calculation domain of conventional TIG welding is different only with respect to the torch
structure; B′C′ represents the gas channels, and C′D′E′F′ represents the torch nozzle. The
mesh size is 0.1 mm and is encrypted near the tungsten.
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Arc plasma is commonly supposed to be an elevated gaseous fluid in which the arc
current and its self-induced magnetic field interact strongly. A model has been established
for AC PPCA-TIG welding arcs. The governing equations are the mass conservation
equation, the momentum conservation equation, the energy conservation equation, the
current continuity equation, and Ohm’s law, as reported by many researchers. Additionally,
the arc is affected by electric fields and self-induced magnetic fields.

Table 4 shows the boundary conditions. The current density, which changes peri-
odically with time, is given in the section (AB) of the tungsten electrode. The tungsten
electrodes purchase from Beijing BTM Science & Technology Co., Ltd., Beijing, China. The
flow velocities of the inner and outer gases are given at BC and FG, respectively, with the
velocity-inlet type of boundary condition. In addition, to ensure the current conduction of
the arc, an initial temperature of 10,000 K is given before the iterative calculation.

Table 4. Boundary conditions.

Boundary v/m·s−1 T/K φ/V A/Wb·m−1

AB — 2500 σ
∂ϕ
∂n = jgiven

∂A
∂n = 0

BC Vgiven1 1000 ∂ϕ
∂n = 0 ∂A

∂n = 0
FG Vgiven2 1000 ∂ϕ

∂n = 0 ∂A
∂n = 0

JK ∂v
∂n = 0 1000 ∂ϕ

∂n = 0 ∂A
∂n = 0

KL ∂v
∂n = 0 1000 ∂ϕ

∂n = 0 ∂A
∂n = 0

LM — 2500 0 ∂A
∂n = 0

BON — coupled coupled coupled

As shown in Figure 5, the only function of temperature in the present paper is con-
sidered to be the thermal–physical parameters of the plasma. The parameters used for the
argon plasma are those reported by Professor A.B. Murphy [34]. For alternating-current
plasma, the temperature changes not only with spatial location, but also with time.
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Figure 5. Thermal physical parameters of argon plasma (a) density (b) specific heat (c) viscosity
(d) electrical conductivity (e) thermal conductivity.

The actual arc current waveform measured is square, as shown in Figure 6. The current
waveform adopted in the simulation is simplified from the actual measurement results, as
shown in Figure 6b. The frequency of the arc current used in the simulation is 50 Hz. The
ratio of EN/EP is 1.

Both arc currents are 160 A, and the arc lengths are 3 mm. The shielding gases consist
of argon. For the TIG welding, the shielding gas flow rate is 12 L/min. For the PPCA-TIG
welding, the inner shielding gas flow rate is 12 L/min and the outer rate is 8 L/min.
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4. Results

