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Abstract

Photoinduced non-thermal phase transitions are new paradigms of exotic non-equilibrium
physics of strongly correlated materials. An ultrashort optical pulse can drive the system to a new
order through complex microscopic interactions that do not occur in the equilibrium state.
Ultrafast spectroscopies are unique tools to reveal the underlying mechanisms of such transitions
which lead to transient phases of matter. Yet, their individual specificities often do not provide an
exhaustive picture of the physical problem. One effective solution to enhance their performance is
the integration of different ultrafast techniques. This provides an opportunity to simultaneously
probe physical phenomena from different perspectives while maintaining the same experimental
conditions. In this context, we performed complementary experiments by combining
time-resolved reflectivity and time and angle-resolved photoemission spectroscopy. We
demonstrate the advantage of this combined approach by investigating the complex charge density
wave (CDW) phase in 1T-TiSe2. Specifically, we show the key role of lattice degrees of freedom to
establish and stabilize the CDW in this material.

1. Introduction

Ultrafast spectroscopies are powerful tools to unveil the underlying physics that dictates the properties of

strongly correlated electron systems [1]. In a conventional pump–probe scheme, an ultrashort optical pulse

(pump) triggers a cascade of interactions among internal degrees of freedom (electronic, lattice, orbital and

spin) and a second time-delayed pulse (probe) provides information about their dynamics. In most cases,

the information is collected from the reflected (or transmitted) photons or photoemitted electrons.

Accordingly, the techniques can be classified as time-resolved optical spectroscopy [2, 3] or photoemission

spectroscopy [4, 5], respectively. Each of these broad categories includes numerous variants to provide more

details on the out-of-equilibrium state of matter. Because of the great complexity of the underlying

microscopic interactions, no single experimental approach can provide a comprehensive picture of all

subsystem dynamics after perturbation. Revealing the complex electron and quasiparticle (QP) interactions

[6, 7], the extreme competition of phases due to the interplay between order parameters [8, 9], transient

photo-induced creation of new phases or states [10–12] and many other exotic effects is beyond the

capability of any single technique alone. Thus, complementary ultrafast techniques are necessary for gaining

a clearer understanding of the excited states in correlated materials. Although newer studies normally take

into account the earlier results using complementary techniques to build a consistent physical picture, the
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comparison of individual experiments is not always straightforward. Because of the complexity of

experimental methods, even a slight difference in the conditions makes the comparison of two separate

outcomes challenging. Due to the large number of experimental parameters, such as the sample

temperature, pump wavelength, polarization, sample inhomogeneity, defects, doping, etc, the outcomes of

different experiments are often difficult to compare. To improve reliability and make comparisons

straightforward, one should reduce the diverging aspects of different experiments as much as possible. With

this in mind, the integration of complementary techniques is an innovative approach to propel the

advancement of ultrafast spectroscopies and to widen their capabilities [13–15]. The aim is to use various

probes, but under identical perturbation and environmental conditions in order to disclose different aspects

of the same phenomena. Here, we show that the integration of time-resolved reflectivity (TRR) and time

and angle-resolved photoemission spectroscopy (TR–ARPES) allows to shed new light on the exotic physics

of 1T-TiSe2. Our study demonstrates the fundamental role of excitons and phonons in the charge density

wave (CDW) phase of 1T-TiSe2.

TRR records photo-induced changes of the sample reflectivity (∆R) resulting from the variation of the

dielectric function ǫ(ω) = ǫ′(ω) + iǫ′′(ω) [16, 17], where ω is the frequency of the probe. R(ω) is a function

of ǫ(ω), experimental geometry and beam polarization (the two last terms are kept constant during

experiments). For example, for a non-magnetic sample with cubic symmetry at normal incidence,

R(ω) = |(1 −
√
ǫ(ω))/(1 +

√
ǫ(ω))|2 [18]. Any pump-induced electronic modification alters the dielectric

function, and thus the TRR signal. Assuming a linear response and using a simple first-order perturbation

approach, the pump-induced modifications of carrier density (ne), the electronic temperature (Te), lattice

coordinate (q) and any other relevant parameter can be made explicit in the transient reflectivity signal

∆R(t), through the dielectric function, as follows [19, 20]

