
HAL Id: hal-01326767
https://hal.archives-ouvertes.fr/hal-01326767

Submitted on 5 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Investigation of the phase velocities of guided acoustic
waves in soft porous layers

Laurens Boeckx, Philippe Leclaire, Poonam Khurana, Christ Glorieux, Walter
Lauriks, Jean-François Allard

To cite this version:
Laurens Boeckx, Philippe Leclaire, Poonam Khurana, Christ Glorieux, Walter Lauriks, et al.. In-
vestigation of the phase velocities of guided acoustic waves in soft porous layers. Journal of the
Acoustical Society of America, Acoustical Society of America, 2005, pp.545-554. �10.1121/1.1847848�.
�hal-01326767�

https://hal.archives-ouvertes.fr/hal-01326767
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Investigation of the phase velocities of guided acoustic waves
in soft porous layers

L. Boeckx, P. Leclaire, P. Khurana, C. Glorieux, and W. Lauriks
Laboratorium voor Akoestiek en Thermische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 
B-3001 Heverlee, Belgium

J. F. Allard
Laboratoire d’Acoustique de l’Universite´ du Maine, UMR CNRS 6613, Avenue Olivier Messiaen,
72085 Le Mans Ce´dex, France

A new experimental method for measuring the phase velocities of guided acoustic waves in soft 
poroelastic or poroviscoelastic plates is proposed. The method is based on the generation of standing 
waves in the material and on the spatial Fourier transform of the displacement profile of the upper 
surface. The plate is glued on a rigid substrate so that it has a free upper surface and a nonmoving 
lower surface. The displacement is measured with a laser Doppler vibrometer along a line 
corresponding to the direction of propagation of plane surface waves. A continuous sine with 
varying frequencies was chosen as excitation signal to maximize the precision of the measurements. 
The spatial Fourier transform provides the wave numbers, and the phase velocities are obtained 
from the relationship between wave number and frequency. The phase velocities of several guided 
modes could be measured in a highly porous foam saturated by air. The modes were also studied 
theoretically and, from the theoretical results, the experimental results, and a fitting procedure, it 
was possible to determine the frequency behavior of the complex shear modulus and of the complex 
Poisson ratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional 
methods.
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I. INTRODUCTION

The acoustical properties of porous materials can ge
ally be well described in a wide frequency range with Bio
theory,1 which involves the determination of a number
physical parameters. In many cases for air-saturated ma
als, the porous frame can be considered to be much m
rigid and heavier than air, and a simplified model can be u
in the rigid frame approximation. Many studies have be
successfully carried out in this approximation and are
ported in Ref. 2. There is also a growing interest in appli
tions where the frequency dependence of the mechanica
gidity of the material should be taken into account in the f
Biot theory for poroelastic and poroviscoelastic media.3,4,2

However, the main limitation of the full model is the lack o
data on the dynamic rigidities of the porous frame. Class
methods for determining these parameters involve the ap
cation of vibrations to samples5–10~e.g., rods, cubes, or sma
plates! of finite sizes with respect to the wavelengths
volved. The properties~resonance frequencies, damping, d
namic behavior!of the transfer function between the r
sponse and the excitation yield the mechanical propertie
the excited structure. However, the frequency range
scribed in these methods is limited to the lower part of
audible frequency range~typically below 400 Hz!. A new
method for measuring the shear modulus of air-filled por
1
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materials based on the propagation of Rayleigh waves
thick layers was recently proposed by Allardet al.11 and pro-
vided useful information above 3 kHz. More recently, Alla
et al.12 have proposed a new method of measurement in t
ner samples in which Biot’s shear wave is excited. T
method is based on the effect of the resonance of the po
frame around the quarter shear wavelength on the pole o
reflection coefficient.

Surface waves at the interface between a fluid an
porous solid have been studied theoretically by many auth
and in particular by Deresiewicz,13 and Feng and Johnson14

for liquid saturated media. The surface wave in the air ab
a porous absorbing material and rough surfaces was stu
theoretically and experimentally by Attenborough,15,16Atten-
borough and Chen,17 Lauriks et al.,18 Kelders et al.,19 and
Allard et al.20

In this article, we investigate the propagation of guid
waves in a layer of porous material in a wide frequen
range, from the typical frequencies of the classical vib
tional methods to the high-frequency limit of the Rayleig
wave. First results of this work were presented in Kyoto21