Figure 7 shows the weld surface and cross-section morphology with and without
activating fluxes. When non-activating flux is used, there are more pores on the weld
surface. These pores mostly consist of hydrogen from the atmosphere and the surface of the
plates. The hydrogen has no time to escape before the solidification of the molten pool. The
aluminum alloy plate is welded completely. However, the weld surface can be seen to form
poorly with the use of TiO2 activating flux. With SiO2 and MnO2 activating fluxes, the weld
performs badly. The weld surface is covered with black welding slag. However, the former
can result in increased penetration, while the latter can reduce it. The contribution of the
activating fluxes to penetration depth and width can be seen in the figures. With mixed
activating flux, the weld surface performs well, and fish scales appear. Pores are barely
visible at the macro scale. Both weld penetration and width are increased. The aluminum
alloy plates are welded completely. The ratio of depth and width is shown in Figure 8.
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The arc morphology at the maximum current is shown in Figure 9. Compared with
non-activating fluxes, the arc shows two different morphologies after using different
activating fluxes. One is that the arc spreads outward in a bell-jar shape, and the center is
brighter, such as in the case of using TiO2 and SiO2. With TiO2, the arc spreads out more
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obviously. The arc stiffness seems to be greater. The other occurs when using CaF2 and
MnO2, where the arc is very weak and loose in form. The arc stiffness is very poor.
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The liquid metal oscillates at a natural frequency due to arc forces, gravity, and other
forces. However, such oscillations on the surface are often difficult to observe directly.
Coincidentally, the surface of the SiO2 and MnO2 molten pool is covered with a layer
of welding slag and oxidation, and the crests and troughs caused by metal flow can be
distinguished. Oxide film and welding slag are regarded as references, and the case makes
it easy to observe the oscillation of the molten pool. Figure 10a shows the molten pool
oscillation on the molten pool surface when using MnO2, and the amplitude is similar
to that of SiO2. The arrow in the figure represents the molten pool oscillation process.
Compared with MnO2, the amplitude obtained when using TiO2 as the activating flux was
lower, as shown in Figure 10b. With MnO2, the weld was not fully penetrated and the liquid
metal underwent a simple resonant oscillation; a model of this is shown in Figure 10c. The
frequency of the molten pool oscillation was statistically analyzed, as shown in Figure 10d.
The molten pools of the SiO2 and MnO2 activating fluxes oscillate at similar frequencies.
The molten pool with the TiO2 activating flux oscillates at distinctly higher frequencies.
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Figure 11 shows the tensile mechanical properties of welds produced with different
activating fluxes. The welds were sampled according to the GB/T 2652-2008 standard to test
their mechanical properties using an AGS-X 300KN (purchased from Shimadzu, Shanghai,
China) electronic universal testing machine. In order to measure the tensile strength of
the weld, a V-shaped notch of 1 mm was opened at the test weld. The specimens were
fractured at the weld except in the case of TiO2. With the TiO2, MnO2, and CaF2 activating
fluxes, the weld strength of the aluminum alloy was higher than the base metal. TiO2
effectively improves the tensile strength of the aluminum alloy weld, reaching strengths
as high as 115% of that of the base metal. However, the weld joint softened when silica
activating flux was used. TiO2 accounted for a large proportion of the mixed activating
fluxes, and the tensile fracture morphology was observed using SEM, as shown in Figure 12.
When non-activating flux was used, a large number of dimples were produced on the
fracture surface. The dimples were large, and there were a lot of pores. With the addition
of activating flux compound, the fracture was still ductile. However, the number of pores
was significantly reduced, and the dimples were small. Trans-granular dimple fracture
characteristics appeared in some areas.
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Figure 13 shows a section diagram of the TiO2 weld. Figure 13a presents the central
section of the weld. The grains basically consist of equiaxed grains with good performance
and uniform grain sizes. Secondary grain growth occurs in very few regions. Since the
TiO2 weld undergoes full penetration, a sampling point on the right side of the weld is
selected. There are slender columnar crystals with a region length of roughly several
hundred microns near the fusion line. The grain of the TiO2 weld is relatively uniform,
and the internal area of the weld is basically equiaxed. There are no defects such as pores
and cracks in the weld when using TiO2 as the activating flux. Only a small amount of
columnar crystals are present near the weld fusion line. Therefore, the weld produced
when using TiO2 as the activating flux shows good mechanical properties.
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Figure 13. The TiO2 weld section (a) the weld center; (b) the weld right side.

Figure 14 shows the weld when using SiO2 as the activating flux. It can be observed
that there are more columnar crystals and almost no fine crystal zone, even at the center of
the weld, and there is an equiaxed crystal zone distributed in the area closer to the surface
of the weld. In Figure 14b, there are generally coarse columnar crystals near the fusion line,
and only a few fine crystals are distributed among the columnar crystals. This indicates
that a wide range of columnar crystals are distributed in the SiO2 weld, and only a small
amount of equiaxed crystals are present in the central area of the weld near the surface.
Therefore, the mechanical properties of the SiO2 weld are poor.
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Figure 15 shows the MnO2 weld. The center and surface of the weld mainly consist of
equiaxed crystals, and a small number of fine crystal regions appear below the center of the
weld. A row of pores appears in the center of the weld, which are horizontally arranged in
the present situation. The size of the pores is relatively uniform, with a diameter of about
30 µm, which indicates that the formation conditions of all pores are similar. In addition,
they are generated at the same height in the center of the weld pool. The horizontally
arranged pores consist of hydrogen gas that has not been able to escape during the so-
lidification process of the molten pool. A small number of columnar crystal regions exist
near the fusion line at the bottom of the weld. The length of the columnar crystal region
is about 400 µm. There are a large number of fine crystal regions between the columnar
and equiaxed crystals. Therefore, MnO2 welds have good mechanical properties, but
the presence of transversely arranged pores of uniform size in the welds means that the
mechanical properties are better than those of SiO2 welds, but far worse than those of
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TiO2 welds. At the same time, the grain size of the MnO2 weld is smaller than that of the
TiO2 weld.
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Figure 15. The MnO2 weld section (a) the weld surface; (b) the weld bottom.

