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Introduction 
Combining Resistive RAM concept with Vertical NAND technology and 
design, Vertical RRAM (VRRAM) was recently proposed as a cost-effective 
and extensible technology for future mass data storage applications [1]. 3D 
RRAM based neural networks were also proposed to emulate the 
potentiation and depression of a synapse [2], but more complex circuits were 
not discussed. In previous works [3-4], various RRAM based neuromorphic 
circuits were proposed and investigated, using planar devices.  
In this paper, we investigate for the 1st time the potentiality of the VRRAM 

concept for various neuromorphic applications, one synapse being 
emulated by one VRRAM pillar. First, basic functionality of HfO2 based 
VRRAM is presented. 20ns switching time, up to 107 cycles and stable 

200°C retention were demonstrated. Then specific analyses are made on 
the resistance and switching voltage variability. We demonstrate that a 
correlation effect exists between adjacent cycles, meaning the filament 

keeps a memory of its shape in the previous state, leading to reduced cycle 
to cycle variability. Based on this preliminary study, using compact model 
and circuit simulations, VRRAM are proposed for cochlea and 

convolutional neural network applications, showing good reliability with 
significant area gain with respect to planar approaches.  

Technological details 
TEM cross section of our VRRAM is presented in fig.1. A TiN/SiO2 double 

layer is deposited on a W plug, the TiN thickness being 10nm. Dry etching is 

used to pattern a cylinder and reveal a TiN liner, used as a bottom electrode 

(BE). The etching conditions are particularly critical and were optimized to 

ensure a vertical profile of the top electrode and reduce the corners effects at 

the TiN/SiO2 interfaces. NMOS transistor is used as selector of the memory.  

VRRAM characteristics 
1. Performances – Typical bipolar IV forming SET and RESET 
characteristics are showed in fig.2. Low resistance state (LRS) and high 
resistance state (HRS) resistances versus SET current (ISET) dependence 
(fig.3) show an increase of both RLRS and RHRS as ISET decreases. 
Functionality down to 7µA - with ~2.5 decades of mean window margin but 
higher dispersion - is put in evidence. The higher RHRS at low operating 
currents results in higher VSET as seen in fig.4. HRS resistance gradually 
increases with the RESET voltage as illustrated in fig.5. The forming 
voltage (VF) is controlled by the Ti top electrode thickness (fig.6), VF 
saturating to ~3.3V for Ti>30nm. 200°C retention (fig.7) is insured for both 
LRS and HRS (ISET=100µA). Switching capability is demonstrated down to 
20ns at 2.3V (fig.8). Endurance performances can be adjusted, playing with 
the SET and RESET conditions, in order to optimize the window margin, 
the number of cycles or the SET current (fig.9). At least 107 cycles could be 
achieved with 1 decade of window margin (fig.11).  
2. Variability – Resistance and switching voltages variability (including 
both cell to cell and cycle to cycle contributions) can lead to reliability 
degradation of RRAM based neural networks, in particular in case of 
internal switching probability. As expected, the resistance standard deviation 
increases with the mean value for both HRS and LRS (fig.12) in agreement 
with [4]. Moreover, an interesting feature concerns the fact that the 
resistance values during cycling do not follow a pure random process but are 
correlated from one cycle to the other [5] (fig.13). Correlation (quantified by 
the correlation coefficient) decreases over cycling after ~50 cycles (fig.14). 
Cycle to cycle correlation means that, despite no resistance drift is measured 
(fig.15 bottom), the dispersion of the resistance for a given cycle increases 
as cycling goes on (fig.15 top). This means that the conductive filament 
keeps for ~50 cycles a “memory” of the shape and resistance it had in the 
previous cycles. This resistance correlation leads to a correlation of the 
switching voltage itself, as seen in fig.16. Again, no switching voltage drift 
is measured but its standard deviation increases during endurance, and 
saturates after ~30 cycles (fig.17). In summary, for applications requiring a 
limited (~10) number of cycles, correlation between adjacent cycles reduces 
variability (fig.18). 