Together with a complete model for guided waves in a s
porous material on a rigid substrate, a new experime
method is proposed in this article for the determination of
modes of propagation in a plate of finite sizes. This meth
characterized by an increased signal-to-noise ratio and m
surement accuracy, is based on the generation of stan
waves in the layer of porous material. Lamb waves in pla
with free surfaces, and other surface waves in layers o
interfaces have been extensively studied and led to m
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applications from material characterization at ultraso
frequencies22 to the oil industry. Theoretical references
this area are provided by the books by Royer a
Dieulesaint,23 Viktorov,24 and Ewing, Jardetsky, and Press25

The theoretical results of our study are presented in the
section. The experimental principle of the new method
measuring the phase velocities of the different modes in
porous layers is presented in Sec. III and applied in Sec
to a melamine foam. The phase velocities of two modes w
measured and used as reference velocities for the fittin
the dispersion curves leading to the determination of the
quency variations of the complex shear modulus and Pois
ratio.

II. GUIDED WAVES IN A LAYER OF POROUS
MATERIAL

Results for a nonporous solid of thicknessH lying on a
rigid substrate are presented first. This simple case will
very useful to the study of the porous case in providing
general shape of the curves, the cutoff frequencies, and
limit velocities that should be expected. Many porous ma
rials in practical applications have a high porosity, a low flo
resistivity, and a tortuosity close to 1. For these materials
couplings are relatively low, and the model for nonporo
material will reasonably approximate the porous case.
full model for porous layers on a rigid substrate is presen
in Sec. II B, which better describes materials for which t
couplings are higher.

A. Guided waves in a layer of soft elastic material on
a rigid substrate

Ewing, Jardetsky, and Press25 ~p. 189!have studied sur-
face waves in a solid layer over a semi-infinite solid. T
frequency spectrum at ultrasonic frequencies of the sur
acoustic wave in a solid film over a solid substrate was a
studied analytically by Gusev and Hess.26 The configuration
for a soft, solid layer lying on a rigid substrate is shown
Fig. 1. Following the standard derivation, by choosing t
potentials to be linear combinations of sines and cosines
from the application of the appropriate boundary conditio
on stresses and displacements at the interfaces, the follo
dispersion equation is obtained:

24k2~k22q2!2sinpH sinqHF k2

pq
~k22q2!214k2pqG

1cospH cosqH@4k41~k22q2!2#50, ~1!

where k, p, and q are the wave numbers defined in th
classical Lamb theory. Figure 2~a!shows an example of dis
persion curves obtained from a numerical search of the r
of Eq. ~1!. The usual Lamb dispersion curves are shown
Fig. 2~b! for the same material but for a plate of thickne

FIG. 1. Layer of material on a rigid substrate and system of coordinat
2
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2H. The main difference with the Lamb plate is the absen
of modes without cutoff frequency and a greater spacing
tween the modes associated with the change in thickn
Since the thickness always appears in a product with
wave number or with the frequency in the dispersion eq
tion, doubling~halving! the thickness is equivalent to com
pressing~expanding!the frequency scale. The cutoff fre
quencies are given by

vc5~2m11!
pVT

2H
and vc5~2m11!

pVL

2H
,

m50,1,2,..., ~2!

whereVL andVT are, respectively, the velocities of the bu
compressional and shear waves in the material. The stud
the high-frequency behavior shows that the first mode te
to the Rayleigh mode and that the velocities of higher or
modes tend to the bulk shear velocity.

The results presented above do not account for the p
ence of a fluid surrounding the layer. The effect of the flu
can be included by replacing the zero in the right-hand s
of the equation of dispersion by a fluid term~see Viktorov,24

p. 117 for the Lamb case!. The main influence of the pr
ence of a loading fluid is the possible existence of a fl
wave that is damped along they axis, hence localized abov
the surface~Scholte wave!and/or the possibility for the
modes in the layer to ‘‘leak out’’~radiate!energy in the fluid
~leaky Rayleigh wave or leaky Lamb modes!. A large body
of literature is dedicated to the study of ultrasonic surfa

.

FIG. 2. Phase velocities vs frequency3thickness for~a! a plate of thickness
H of an elastic material on a rigid substrate;~b! a Lamb plate of thickness
2H. In both cases the material density is 14 kg/m3, VL5222 m/s, andVT

5122 m/s.
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waves in fluid-loaded media. The reader is referred to
thesis by Van de Rostyne27 for an extensive and recent re
view. The fluid is air in our study and its influence has be
neglected in the case of guided waves in nonporous layer
a rigid substrate. However, air is accounted for in the follo
ing section where a porous material is studied.