∆R(t) =
∂R

∂ǫ

∂ǫ

∂ne

∆ne(t) +
∂R

∂ǫ

∂ǫ

∂Te

∆Te(t) +
∂R

∂ǫ

∂ǫ

∂q
∆q(t). (1)

A quantitative estimate of ∆R(t) requires the knowledge of ǫ(ne, Te, q) which is not an easy task and is

beyond the purpose of this work. However, equation (1) clearly shows how the TRR signal can provide

substantial information on electron dynamics [21, 22], electron–phonon coupling strength [23, 24] and

lattice motions [25]. The last term in particular shows that using TRR one can detect the non-equilibrium

coherent lattice modes [26], their excitation mechanisms, lifetime, amplitude [27] or even quantitatively

determine atomic displacements [28] after photoexcitation. Unveiling the role of the lattice on the

properties of quantum materials has been the subject of several investigations due to its great potential, e.g.

for the coherent control of non-thermal phase transitions [29, 30]. For this purpose, TRR is an effective

technique due to its excellent signal-to-noise ratio combined with femtosecond temporal resolution. After

the pump, excited carriers and QPs relax by different decay mechanisms and emitting coherent phonons

[9]. We consider that the source of displacive phonon excitation is the decay of photoexcited carriers and

QPs, by assuming a linear dependence of the quasi-equilibrium lattice coordinate q0, as q0(t) = κne in

equation (1). Thus, the coherent structural vibrations part of TRR can be separated from incoherent

electronic and QP part as [20, 31]

∆R(t) = [C1 exp(−t/τe) + C2] +
∑

i

C3,i exp(−t/τd,i)[cos(t/Ti) − βi sin(t/Ti)], (2)

where βi = (1/τ e − 1/τd,i)Ti and pump and probe pulses are sufficiently short compared to the periods of

oscillations. The first term in equation (2) corresponds to the incoherent electron and QP relaxation with

the time constant τ e. The sum in the second term is over all excited normal modes of coherent phonons

with damping constants τd,i and periods Ti. C1 and C3,i correspond to the QPs and phonons amplitudes,

respectively, and C2 is a constant background of lattice contribution for long delays. If the QPs decay time

τ e is not too short, βi becomes negligible and the oscillation can be described by a simple cos(t/Ti) phase.

Although TRR gives valuable information on non-equilibrium behavior of the electron and lattice

systems, it does not provide a complete understanding of the interactions since it crucially lacks crystal

momentum resolution. Momentum-sensitive techniques can clarify the microscopic mechanisms by

resolving specific electron states and their interactions with other degrees of freedom. Indeed, TR–ARPES

has been effectively exploited to study the evolution of order parameters in different complex systems

[32–34]. In contrast to TRR, the technique of TR–ARPES probes the electronic band structure in the

reciprocal space enabling one to focus on a specific region of interest e.g. across an energy gap. The total

photoemission intensity is given by [35]

I (ω, k, t) = M2 (ω, k)
[

A (ω, k, t) f (ω, t)
]

+ B (ω, k, t) , (3)
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where M (ω, k) is the matrix element between the initial and final states determined by the probe photons,

A(ω, k, t) is the single-particle spectral function, f(ω, t) is the Fermi Dirac distribution, and B(ω, k, t) is the

background due to inelastic scattering of photoelectrons. Therefore, TR–ARPES provides the time

evolution of A(ω, k) which is a function of the self-energy, Σ(ω, k) = Σ
′(ω, k) + iΣ′′(ω, k) and bare

dispersion, and includes all information on the electronic band dispersion and (quasi) particle interactions.

It also reveals the electron–phonon coupling by detecting the effect of lattice vibrations on the electronic

states via the deformation potential [36]. The energy and momentum sensitivity allows to uncover the

coherent lattice vibrations which are coupled to specific electron states or the order parameter of a phase,

i.e. selectively coupled phonons (SCPs) [26, 37–39]. Thus, A(ω, k, t) disentangles the specific electron

dynamics or coherent phonons which play a direct role in the establishment of order, such as

superconductivity or CDWs [40, 41]. Although extracting the dynamics of electrons, energy gaps, QPs,