Figure 16 shows the CaF2 weld. There are an extremely high number of pores in the
CaF2 weld. These pores are distributed almost throughout the entire weld, but not evenly.
The pores range in size from about 300 µm to about ten microns. The porosity is clustered
on the surface of the weld. This suggests that the conditions required for the formation of
these pores are not consistent. There is a columnar crystal zone about 400 µm length at the
bottom of the weld, and grain grows coarsely near the pores. On the one hand, there are a
small number of columnar crystals, and the center of the CaF2 weld is mainly composed
of equiaxed crystals, which have good mechanical properties. On the other hand, there
are more pores in the weld. The distribution and size of these pores is very uneven, and
cracking can easily occur along the pores when subjected to external stress. Therefore, the
CaF2 weld would have very good comprehensive mechanical properties if the problem of
porosity in the weld could be solved.

Figure 17 shows the cross-section of the weld of combined activating flux. It has the
advantages of all four activating fluxes. As shown in Figure 17a, the equiaxed grain zone in
the center of the weld is fine and dense, without pores. However, abnormal grain growth
exists in very few areas, which is consistent with the case when using TiO2 as the activating
flux. As shown in Figure 17b, at the surface of the weld, there are equiaxed crystal areas,
and a small number of columnar crystals appear near the surface of the weld. The length
of this columnar crystal region is about 100–200 µm. As shown in Figure 17c, there are
only a few areas near the fusion line on the left side of the weld where columnar crystals
are distributed. Most areas are characterized by interactions between fine and columnar
crystals. The area of interaction is about 1 mm, and there are a small number of pores at the
edge. However, the number of pores is very small, meaning that it will be difficult for them
to exert large effects on the weld, such as fracture along the pores.
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The simulation of the arc temperature field in one cycle is shown in Figure 18. The
morphology and temperature varies periodically with the current. The shape and size of
the arc are consistent with those observed during the experiment. The simulated arc tem-
perature is also consistent with the temperature distribution measured using the existing
spectral method. To some extent, the simulation results are reliable.
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Figure 18. Changes in the arc temperature field during one cycle.

As shown in Figures 19 and 20, the arc morphology and temperature of common TIG
welding and both stages of PPCA-TIG welding are compared at the maximum current. The
arc maintains a higher temperature in PPCA-TIG welding than in common TIG welding.
There is a slight constriction of the arc morphologically. Meanwhile, the energy in the center
of the arc is more concentrated and the high-temperature area is larger. Previous results
have shown that the arc temperature measured using the spectrum method is higher for
PPCA-TIG welding than for common TIG welding.
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5. Discussion

This research presented the impact of using different activating fluxes on the arc and
molten pool of aluminum alloy, as well as the changes in the mechanical properties of the
weld. Consistent with other papers on activating TIG welding, two activating fluxes, TiO2
and SiO2, made a considerable contribution to penetration [35]. TiO2 activating flux was
less effective. Other activating fluxes reduced the penetration. However, in contrast to the
general experimental results obtained for activating TIG welding, TiO2 enabled complete
weld penetration. Under the effect of silica, the penetration increased by 2.5 times, which is
similar to most experimental results reported for A-TIG. The reasons for this change can be
categorized into two aspects: arc and pool.

Firstly, the simulation of PPCA-TIG welding confirmed that the gas channels are more
narrow than in ordinary TIG welding, and the gas flow rate is faster. This has a stronger
cooling effect on the arc, leading to arc constriction. The temperature of the arc center and
the arc force on the surface of the molten pool are higher. With non-activating flux, the
shape of the arc shrinks at the macro scale.

The change in arc morphology is also related to the activating elements. The exper-
imental results revealed that the silica causes the arc to shrink slightly, but this may be
due to structural changes in the welding torch, not necessarily the effect of the activating
element. Under the effect of activating flux TiO2, the arc expands outward, resulting in
better arc stiffness and generating greater arc pressure on the molten pool. The direction
of electromagnetic force is directed towards the bottom of the molten pool. The metals in
the molten pool move towards the bottom of the molten pool under the action of various
forces, contributing to an increase in the liquid metal flow speed, convective intensity, and
deep penetration, as shown in Figure 21a. The arc of the other two activating fluxes, MnO2
and CaF2, is very weak and of poor arc stiffness. On the one hand, once the active agent
has entered the arc, the pyrolysis and ionization processes occur following the spraying
of the activating fluxes into the arc. In order to sustain the combustion of the constricted
arc, the activating elements weaken the arc, and the arc stiffness decreases. There is also a
decrease in arc temperature. On the other hand, a large number of F atoms absorb electrons
to form F-, which leads to obvious constriction of the arc, with poor stiffness and a lower arc
temperature. The force of the arc on the surface of the molten pool and the electromagnetic
force on the metal have little effect. The driving force of the molten pool metal flow is
low, and it moves along the surface of the molten pool. Thus, the molten pool is shallow,
as shown in Figure 21b. However, by coating a small amount of CaF2 on the surface of
aluminum alloy welding wire, Li et al. [36] found that the arc was constricted, and the
penetration and the ratio of depth to width increased to a certain extent. Therefore, the
amount of CaF2 activating flux added has a significant effect on the welding quality.
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Figure 21. The effect of electromagnetic force and arc force on the molten pool. (a) CaF2 molten pool;
(b) TiO2 molten pool.