B. Guided waves in a porous layer on a rigid substrate
and saturated by air

The configuration examined in the previous section
volves boundary conditions that are of great interest for
study of highly porous sound-absorbing materials. Th
very soft materials have a Young’s modulus between 104 and
to 106 Pa, typically. For these materials the rigid substrate
the Lamb boundary conditions are fairly easy to set up
perimentally and to control.

1. Biot’s equations of poroelasticity

In Biot’s linear equations of poroelasticity28 ~Biot’s sec-
ond formulation is used here!, the total stress tensort i j and
the fluid pressurePf in the pores are given by

t i j 52m« i j 1d i j ~lc«2aMz!, ~3a!

Pf52aM«1Mz, ~3b!

with

lc5l1a2M , ~4!

« i j 5
1
2 ~ui , j1uj ,i !, ~5!

«5«111«221«335div u, ~6!

z52div w, ~7!

w5f~U2u!. ~8!

In these equations,l and m are the Lame´ constants of the
porous frame,a andM are, respectively, an elastic couplin
factor and a rigidity associated with the fluid. They we
both defined by Biot and Willis.29 « i j is the strain tensor o
the solid and depends on the solid displacementu. « is the
solid dilatation,f the porosity,z the fluid content, andw
corresponds to the displacement of the fluidU relative to the
solid.

2. Boundary conditions

The porous plate is set in the same configuration as
elastic plate of Sec. II A and the system of coordinates
unchanged. In this configuration, the boundary conditions
expressed as follows:
At y50:

t1250,
t2252p where p is the pressure of the fluid sur

rounding the layer,
Pf5p,
uy1wy5U f whereU f is the displacement of matte

in the surrounding fluid.
At y5H:

uy50,
ux50,
wx50.
3
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3. Choice of a functional form for the displacement
potentials

Two compressional waves and one shear wave
propagate in fluid-saturated porous material, and the
placements of matter are written in terms of two scalar
tentialsw1 andw2 and one vector potentialc

u5¹w11¹w21¹3c, ~9!

w5f~U2u!5f¹w1~m121!1f¹w2~m221!

1f¹3c~m321!, ~10!

where the coefficientsm1 , m2 , and m3 correspond to the
amplitude ratios of the waves in the porous material3,11

m i5
Pki2v2r11

v2r122Qki
, i 51,2 ~11a!

m35
r12

r22
. ~11b!

In these expressionski ( i 51,2) are the wave numbers of th
Biot compressional waves. The elastic coefficientsP andQ
were defined by Biot and Willis.29 These can be related tol,
m, to the rigidity of the fluidK f and of the solidKs and to the
porosity f. The following approximation can be used fo
highly porous materials saturated by air:3

P'
2

3
m1l1

~12f!

f
K f , ~12a!

Q'K f~12f!. ~12b!

The following relations are also needed:29

a5S 12
Q

RDf ~13a!

and M5
R

Q2 , ~13b!

with R'fK f in the approximation of an air saturated high
porous material.3 r11, r12, r22 are the coefficients of a den
sity matrix and are functions of the tortuositya`

r115~12f!rs1~a`21!fr f , ~14!

r1252~a`21!fr f , ~15!

r225a`fr f . ~16!

The velocities of the two compressional and of the sh
waves were given by Biot.1,28 They are obtained from
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PR2Q2 F16S 124
~PR2Q2!~r11r222r12

2 !

~Pr221Rr1122Qr12!
2 D 1/2G , i 51,2 ~17!

VT5A m

~12f!rs1S 12
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The wave attenuation by viscous frictions and thermal
changes between the solid and the fluid can be formula
through the use of a complex dynamic tortuositya~v! to
replacea` and of a complex air compressibility~see Ref. 2!.
These involve the flow resistivitys of the porous materia
and the viscous and thermal lengthsL andL8. For the first
three potentials, a linear combination of sines and cosine
chosen

w15~A1 cosp1y1A2 sinp1y!ei (vt2kx), ~19!

w25~B1 cosp2y1B2 sinp2y!ei (vt2kx), ~20!

c5~C1 cosqy1C2 sinqy!ei (vt2kx), ~21!

w f5Degyei (vt2kx) for y<0, ~22!

whereA1 , A2 , B1 , B2 , C1 , C2 , andD are constants.v is
the angular frequency andt is the time. The potentials de
pend onx and y and satisfy the following equations o
propagation:

¹2w12
1

VL1
2

]2w1

]t2 50, ~23a!