SCPs and phonons is potentially feasible by the TR–ARPES technique, in practice, depending on the

features of the apparatus and the material under investigation, it is very challenging to provide information

on all those ultrafast phenomena together. TR–ARPES systems with probe photon energy of about 6 eV can

only measure a limited portion of the Brillouin zone (BZ). In TR–ARPES setups with higher probe photon

energy (20–30 eV), granting access to the entire surface BZ, attaining an excellent combination of time and

energy resolution with a high photon flux of the probe is extremely challenging [42]. Moreover, to obtain

time and momentum resolution along the direction normal to the surface, one should acquire data for

several probe photon energies. In general, to study highly complex materials, current TR–ARPES systems

have limitations that should be considered. For example, resolving minor energy oscillations caused by weak

phonons modulating the excited bands in different points of the BZ, if possible, often requires extensive

acquisition times. This leads to other complications such as gradual surface contamination reducing the

quality of obtained data. On the other hand, in the TRR, an excellent signal-to-noise ratio and high

temporal resolution are more easily achievable. TRR then allows investigation of a weak coherent response

of excited lattice coupled to electronic states anywhere (although unknown) in the BZ.

To benefit from both techniques, we developed an experimental setup that provides the opportunity to

perform TRR and TR–ARPES with the same pump pulses. Therefore, the complementary experiments

probe similar photoexcitation and relaxation dynamics with minimum divergence in experimental

conditions. One can then extract and compare the time evolution of ǫ(ω) and A(ω, k) providing a richer

information on the interactions between different subsystems. In order to demonstrate the capabilities of

such a combined system, we performed experiments on 1T-TiSe2, due to the complex nature of its CDW

phase (see section 3 for more details). We show that the combination of TRR and TR–ARPES provides a

new benchmark to investigate the complex mechanisms in strongly correlated materials.

2. Combined ultrafast techniques

To perform TR–ARPES and TRR experiments, we used a commercial Yb-based system (Pharos, light

conversion) generating 300 fs pulses with wavelength λ = 1030 nm at 80 kHz repetition rate. Ultrashort

visible pulses of 30 fs are generated by a non-collinear optical parametric amplifier (NOPA) followed by

pulse compression. The NOPA central wavelength is tunable in the range from 620 to 720 nm. Figure 1

illustrates the experimental setup. The NOPA pulses are used as a pump for both TR–ARPES and TRR

setups (thick red beam). A small fraction of the pump is divided by a beam splitter (no. 1 in figure 1) and

serves as the TRR probe (thin red beam). A deep ultraviolet probe for TR–ARPES with a wavelength of

about 206 nm and a duration of 65 fs (blue beam) is generated via second-harmonic generation of the

NOPA output followed by sum-frequency generation (SFG) with the second harmonic of the 1030 nm

beam, using a β-barium-borate (BBO) crystal. Further details on pump and probe pulse generation in

TR–ARPES can be found in reference [43]. In both experiments, a mechanical translation stage controls the

delay between pump and probe pulses. Experiments are performed separately and can be switched by

rotating and replacing the curved mirror (no. 4). The sample temperature in both experiments is controlled

using cryostats over the range (10–500) K (no. 7). The polarization of beams can be controlled by

waveplates enabling a polarization dependent investigation of photoexcitation effect [44]. In TRR,

cross-polarized beams are typically used to reduce pump scattering artifacts, this is achieved by rotating the

probe polarization (no. 3). In TRR experiments presented in this study, we used s- and p-polarization for

pump and probe beams, respectively. The electrical signals from the photodiode detector (no. 10) are fed

into a lock-in amplifier triggered at the frequency of a chopper (no. 5) on the path of the pump. TR–ARPES

measurements are carried out in a μ-metal shielded chamber using either a home built time of flight (ToF)

analyzer [45], or a hemispherical energy analyzer (no. 11) (Specs Phoibos 100). The TR–ARPES data shown

here refer to the ToF energy analyzer. The overall time and energy resolution of the system are about 85 fs

and 45 meV, respectively. Before TR–ARPES measurements, the samples are cleaved in situ at a pressure

3
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Figure 1. Sketch of the system to perform combined TRR and TR–ARPES experiments. The optical layout to generate the pump
(red beam) via the NOPA stage and probe (blue beam) via SFG is explained elsewhere [43]. The common part is the excitation
system which consists of tunable pump pulses and a motorized delay stage. The remaining two sections separated by dashed lines
show the components for TRR or TR–ARPES experiments. Each experiment is carried out separately and one can switch
between them by rotating and replacing the spherical mirror (number 4). The other numbered components correspond to; (1)
beam splitter (2) optical attenuator (3) half-wave plate (4) spherical mirror (5) chopper (6) focusing lens (7) cryostat (8)
recollimating lens (9) Glan polarizer (10) photodiode (11) hemispherical analyzer (12) CCD camera.

better than 5 × 10−10 mbar and surface quality and crystallographic orientation are checked by low energy

electron diffraction.