Secondly, when using TiO2 activating flux, the frequency of molten pool oscillation
was significantly higher than with the other activating fluxes. However, the amplitude of
the molten pool was smaller than those of SiO2 and MnO2. After the addition of TiO2, the
frequency of the molten pool oscillation was significantly higher than those with addition
of the other activating fluxes. However, the amplitude was smaller than those with SiO2
and MnO2. This is related to the way in which the activating fluxes enter the molten pool in
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PPCA-TIG welding. A diagram of this process is shown in Figure 16. In traditional A-TIG
welding, the activating elements enter the molten pool in liquid form, and aluminum atoms
infiltrate into the activating molecules, where they interact. In PPCA-TIG welding, the TiO2
activating flux enters the molten pool surface in the form of Ti atoms through a series of
hot processes in the periphery of the arc. The direct interaction is more rapid and intense
between the activating elements and the pure metal on the surface of the molten pool, as
shown in Figure 22.
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(b) PPCA-TIG welding.

According to the Al-Ti phase diagram [37], aluminum and titanium atoms form the
intermetallic compound Al3Ti at temperatures below 1350 ◦C. Al3Ti spreads throughout
the molten pool, along with the metal flow in the molten pool, enhancing the viscosity of
the liquid metal. According to the results presented in [38], Al3Ti is distributed in the inter
crystal. The second phase of strengthening contributes significantly to the tensile strength
of the alloy. For this reason, there was a significant increase in the tensile strength of the
aluminum alloy weld with TiO2 activating flux. This also provides a novel way to achieve
aluminum alloy welded joint softening.

On the other hand, with TiO2 activating flux, the force of the arc acting on the molten
pool and the electromagnetic force inside the molten pool are greater. In addition, the trend
of the metal flow, resulting in deep penetration in the molten pool, is more obvious. The
higher oscillation frequency of TiO2 in the molten pool changes the distribution of the
temperature field in the molten pool. In addition, the newly nucleated grains at the edge
of the molten pool remelt under the strong convection of the liquid in the molten pool.
Therefore, crystallization at the edge of the molten pool is more difficult, and the thermal
cycle time is longer, leading to a deeper melting depth, as shown in Figure 23. Relevant
studies have reported that it is difficult to explain the increase in penetration by means of
the theory of A-TIG welding pool surface tension gradient change with temperature [39].
Generally speaking, the oscillation frequency of the molten pool is higher under conditions
of partial penetration [40,41]; in particular, in the A-TIG welding of aluminum alloy, TiO2
and SiO2 have higher oscillation frequencies [42]. However, the viscosity of liquid metal
in the molten pool is greatly increased under the effect of SiO2 and MnO2 activating flux,
resulting in molten pool oscillation at lower frequency and higher amplitude.
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6. Conclusions

In this paper, a PPCA-TIG welding model was established, and the effect on the arc
of changing the structure of the PPCA-TIG welding torch was investigated. The effects of
activating fluxes on the arc and the molten pool were revealed. The main conclusions are
as follows:

1. The PPCA-TIG torch constricts the arc slightly due to the cooling effect of the protec-
tive gas.

2. The arc temperature of TiO2 is higher, and the arc force and electromagnetic force
are larger, in the molten pool, which has a significant effect on the metal flow in the
molten pool. Therefore, the penetration is increased. In addition, the mechanical
properties are better.

3. Under the effect of TiO2, SiO2 and MnO2, the viscosity of the molten pool changes
significantly. The molten pool oscillates more frequently with TiO2, and at a larger
amplitude with SiO2 and MnO2.

4. The use of single-component activating flux made it possible to achieve good mechan-
ical properties in the weld, except for when using SiO2. This is mainly determined
by the grains in the weld. The TiO2, MnO2, and CaF2 weld are mainly composed of
equiaxed crystals, with a small amount of columnar crystals near the fusion line. A
large number of columnar crystals grow from the fusion line in the weld when using
SiO2, resulting in poor mechanical properties.
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