¹2w22
1

VL2
2

]2w2

]t2 50 ~23b!

and ¹2c2
1

VT
2

]2c

]t2 50. ~23c!

Harmonic solutions inv andk yield for a propagation along
x

]2w1

]y2 1p1
2w150, ~24a!

]2w2

]y2 1p2
2w250, ~24b!

and
]2c

]y2 1q2c50, ~24c!

where the coefficientsp1 , p2 , andq are wave numbers as
sociated with the propagation of the fast, slow, and sh
waves, respectively

p1
25

v2

VL1
2 2k2, ~25a!

p2
25

v2

VL2
2 2k2, ~25b!
4

-
d

is

ar

and q25
v2

VT
2 2k2. ~25c!

The fluid surrounding the layer is included in the model, a
a potentialw f , associated with the wave in the fluid mu
also be defined. This potential satisfies

¹2w f2
1

Vf
2

]2w f

]t2 , ~26a!

]2w f

]y2 2g2w f50. ~26b!

The dependence ony of w f is such that they component of
the propagation constantg is given by

g25k22
v2

Vf
2 , ~27!

whereVf is the free velocity in the fluid. Referring to dis
cussion of Sec. II A and to the form chosen for the poten
in Eq. ~22!, the main features of the components of the wa
numbers of the wave in the surrounding fluid are the follo
ing:

~i! Im(k)>0. This condition should always be fulfille
and will insure that the amplitude of the wave d
creases asx increases~or is constant in the undampe
case!. The definition used fork is k5Re(k)1iIm(k).

~ii! Re(g).0. This corresponds to a fluid wave localize
above the interface, i.e., a Scholte wave~semi-infinite
solid! or an A wave ~plate!. If Im(k)50 in condition
~i! the modes are undamped alongx.

~iii! Re(g)50 and Im(g).0. This situation is one where
the wave can propagate in the entire fluid half-spa
and is not localized near the interface. This is ma
possible if both the radiation condition Re(g)50 and
the causality requirement Im(g).0 for a wave to
travel from the interface and not toward it are fu
filled. In this case the guided modes in the layer w
radiate or leak out energy in the fluid. Sinceg
5vA1/V221/Vf

2, the consequences of these con
tions on the velocities are that the phase velocity
the guided wave must be greater than the free velo
of the fluid for the condition to be fulfilled. The wav
will be radiative for supersonic guided modes. T
nature of the fluid mode~localized or radiative!can
also change with frequency as the phase velocity v
ies and can cross the valueVf .
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4. Determinant of the boundary conditions—
Dispersion equation

The displacementsux anduy are obtained from writing
the spatial derivatives of the potentials in Eq.~9!

ux5
]w1

]x
1

]w2

]x
1

]c

]y
, ~28a!

and uy5
]w1

]y
1

]w2

]y
2

]c

]y
. ~28b!

Similarly, the components of the relative displacementw are
obtained from Eq.~10!. The other parameters and the use
elements of the stress and strain tensors are calculated
Eqs. ~3! to ~8!. After expressing the boundary condition
given in Sec. II B 2, a 737 determinant is found

U 0 D12 0 D14 D15 0 0

D21 0 D23 0 0 D26 D27

D31 0 D33 0 0 0 D37

0 D42 0 D44 D45 0 D47

D51 D52 D53 D54 D55 D56 0

D61 D62 D63 D64 D65 D66 0

D71 D72 D73 D74 D75 D76 0

U50. ~29!

The coefficients of the matrix are given in the Append
Finding the zeros of this determinant, i.e., solving the eq
tion

Det~v,k,H,...!50, ~30!

provides a relationship betweenv and k, the equation of
dispersion. This relationship is not explicit and must be
termined numerically. In general, this determinant has co
plex values and Eq.~30! should also be solved in the com
plex plane to account for attenuation mechanisms. T
means that the initial values ofk must be complex in the
numerical algorithm to solve Eq.~30!. The theoretical calcu
lation of the dispersion curves for a highly porous melam
5
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foam and an application to the evaluation of the dynam
complex elastic moduli are proposed in Sec. IV.