3. Case-study: CDW in 1T-TiSe2

Using the above described complementary ultrafast techniques, we investigated the non-thermal CDW

phase transition in 1T-TiSe2. The complex origin of CDWs in 1T-TiSe2 has been at the center of a

long-standing debate [46–48]. The formation of CDWs in this material is accompanied by the opening of a

gap in the electronic states and a periodic lattice distortion (PLD). Below 202 K, the two phenomena

progress simultaneously, and therefore it is a major challenge to understand if either process is the primary

driving force and the other is simply a consequence. In the electronic structure, the valence band (VB) shifts

to lower energies, and a gap of about 130 meV opens between the VB at the Γ̄ point and conduction band

at the M̄ point. In the lattice, the normal hexagonal symmetry undergoes a 2a × 2b × 2c periodic distortion

and hence the original BZ is halved in all three crystallographic directions. While a purely electronic

hypothesis assumes exciton condensation as the key underlying mechanism [49, 50], other studies

emphasized the important role of the lattice in CDW fluctuations [51]. The cooperation of both, excitons

and phonons, to develop the CDW phase is a more recent alternative scenario [15, 52–55]. In the following,

we show that combining TR–ARPES and TRR provides a unique insight into the CDW formation process

in 1T-TiSe2. In our experiments, the high-quality 1T-TiSe2 crystals were grown via the chemical vapor

transport method (see supplementary information (https://stacks.iop.org/NJP/23/033025/mmedia) [56]).

3.1. The results of TRR experiment

Figure 2(a) shows the temperature dependent oscillatory response of TRR below the CDW phase transition

temperature, TCDW = 202 K. We removed the incoherent electronic part [first term in equation (2)] by

subtracting an exponential function from TRR measurements. We calculate the photo-generated carrier

density through ne = F(1 − R)α/hν, where F, R and α denote the pump fluence, the reflectivity and

absorption coefficient in 1T-TiSe2 for the photon energy of the pump [57]. We estimate R = 0.6 and

α = 15 nm−1 from references [58, 59]. For all curves in figure 2(a), the pump-generated carrier density is

ne = 2.77 × 1018 cm−3. The TRR measurements at 80 K display clear oscillations [dashed lines in

figure 2(a) mark the peaks]. For the higher temperatures, the oscillations have a smaller amplitude and

exhibit stronger damping. Furthermore, a closer inspection reveals that the modulation period increases

with temperature (see the difference between dashed lines and the peak marks on the 110 K and 150 K

curves). Accordingly, figures 2(b)–(d) summarize the frequency and amplitude variations as a function of

temperature. The frequency of all oscillations is about 3.2 THz [see figure 2(b)] close to the frequency of

4
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Figure 2. (a) The changes in the oscillatory part of reflectively signal ∆R of 1T-TiSe2 as a function of pump-probe delay for
different temperatures, 80, 110, 150 and 170 K. The excitation density is 2.77 × 1018 cm−3. Dashed lines show the oscillation
peaks at 80 K, also the peaks of higher temperatures are marked. (b) FT of ∆R dynamics at different temperatures presented in
figure 4. (c) Oscillation frequency as a function of temperature, obtained by Gaussian fitting of FTs in panel (b). (d) Oscillation
amplitude as a function of temperature. The dashed line shows the linear relation between temperature and amplitude. Error
bars are scaled with the fitting precision.

Figure 3. TRR measurements with 6.45 × 1018 cm−3 pump photoexcitation density and for a wide range of temperatures
crossing TCDW. Two distinct TRR response (a) and (b) is observed for temperatures below and above TCDW. (c) and (d) are the
normalized amplitude of FT of the 80 K and 210 K oscillatory components. T < TCDW corresponds to the A∗

1g CDW phonon
mode (3.19 THz) while for T > TCDW , the A1g normal phase mode (5.95 THz).