Neuromorphic applications 
1. Synapse behavior implementation – In our approach, a synapse is 
composed by stacked VRRAM with one common select transistor (Fig.25 
left). This offers significant area gain with respect to neural networks in 
planar configuration with 1T1R elements in parallel (Fig.25 right) [8]. The 

OxRAM cells operate in binary mode, only two distinct resistive states (LRS 
and HRS) per device. The analog-like conductance behaviour is achieved 
thanks to the parallel of n OxRAM cells. We use the intrinsic variability of 
RRAM in order to implement progressive on line learning (for instance the 
stochastic learning rule [3]). The switching probability is governed by the 
RRAM itself (internal switching probability). Consequently, VRRAM based 
neural networks (this work) offer area gain due to (1) stacked VRRAM, (2) 
1TNR configuration and (3) no random number generator circuit. 1st, we 
use VRRAM to emulate the typical progressive behaviour of synapse 
response. Fig.19 shows the percentage of switched cells (~50 VRRAM 
measured) as a function of the applied bias and pulse times. SET and 
RESET conditions can be identified to control the probability to switch the 
memory with a given value for each pulse, the probability being imposed by 
the application and neural network structure. An OXRAM compact model 
[6] is then used to set a model card based on our experimental results. Fig.19 
is fitted with good agreement, while cell-to-cell and cycle-to-cycle 
variability is well reproduced (fig.20). Then the model is used to simulate a 
synapse composed by stacked VRRAM with 2 to 24 levels (fig.23). The 
VRRAM are addressed in the same time (one selector for one VRRAM 
pillar), and the output signal corresponds to the sum of all the VRRAM in 
parallel (fig.22). Then we calculated the standard deviation of the number or 
required pulses to SET or RESET half of the VRRAM stacked in one pillar 
(fig.23). Fig.24 shows that σ decreases as the number of levels increases. 
Thus it is possible to identify the required number of levels to reach a given 
σ and emulate typical analogic synaptic behaviour.  
2. Cochlea – In the case of real-time auditory pattern extraction (inspired 
from a 64-channel silicon cochlea emulator, figs.25-26) [3] at least 3 RRAM 
are required per synapse [4]. In our case, one synapse is thus composed by 3 
stacked VRRAM with one select transistor, offering an integration density 
improvement of >3 with respect to previous work [4]. Pulse times and 
voltages are adjusted based on fig.19 in order to target switching 
percentages of 20% for SET and 5% for RESET [7]. As the number of 
required cycles in cochlea application is high (>105) [7], both cell-to-cell 
and cycle-to-cycle variability are taken into account and affect the internal 
switching probability. Nevertheless, the circuit behaviour shows good 
agreement with respect to the perfect case involving an external random 
number generator (fig.27). Finally, we also assumed a perfectly controlled 
VRRAM technology where only cycle-to-cycle variability leads to 
switching voltage dispersion (σ/3 in fig.18). In this configuration, very 
similar results to the perfect case are obtained (fig.28). 
3. Convolutional Neural Network (CNN) – VRRAM can also be a suitable 
solution for visual pattern extraction applications (inspired from the 
processing inside visual cortex). It has been demonstrated that for 
Convolutional Neural Networks (CNN) a higher VRRAM density per 
synapse is required (~20) [8]. Based on the design used for the recognition 
of handwritten digits shown in fig.29 and thoroughly described in [4] it 
appears (from simulations, fig.30) that given a certain resistance distribution 
(fig.18 left) the recognition rate depends on the number of stacked VRRAM 
cells. Thus, at least 12 VRRAM levels are required to reach >98% circuit 
reliability. As CNN applications require limited number of cycles, 
correlation reduces RRAM cycle to cycle variability and improves circuit 
reliability with internal switching probability. Being able to stack several 
memory cells on a pillar (VRRAM) a considerable gain in total area (x10) is 
obtained compared to a standard design using planar devices. Further gain 
could even be envisaged for more complex applications requiring more 
synaptic levels.  

Conclusions 
In this paper, vertical RRAM are investigated and proposed to increase the 

density of neuromorphic circuits, one 1TnR pillar emulating one synapse. 

For cochlea application, good agreement with planar binary OXRAM 

configuration with random generator is obtained, with an area gain of more 

than a factor 3. Resistance correlation between adjacent cycles improves the 

reliability for neuromorphic applications requiring low endurance 

performances. Thus, for convolutional neural network, 10-15 RRAM levels 

are sufficient to reach a recognition rate of more than 98%. VRRAM based 

synapses open the path to high density neuromorphic circuits requiring 

aggressive synaptic levels. 
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