III. EXPERIMENTAL PRINCIPLE FOR MEASURING
THE PHASE VELOCITIES OF GUIDED ACOUSTIC
MODES IN POROUS MEDIA

A. Experimental setup

The experimental principle is described in Fig. 3, whe
a layer of porous material is glued on a plane rigid substr
so that the displacement of the porous frame is zero at
interface between the material and the substrate. Dou
faced tape and a mounting spray were used, in order to
tain uniform boundary conditions over the whole interfac
An optical table with a rigidity and a density much great
than that of the porous layer was used as a semi-infinite r
substrate. The porous layer was excited at one end wi
thin aluminum strip used as a line source attached to a sh
at one end and to the sample at the other end with the he
double-faced tape. The shaker was fed with a continu
sinusoidal signal provided by the function generator unit
an SRS SR780 2-channel signal analyzer, and the freque
could be varied. The signal analyzer incorporates a lock
amplifier. The other end of the layer was glued on a rigid e
so that incident waves could be reflected. The difference
impedance is large and it can be assumed that the reflec
coefficient at the interface between the rigid end and

FIG. 3. Experimental setup for the generation and detection of stan
waves in a layer of material on a rigid substrate.
FIG. 4. ~a!, ~b!, and~c!: Experimental standing wave patterns.~d!, ~e!, and~f!: Spatial Fourier transforms of the measured standing wave patterns.~a! and~d!
256 Hz; ~b! and ~e! 424 Hz; ~c! and ~f! 1041 Hz.
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plate is 1. The displacement of the surface of the layer w
measured with the help of a laser vibrometer. The meas
ment point on the surface was allowed to move along a
parallel to thex axis. The laser beam at the output of t
laser was collimated and a mirror/lens arrangement insu
that the beam was always focused on the surface of the
terial at any position of the beam. Reflection of the la
beam on the material was achieved with the help of a strip
reflective tape in the path of the scanning beam. The en
setup was automated and placed in a semianechoic cham
For each frequency, the path was scanned with a typical
of 1 to 5 mm and the amplitude and phase of the signal w
recorded at each position. Once the data were recorded
spatial Fourier transform of the displacement profile in
vicinity of the rigid end was calculated.

B. Standing wave pattern, spatial Fourier transform
and phase velocities

Figure 4 shows the standing wave patterns measure
256, 424, and 1041 Hz, and the amplitude of their respec
Fourier transforms plotted in arbitrary units. The experime
tal data processing scheme is the following: the spatial F
rier transformA(k, f j ) of the standing wave pattern at ea
frequencyf j gives a continuous spectrum with maxima ind
cating the wave numberski , j

max of the modes present in th
material. The phase velocities are then simply obtained
v5v/ki , j

max. The phase velocities of the maxima that ha
been identified are indicated in Table I. The highest velo
ties in Table I correspond to the peaks with smaller value
wave number, but these modes can be accounted for
when their wavelengths are sufficiently smaller than the s
of the sample. The differences in peak amplitudes are du
differences in the mode amplitudes and to the fact that
detection takes place in the normal direction. The mo
with the highest amplitudes are those with main displa
ments along they axis. The source configuration plays a ro
in the excitation efficiency of the modes. The source/mate
impedance matching is also of great importance in the u
formity of the source amplitude with frequency. The k
advantages of this method are that more energy can be
livered at a given frequency and that the signals are cont
ous, not localized in time. Since the excitation is a contin
ous sine, the rigid backing of the sample is used in orde
create a spatial profile of the sample surface near the refle
that does not depend on time.

However, as can be seen in Fig. 4~c!, the standing wave
pattern is most clearly observed near the rigid end of
sample and for higher frequencies. This can be explained
the reduced influence of the source in this area and at t

TABLE I. Phase velocities of the surface modes in a layer of material o
rigid substrate at different frequencies.

Phase velocities of modes~m/s!

Freq ~Hz!

1041 933 266 146 108 84
424 120 69
256 253 91 50
6
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frequencies. The waves are mainly propagative near
source and standing near the rigid end. In this article,
attention is focused on the detection of the spatial period
ties that appear in the standing wave field created by
reflection. At low frequencies, the waves traveling towa
and reflected from the rigid end have a fairly low attenuatio
and the influence of the source can extend over long
tances. At higher frequencies, the attenuation is greater
higher excitation amplitudes are necessary. In practice, o
heating of the source and nonlinear effects in the mate
near the source are limitations to the maximum amplitu
applicable.

To isolate the ‘‘standing’’ part of the wave pattern ne
the rigid end, and to reduce the source effect, a spatial w
dow can be used when calculating the spatial Fourier tra
form. This window is designed to reduce the amplitudes
the displacement profile near the source. The source e
manifests itself by the presence of dominant peaks of am
tude at low wave numbers in the spatial spectrum. The len
of the spatial window should also vary when the frequen
varies, as the spatial extent of the source effect changes
frequency. Because it is quite difficult yet to find a reliab
guideline for applying a window at varying frequencies, t
data were processed twice, with and without window; on
the most certain points were retained. Thus, the domin
source effect can be filtered out to obtain the modes pro
gating with a small wavelength. As can be seen in Fig. 4~d!,
small ripples are present in the spectrum. These are a co
quence of the finite sample dimensions and of the disco
nuities introduced in the periodization in the numeric
implementation of the Fourier transform. A second functi
of spatially windowing the standing wave pattern is to redu
the amplitude of these ripples.