A∗
1g phonon (CDW) mode [60]. Figures 2(c) and (d) demonstrate that the frequency and amplitude of TRR

oscillations decrease with increasing temperature. The trend is similar to a BCS-like temperature

dependence of the energy gap [61, 62]. We measure TRR with a low photo-induced carrier density to

remain close to the equilibrium condition and avoid complete melting of CDW. Our data confirm a strong

link between the TRR oscillation and A∗
1g phonon, and subsequently with the structural development of the

CDW phase, in line with reference [63].

We showed the capability of TRR to detect signatures of the PLD by the presence of A∗
1g phonons which

are observed only in CDW phase. By increasing the photocarrier density to 6.45 × 1018 cm−3 and exploring

a wider range of temperatures, from 80 K to 300 K, we can reveal the interplay between coherent modes in
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Figure 4. (a) The oscillatory part of the TRR response for low 1.01 × 1019 cm−3, medium 7.83 × 1019 cm−3 and high
1.21 × 1020 cm−3 excitation densities at 80 K (low temperature and excitation density of 2.43 × 1020 cm−3 at 300 K (room
temperature for comparison. The solid lines are fits to extract the damping time and oscillation frequency. Panel (b) shows the
FTs of the oscillations of TRR signal for low, medium and high excitation regimes (LER, MER and HER). MER is the crossover
between the dominant A∗

1g and A1g phonon oscillations at LER and HER, therefore the phonons are switched at

nth ≈ 7–8 × 1019 cm−3. Gaussian fits of the FTs give frequencies of 3.95 THz and 5.95 THz for two excitation regimes
corresponding to A∗

1g and A1g phonon modes. The dashed blue line shows the FT of the TRR response at 300 K for comparison.

Table 1. The period (Ti) and damping time (τd,i) of the TRR response in low, medium and high

photoexcitation regimes (LER, MER and HER). The parameters were extracted from fits in figure 5.

Photocarrier density(cm−3) T1 (A∗
1g) (fs) τd,1 (fs) T2 (A1g) (fs) τd,2 (fs)

LER 1.01 × 1019 315 ± 6 396 ± 120

MER 7.83 × 1019 333 ± 10 582 ± 201 166 ± 1 692 ± 102

HER 1.21 × 1020 162 ± 2 954 ± 182

the CDW and normal phases. Two distinct responses in TRR are seen in figures 3(a) and (b), separated by a

temperature close to TCDW. Interestingly, each panel shows only one frequency, a characteristic oscillation

which matches the A1g or A∗
1g phonons of the normal lattice and the superlattice, respectively [64]. The

corresponding Fourier transforms (FTs) are shown in figures 3(c) and (d). When the lattice temperature

increases and the sample remains close to the equilibrium state (low photoexcitation regime), the dominant

mode in the TRR oscillations switches across TCDW.

The TRR experiment performed close to equilibrium shows an obvious correspondence between the

PLD evolution (through detection of different phonons) and temperature. Previous studies showed that the

out-of-equilibrium interactions are intricate and need to be comprehended differently from the equilibrium

condition in correlated electron systems [65]. For example, in 1T-TiSe2, the CDWs are melted by a laser

pulse with only half of the energy necessary to reach the normal phase thermally [52]. Therefore, we

performed the TRR measurements at 80 K and increased the pump fluence in order to non-thermally

suppress the CDW phase. Figure 4(a) display the oscillatory part of TRR for three photocarrier densities of

1.01 × 1019 cm−3, 7.83 × 1019 cm−3 and 1.21 × 1020 cm−3, referred to respectively as low, medium and

high excitation regimes (LER, MER and HER) at 80 K. The incoherent electronic and QP part of TRR is

almost relaxed within 1.5 ps (see supplementary information [56]). For comparison, we also carried out the

experiment at 300 K with the photocarrier density of 2.43 × 1020 cm−3. In the LER case, we detect the A∗
1g

CDW mode similar to what we extracted in figures 2 and 3. To estimate the damping time constant (τd)

and period of oscillations (T), we fit the data with the second term of equation (2) after convolution with

the instrumental response function of the experiment. Table 1 shows the parameters obtained from the fits.