IV. APPLICATION TO A HIGHLY POROUS MATERIAL
AND FITTING OF THE COMPLEX SHEAR
MODULUS AND POISSON RATIO

A. Theoretical dispersion curves

A highly porous melamine foam with a thickness of 1
cm ~the material parameters are given in Table II!was stud-
ied theoretically and experimentally using the technique
scribed in the previous section. Calculated dispersion cur
for this material are presented in Fig. 5. The real parts of
phase velocities of the modes are given in Fig. 5~a! and the
imaginary parts in Fig. 5~b!. A shear modulusm of 110 000
Pa, obtained from the high-frequency limit of the experime
tal results, and a Poisson ration of 0.25 were used in the
simulation. Imaginary parts of 10% of their respective re
parts were added to these coefficients to simulate struct
damping. The simulation includes both the Biot attenuat

aTABLE II. Material parameters for the melamine foam.

Tortuosity
a`

Flow
resistivity

Ns/m4

s

Viscous
dimension

mm
L

Thermal
dimension

mm
L8

Frame
density
kg/m3

r
Porosity

f

1.01 12 000 100 150 13.96 0.98
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iot
mechanism in a porous medium and the structural damp
associated with complex Young and shear moduli. T
damped modes were calculated by searching the zeros o
determinant ~29! in the complex plane~no attenuation
mechanism was considered in Sec. II A and undam
modes were obtained from a root search on the real axis
simple numerical algorithm was developed that seems
give good results. The idea is to locate the maxima of
uDet(v,k,H,...)u21 surface in the complexk plane, which is
equivalent to solving~30! but with the advantage that thi
function is real-valued and easier to handle. Numerically,
function can be represented by a large matrix, any value
which has a row and a column index that correspond to
discretized real and imaginary parts ofk. The root search
was done in aMATLAB routine where a smaller square matr
was used to ‘‘scan’’ the large matrix of data to find the loc
maxima. The size of this ‘‘scanning’’ matrix can be chos
so that there is only one maximum in it. The condition th
the maximum found in the scanning matrix must not be
its edges must be fulfilled because it does not necess
correspond to a local maximum of the large matrix. Seve
simple methods can be used to implement this condition
merically. This zero search algorithm is simple and f
enough for our study. Figure 6 shows an example of cont
plot of the functionuDet(v,k,H,...)u21 at 2000 Hz for a
melamine foam as an example of root search in the com
k plane. The sign convention used fork in the numerical
algorithm wask5Re(k)2iIm(k), and the lower-right quad

FIG. 5. Dispersion curves calculated by solving Eq.~30! numerically for a
melamine foam of 0.1-m thickness.~a! Real part and~b! imaginary part of
the phase velocities. The anomalous behavior of the dashed-curve
around 250 Hz is due to numerical error.
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rant of thek space was used. The dots correspond to
maxima found, i.e., the roots of Eq.~30!. The downward
triangle, the diamond, the right- and the upward triangles
trivial solutions of Eq.~30!. They correspond, respectivel
to Biot’s first and second compressional wave numbers
Biot’s shear wave number, and to the fluid wave numb
~these modes are not shown in Fig. 5!. In addition, each
mode was calculated separately by using a branch-follow
algorithm in which a root is being traced from high to lo
frequencies.

B. Interpretation of the theoretical results

When comparing the results with those obtained fro
the results of Sec. II A, in which the porous solid is cons
ered as an effective nonporous solid, it is found that m
modes exist in the porous case. This result can be assoc
with the existence of the fluid and solid phases. The interp
tation can be made easier by considering, in a first appro
the purely theoretical case of a porous layer with a rigorou
zero coupling between the two Biot waves. In such a ca
one may consider two decoupled sets of guided waves in
porous layer: the structure-borne guided waves and the fl
borne guided waves. If Biot’s structure-borne bulk wav
~compressional and shear!were nondispersive at all, th
structure-borne set of guided modes in the layer would c
respond exactly to the modes obtained from the effec
solid model of Sec. II A. The new result is the possible e
istence of a second set of guided modes associated with
ot’s fluid-borne wave. This result is a direct consequence
the addition of the term containing the scalar potentialw2