From this, (i) we identified two distinct oscillation frequencies at LER and HER and (ii) we found out that

the damping time increases with pump fluence. The frequency change occurs at a carrier density of

nth ≈ 7–8 × 1019 cm−3. Figure 4(b) presents the FTs of TRR oscillations. The corresponding frequencies are

3.24 THz for LER, 2.95 and 5.95 THz for MER and 6.01 THz for HER. The extracted TRR oscillation

frequencies match the A∗
1g (CDW) and A1g (normal) phonon modes reported in reference [64] showing a

shift of the dominant phonon frequency when the photogenerated carrier density exceeds nth. The redshift

6



New J. Phys. 23 (2021) 033025 H Hedayat et al

Figure 5. TR–ARPES maps of 1T-TiSe2 before (a) and at 50 fs after (b) pump illumination in HER. The horizontal line indicates
the Fermi level, EF. In (a), the white dashed line indicates a constant angle cut through the spectra where the VB dynamics were
extracted. In panel (b) the arrow shows the VB shift toward higher energies. (c) and (d) are differential TR–ARPES maps
showing the photoinduced changes at 50 fs and 1 ps delays, created by subtracting a spectrum at negative pump–probe delay.
The red and blue colors indicate an increase or decrease of spectral weight, respectively.

seen in A∗
1g when the pump fluence is increased is in good agreement with reference [63]. The observed

mode switch from A∗
1g to A1g is the signature of melting of the lattice-order associated with the CDW. This

evidence raises the question whether, in the HER, the CDW is optically melted. To answer this question we

must perform a complementary experiment, because the TRR measurements alone cannot reveal the link

between the mode switch and the CDWs. The most direct approach to obtain the CDW magnitude is to

probe the energy gap, which is related to the order parameter, using TR–ARPES.

3.2. TR–ARPES results

To complement the observations made by TRR, we carried out TR–ARPES measurements with the pump

fluence in both the LER and HER. Figures 5(a) and (b) show the TR–ARPES maps exhibiting the VB

dispersion at Γ̄ before and after photoexcitation. Due to the low photon energy of our probe (6 eV), we can

only detect a portion of the BZ surrounding the Γ̄ point, therefore, we cannot directly observe the changes

in the energy gap. Nevertheless, since the opening of the CDW gap is mainly due to the shift of the VB

toward larger binding energies [61], we attribute the VB shift at the Γ̄ point [see arrow in figure 5(b)] to the

gap closure process. Therefore, we can investigate the gap dynamics at the Γ̄ point by tracking the VB

binding energy as a function of delay. Figures 5(c) and (d) display the pump-induced variations in

TR–ARPES spectra at 50 fs and 1 ps delays. The differential maps are obtained by subtracting the

unperturbed spectra from the spectra at given delays. The red (blue) color denotes an increase (decrease) in

the spectral weight, revealing a shift or broadening of the VB after photoexcitation which lasts more than

1 ps. In the following, we analyze the dynamics of the VB shift at a constant angle cut as shown in

figure 5(a). Figure 6(a) displays the VB dynamics for a photocarriers density of 2.86 × 1019 cm−3 (LER) and

1.15 × 1020 cm−3 (HER). In LER, the gap is reduced upon photoexcitation and fully recovers after about

2 ps. In agreement with TRR data in figure 4(a), we partially perturb the CDW but its subsequent

reestablishment is fast in the presence of a well-established PLD. Therefore, we see the dominant A∗
1g

phonon mode clearly in the TRR response. However, the complete suppression of CDW order in the high

fluence regime as suggested by the TRR results is not confirmed by the TR–ARPES experiment as seen in

figure 6(a). In the HER, at early delays, the gap is partially closed by the energy shift of the VB toward EF

(the maximum VB shift of about 65 meV). However, in contrast to LER, the complete gap recovery is not

achieved within the first picoseconds after excitation. After 2 ps, the gap reopens (recovery of ∼ 40 meV)

and the CDW phase is partially reestablished. Therefore, the TR–ARPES measurements do not support the

hypothesis of complete CDW melting at high fluence as could have been inferred from TRR. Yet, the

TR–ARPES data contain additional important information. First, the VB shift recovery cannot be described

with a single exponential function for both LER and HER. This fact reveals that different channels must be

considered to model the gap recovery behavior. Second, at long delays, there is a crucial difference between

the two pump fluence regimes. In HER, where the TRR reveals A1g normal phonons, an interaction among

7
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Figure 6. (a) VB dynamics as a function of the pump–probe delay for two excitation regimes, 2.86 × 1019 cm−3 (LER) and
1.15 × 1020 cm−3 (HER) at the constant angle cut shown in figure 5(a). In the HER, the VB shift is not completely recovered after
a few ps. The modified Rothwarf–Taylor (m-RT) model can fit the VB dynamics for both fluences (solid lines). The dynamics of
free carriers (ne), QPs (nq) and SCPs (np) for HER (b) and LER (c) extracted from the m-RT model.

QPs prevents the complete gap reopening. We argue that this interaction is related to phonons, since (i) it is

accompanied by the switching of the phonon modes [see figure 4(a)] and (ii) it occurs in the VB dynamics

with the characteristic timescale of phonon interactions [see figure 6(a)].

3.3. An adapted model to unify TRR and TR–ARPES results

We developed a model that can explain the microscopic picture of electronic and lattice interactions

allowing us to clarify all experimental outcomes. With the model, we fit the dynamics of the order

parameter obtained by TR–ARPES measurements. We then explain the remarkable correlation of the

output of the model with the phonon analysis of TRR. A model inspired by the work of Rothwarf and

Taylor [66] is used to simulate the gap dynamics presented in figure 6(a). In the m-RT model, we assume

the gap is governed by electron–hole pairs in the excitonic insulator scenario for the CDW mechanism in

1T-TiSe2 [50, 67]. The gap dynamics, ∆(t), is related to the broken exciton pairs which form QPs via

∆(t) = ∆T0

√

1 − nq(t)/nc, where ∆T0
= 130 meV for the initial temperature in our TR–ARPES

experiment T0 = 80 K [61], nq is the QP density and nc = 1.15 × 1020 cm−3 is the critical QP density of

1T-TiSe2 [15, 68, 69]. The model demonstrates the role of phonons in the CDW formation through the

time-dependent electron, exciton and phonon interactions captured by the following equations.

dne

dt
= −geene − gepne − gthne + P(t), (4)

dnq

dt
= geene + ηnp − 2RnTnq − Rn2

q, (5)

dnp

dt
= gepne − ηnp/2 + RnTnq + Rn2

q/2 − γnp. (6)

Here ne and np denote the electron and SPC densities as a function of time, P(t) describes the free

carrier generation rate by the pump, gee and gep are electron–electron and electron–SCP scattering rates,

respectively, and nT is the thermal QP density. In the following, we clarify the role of QPs recombination

rate (R), SCPs relaxation rate through QPs (η) and anharmonic decay rate of SCPs to the thermal bath (γ).

Figure 7 (inset, top left hand corner) illustrates all interactions in equations (4)–(6). Our simulations fit the

experimental results [figure 6(a)] and reveal the dynamics of ne, nq and np [figures 6(b) and (c)] for HER

and LER. The results unravel the important role of phonons in the formation of CDWs through their strong

interactions with QPs as follows.

Some of the phonons which are preferentially coupled to excitons, i.e. SCPs, are the key ingredient to

CDW formation and gap opening. The SCPs and QPs (the excitons out of condensate) strongly interact.

After photoexcitation, the population of QPs increases due to the breaking of the exciton pairs by free

carrier scattering. Consequently, the gap partially or completely collapses. The QPs can again form excitons

by exciting SCPs. In equations (5) and (6) the rate R determines this process aiding QPs to recombine and

join the condensate. Therefore, SCPs assist to the CDW phase reestablishment and the energy gap recovery.
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Figure 7. A schematic representation of the CDW mechanism governed by exciton and phonon correlations. At equilibrium,
before zero delay time, excitons in the condensate (bound electron–hole pairs) and the PLD are responsible for the energy gap in
the equilibrium condition, ∆eq. The SCPs (the blue wave arrows) are interacting with both excitons and the PLD. Upon
pumping, for both low and high excitation regimes, the SCPs are excited (the red wave arrows). Also, the electron–electron
scatterings break exciton pairs and reduce the exciton condensate and consequently the energy gap. This process increases the QP
density. QP population (the excitons out of condensate) increases for higher photoexcitation. QPs interact with SCPs with rates
R, η (red and blue arrows). Excited SCPs (red wave arrows) break the exciton pairs. On the other hand, the SCPs (blue wave
arrows) are the main contributors to aid exciton recombination. At higher photoexcitation densities, the SCPs cannot relax due
to a strong bottleneck effect and continuously disturb the exciton recombination, and hence the gap is only partially recovered.
On the contrary, at low excitations, the SCPs efficiently contribute to CDW recovery, and the gap recovers completely. The inset
(top left corner) depicts the interactions between different terms in equations (4)–(6).