associated with Biot’s wave of the second kind in Eq.~9!.
Including this potential results in increasing the number
solutions for the dispersion equation and therefore the n
ber of modes in the porous system. The porous material s
ied in this article is such that the coupling between the t
compressional waves is weak, and so it is thought that
interpretation given above should hold for this materi
However, the coupling, even though very small, always
ists in real experimental conditions and it is thought that
main effect of the coupling will be the possibility for th

de

FIG. 6. Root search of Eq.~30! in the complexk plane at 2000 Hz. The
spots correspond to the roots found numerically. The downward triangle
diamond, the right and the upward triangle correspond, respectively, to
first, to the second longitudinal Biot wave number, to the transverse B
wave numbers, and to the fluid wave number.
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structure- and fluid-borne guided waves to exchange ene
It is difficult to envisage the detection of any of the flui
borne modes at the moment with the current experime
setup designed to measure the displacement of the s
structure only.

Another consequence of the porous nature of the laye
the possible loss of energy by viscous and thermal inte
tions in the pores resulting in a higher attenuation for
guided modes in the porous material than for an equiva
elastic solid in which only structural damping is account
for. On average and for all the modes, about 15% ex
damping should be attributed to Biot’s attenuation in the d
persion curves of Fig. 5. While this result holds only for t
porous material studied in this article, Biot’s attenuati
should in general affect both the damping and the disper
of the modes. In addition to the existence of the fluid-bo
dispersion curves, the existence of a second compress
wave in a porous medium has a very interesting con
quence. As frequency increases, it can be seen in Fig.~a!
that the thin dotted line and the thin solid line tend to t
velocity of the Biot wave of the second kind. In the mater
studied, the Biot wave of the second kind is faster than
Biot wave of the first kind at high frequencies, and is slow
than the free velocity in the surrounding fluid. The curves
plotted in a wider frequency range in Fig. 7, clearly showi
the two sets of dispersion curves. The shear velocity act
asymptotic values toward which the structure-borne mo
tend. While this behavior can be expected in a nonpor
solid, the existence of a second velocity limit in porous m
dia corresponding to the velocity of the Biot wave of t
second kind is new. This behavior can be related to the
that the fluid-borne modes propagate in an equivalent ‘‘fl
plate.’’ In such a plate, the shear velocity is zero and
modes tend to the bulk compressional velocity in the hi
frequency limit.30 The existence of a compressional and
shear limit velocity can also be observed in materials
which the coupling between the compressional and sh
waves is small, such as in highly attenuative plastic plate31

The attenuation mechanisms and the presence of a loa
fluid are responsible for the existence of the maxima
served in the dispersion curves of Figs. 5 and 7.

FIG. 7. Real part of the dispersion curves calculated as a function of
quency for a melamine foam of 0.1 m thickness up to 10 kHz.
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C. Fitting of the dispersion curves

The new experimental method was used to determ
the phase velocities in a layer of melamine foam. The sam
was set up as shown in Fig. 3 and a continuous sine exc
tion with frequencies varying from 150 to 1500 Hz was a
plied. The measurements were performed at a temperatu
21 °C and variations remained within 5% of this value. Tw
clear maxima could be traced throughout the measured
quency domain. These provided the velocities of the first t
modes of the dispersion curves. The results are shown in
8. Several data points seem to provide evidence for the
istence of a third mode. It was found that a variation
frequency of the elastic coefficients and the use of the co
plete porous model was needed to fit the variations of
first two modes. The solid lines indicate a fit where the sh
modulus and its imaginary part were allowed to vary. T
parameters for the fit are the real and imaginary parts of
shear modulus and the Poisson ratio. All other physical
rameters: porosity, permeability, tortuosity, thermal and v
cous characteristic lengths, were measured. Standard m
ods exist for the first two parameters. The last thr
parameters were determined using ultrasonic transmis
methods~see Ref. 32 and references therein!. In the fitting
process, the experimental results were assumed to co
spond to the first two modes~indicated by the medium thick
solid line and the dashed line!of Fig. 5~a!. This indirectly
provided a guess for the initial value of the shear modulus
the first mode tends asymptotically to the Rayleigh veloc
which depends on the shear modulus. A separate meas
ment of the Rayleigh velocity at high frequency was p
formed on a smaller sample of the same material and
consistent with the high-frequency asymptotic limit. An in
tial value of 0.25 was used for the Poisson coefficient. T
imaginary part of the Poisson coefficient was allowed to v
within 20% of the real part. The values obtained for the sh
modulus, the Poisson coefficients, and their imaginary p
are given in Fig. 9. A variation of the shear modulus betwe
0.05 and 0.12 GPa was obtained in the frequency range
vestigated. Although the measurement error is difficult
estimate precisely, the discrepancy between the fit and
measured phase velocities gives an indication. It was not
that the fit is less sensitive to the Poisson ratio than to