On the other hand, excited SCPs can break excitons and increase the QPs populations (η in equations (5)

and (6). This process destabilizes the CDW. The SCPs can relax by anharmonic decay with other phonons

[65] with the rate γ in equation (6). Therefore, η and γ are two relaxation channels of SCPs. The former

creates the QPs from excitons resulting in CDW suppression, the latter reduces the excited SCPs population

indirectly promoting the CDW recovery. Therefore, for η/γ > 1 the CDW fluctuations are partially

quenched by excited SCPs, showing a bottleneck in the gap recovery. From the fit of figure 6(a), the

bottlenecks for LER and HER are obtained as η/γ = 0.15 and 9.6, respectively. In the HER, the intense

pump pulse promotes large SCPs population by electron–phonon scattering (gep) and QPs recombination

(R). This process leads to the excited SCPs density (np) that can be absorbed by QPs, resulting in higher η

rate. On the other hand, the high carrier scattering rate increases the energy of the phonon bath and

reduces the PLD intensity, directly by dissipation term (gth) or indirectly through the excited SCPs (γ).

Consequently, the decay of SCPs becomes increasingly difficult leading to a decrease of γ. Both processes

give rise to the strong bottleneck effect at HER.

So far, we showed that the m-RT model captures the gap dynamics obtained from TR–ARPES

experiments. Remarkably, we find that the results of the simulations are consistent with the TRR findings.

The model identifies a significant change in CDWs from LER to HER, owing to a difference in phononic

contributions (bottleneck). Similarly, TRR discloses an analogous switch at the crossover of two regimes,

nth ≈ 7–8 × 1019 cm−3 (figure 4). In particular, the obtained anharmonic decay-time of SCPs 1/γ (570 fs

and 1070 fs for LER and HER) are closely linked to the progressive damping times of phonons extracted

from TRR response (table 1 and 396 fs to 954 fs).

Figure 7 summarizes the various interactions captured by the model to illustrate how excitons and

phonons cooperatively stabilize the CDW phase. At equilibrium, the energy gap, ∆eq at 80 K is governed by

the excitons in the condensate, while it is strongly coupled to SCPs and lattice. Upon pumping,

electron–electron scattering events produce two main effects; (i) they break exciton pairs in the condensate

creating the QP population and (ii) they increase the excited SCPs population (the red wave arrows). Notice

that ∆ is reduced for both LER and HER. At later times, the gap ∆ recovers for low-intensity pump but

remains partially open for higher fluences. As depicted, all rates R, η and γ contribute to the establishment

of CDW order. When the number of excited SCPs increases (red wave arrows), the rate η increases (higher

probability of pair breaking) and γ decreases (lower probability of SCPs decay) leading to a strong

bottleneck in the HER. The top right scheme of figure 7 shows that these bidirectional interactions disturb

the complete gap recovery.
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4. Conclusion

Our results on 1T-TiSe2 show that the combination of ultrafast spectroscopy techniques provides a novel

experimental approach for investigating the unexplored complex non-equilibrium interactions in strongly

correlated materials. To demonstrate the capability of such combined techniques, we used complementary

TRR and TR–ARPES probes to disclose the real-time snapshots of complex phenomena triggered by the

same optical excitation. This unique approach allowed us to develop a complete picture of the non-thermal

response of separate electron and lattice subsystems, and their interactions. We revealed the mechanisms

behind CDW formation in 1T-TiSe2 and highlighted the important role of phonons in the recovery

following optical excitation. To summarize, we found that the SCPs are strongly coupled to excitons, such

that any perturbation of one will destabilize the other, and consequently influence the CDW order.

Therefore, the CDW phase in 1T-TiSe2 is a consequence of both excitonic and phononic interactions. Given

these promising results, we believe it is worthwhile to develop and refine combined ultrafast techniques.

Our approach can be employed to investigate the detailed mechanisms driving the phase transitions in a

wide range of strongly correlated materials [70–72].
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