e-FIG. 8. Measured phase velocities~circles!and fitted modes~solid lines!for
a melamine foam.
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shear modulus. As a consequence, one may consider th
sult to be reliable for the shear modulus while only giving
order of magnitude for the variations of the Poisson ratio

Although precise literature values on the variation of t
shear modulus for this type of highly porous foams a
scarce, the values measured in this study can be compar
other measurements.9,10 In Ref. 10, vibration measuremen
on this type of foam~melamine!gave a range of variation fo
the Young’s modulus between 1.53105 Pa and 2.33105 Pa
between 200 and 1000 Hz. Considering a real part of Pois
ratio around 0.2@obtained from the fit in Fig. 9~b!#, the cor
responding range for the shear modulus is between
3104 Pa and 9.63104 Pa. In the same frequency range, t
results we obtained vary between 73104 Pa and 10
3104 Pa@real part of the shear modulus in Fig. 9~a!#, sho
ing a good consistency with the results of Ref. 10 and
difference between 4% and 11%. The error on the Pois
ratio should also be added when carrying out the comp
son. This type of material exhibits a non-negligible anis
ropy, and the way the material is cut can explain the diff
ences observed. However, the range of values obtaine
confirmed by static tests, by the traditional lower frequen
measurement methods, and by the Rayleigh wave meas
ment method11 that was also performed on this material
the high-frequency limit.

V. CONCLUSION

A new experimental technique for measuring the d
namic complex shear modulus and Poisson ratio of por

FIG. 9. Fitted real and imaginary parts of the shear modulus and Poi
ratio against frequency. The imaginary parts are plotted in percentage o
real parts.
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materials was proposed and applied to a highly por
melamine foam. This method is based on the generatio
standing waves in the layer and accounts for the disper
of guided acoustic waves in the layer of material lying on
rigid substrate. The dispersion of the modes was also stu
theoretically and new, interesting results were found on
consequences of the existence of two compressional w
in a porous material. The coupling between the two B
compressional waves is fairly low in the material studie
and structure-borne and fluid-borne guided waves were
dicted. It was also found that the velocity of the Biot com
pressional wave of the second kind acts as a limit veloc
for the fluid-borne dispersion curves, and that a signific
additional damping was induced by the inclusion of Bio
parameters in the model.

The experimental results are consistent with other m
surements on this material and with the results obtained f
static tests and traditional methods. Although this meth
allows description of a higher frequency range than the
ditional methods, it is still limited by the lack of a reliabl
line source that can be used to excite high-frequency vib
tions with sufficient amplitude. Other materials, experime
tal configurations, theoretical development, as well as n
excitation techniques are currently being investigated. In p
ticular, a porous layer with its two surfaces free~Lamb con-
ditions! is being studied experimentally and theoretical
This work should allow the study of more rigid materials a
the exploration of a higher frequency range.

APPENDIX:

The elements of the determinant in Eq.~29! are given by
D12522ikp1 ,
D14522ikp2 ,
D155k22q2,
D21522mp1

22(k21p1
2)(lc1aMf(m121)),

D23522mp2
22(k21p2

2)(lc1aMf(m221)),
D2652ikqm,
D2752K f(2k21g2),
D315(k21p1

2)M (a1f(m121)),
D335(k21p2

2)M (a1f(m221)),
D375K f(2k21g2),
D425p1(11f(m121)),
D445p2(11f(m221)),
D455 ik(11f(m321)),
D4752g,
D5152p1 sinp1H,
D525p1 cosp1H,
D5352p2 sinp2H,
D545p2 cosp2H,
D555 ik cosqH,
D565 ik sinqH,
D6152 ik cosp1H,
D6252 ik sinp1H,
D6352 ik cosp2H,
D6452 ik sinp2H,
D6552q sinqH,
D665q cosqH,
D7152f(m121)p1 sinp1H,

on
he
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D725f(m121)p1 cosp1H,
D7352f(m221)p2 sinp2H,
D745f(m221)p2 cosp2H,
D755 if(m321)k cosqH,
D765 if(m321)k sinqH.
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