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Abstract: 

 

This study investigated the properties of alkali activated slag (AAS) binders formulated for 

extrusion‐based 3D printing. The fresh properties of AAS mixes were tailored through the use of 

nanoclay (NC) and nucleation seeds. The printability criteria employed were the ease of extrusion 

(extrudability) and the stability of the layered structure (buildability). Introduction of 0.4% NC in 

AAS mixes led to improved thixotropic properties due to the flocculation effect, which accounted 

for the extrudability and shape fidelity of the binder. Inclusion of 2% hydromagnesite seeds in this 

mix design provided additional nucleation sites for the increased precipitation of hydrate phases, 

resulting in denser microstructures. This enhanced the hydration reaction and improved the 

structural build-up rate necessary for large-scale 3D printing. The developed AAS mix containing 

0.4% NC and 2% hydromagnesite seeds was used in the printing of an actual 3D structure to 

demonstrate its feasibility to be used in 3D printing applications. 
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1. Introduction 1 

 2 

Extrusion-based additive manufacturing, also known as 3D printing, enables the mould-free 3 

fabrication of complex customized parts, which cannot be easily processed by other conventional 4 

manufacturing methods [1-4]. This technology has been successfully applied in aerospace, 5 

automotive and biomedical fields, while it is still being researched in the construction sector. The 6 

expected benefits of 3D concrete printing are higher productivity, shorter construction periods, 7 

higher geometrical freedom and more efficient use of natural resources [5]. The use of 3D printing 8 

can also present advantages in terms of reduced costs in the case of complex structures, in 9 

comparison to the conventional construction methods. 10 

 11 

A pivotal approach in the success of 3D printing in construction is the use of Building Information 12 

Modelling (BIM). Since BIM already serves as a rich source of geometric information for existing 13 

structures, on site 3D concrete printing will eventually need scheduling and assembly sequence 14 

information to maintain safety and productivity [6, 7]. Previous studies [8] that shared this vision 15 

proposed a shift to a digital construction organization by combining existing technologies such as 16 

rapid digital mapping, BIM, digital collaboration, internet of things and design to construction. To 17 

further digitalise the construction industry, digital twin technology can be used to continuously 18 

monitor progress against the schedule laid out in the BIM model. Furthermore, approaches such 19 

as the digital twin technology can be combined with 3D concrete printing to reduce the volume of 20 

trial and error testing, reduce defects and shorten the time between the design and production 21 

processes [9]. 22 

 23 

While the use of cement-based materials in 3D printing presents several advantages, certain 24 

challenges need to be resolved for a successful printing process. To be used for printing 25 

applications, the rheology of cement-based mixes must meet certain requirements. Accordingly, 26 

during extrusion, the material must be fluid to prevent any blocking, bleeding or segregation. 27 

However, once they are printed, each layer must be able to harden quickly to support the 28 

superposed layers [10]. Another parameter to be considered is the time gap between printed layers. 29 

Long time gaps can provide an adequate mechanical strength for supporting the weight of the 30 

subsequently deposited layers, while short time gaps ensure optimized bonding strength. 31 



Therefore, for successful printing, a narrow process window in terms of material yield stress exists, 32 

as shown in Fig. 1, where a schematic of extrusion-based additive manufacturing of cement-based 33 

mixes is demonstrated. Accordingly, the rheology of the developed mixes needs to be adjusted to 34 

achieve a minimum yield stress for smooth extrudability. After extrusion, the yield stress must 35 

evolve faster than the stress acting on the bottom layer to avoid strength-based failures. 36 

Alternatively, materials with a high yield stress can result in poor interlayer bonds, despite their 37 

ability to support additional layers. 38 

 39 

Incorporation of reinforcement into the concrete matrix during the printing process is one of the 40 

most challenging issues needed to be dealt with to enable structural applications of 3D printing 41 

technology [11, 12]. In terms of materials, most of the printable mixtures contain ordinary Portland 42 

cement (PC) as the prime binder material due to its inherent thixotropic properties that originate 43 

from the combined effect of interparticle, gravitational and inertial forces [13-17]. However, as 44 

the production of PC accounts for 5-7% of the total anthropogenic CO2 emissions, alternative 45 

cementitious materials are being investigated for their suitability to be used in 3D printing. Recent 46 

studies [18-21] have demonstrated the use of cementitious industrial by-products to reduce the 47 

carbon footprint of PC in 3D printing applications. As a part of these initiatives, the importance of 48 

proper rheology control for smooth extrusion and higher buildability properties was highlighted. 49 

 50 

In line with these initiatives, this study aims to investigate the use of alkali-activated slag (AAS) 51 

mixes in 3D printing applications to contribute to the development of a sustainable built 52 

environment. To enable this, the prepared AAS formulations included nanoclay due to its 53 

thixotropic properties [23]. Furthermore, nucleation seeds (i.e. hydromagnesite) were also 54 

included to improve the rheological and mechanical properties of AAS [24, 25]. Accordingly, 55 

previous research [26] has shown that the use of seeds can provide additional nucleation sites for 56 

the increased precipitation of hydrate phases, thereby enhancing the rate and degree of the 57 

hydration reaction. To study the effect of these additives, nanoclay was first introduced into AAS 58 

mixtures for improved printability. An initial assessment of the fresh properties led to the 59 

determination of the mix with the highest yield stress and lowest viscosity. Once this mix was 60 

determined, different dosages (i.e. 1-2% by mass of slag) of hydromagnesite seed was introduced 61 

into the mix design. X-ray diffraction (XRD) and field emission scanning electron microscopy 62 



(FESEM) were employed to analyse the formation of hydration products and investigate the 63 

microstructural development at the end of the curing process. 64 

 65 

  66 

 67 

Fig. 1 Schematic of extrusion-based additive manufacturing of cement-based mixes 68 

 69 

 70 

2. Materials and Methodology 71 

 72 

2.1 Raw materials and sample preparation 73 

 74 

The primary material utilized in this study was ground granulated blast-furnace slag (GGBS), 75 

provided by EnGro Corporation (Singapore). The chemical and physical properties of GGBS are 76 

shown in Table 1. The alkali activator was solid sodium metasilicate (Na2SiO3·5H2O), obtained 77 

from VWR (Singapore). Nanoclay (NC), a thermal treated, highly purified attapulgite clay 78 

supplied by Actigel (USA), was used to improve the thixotropy of the AAS binder. As can be seen 79 

from Fig. 2(a), NC particles agglomerated into clusters of different size composed of a pleated 80 

spherical morphology. Hydromagnesite (4MgCO3·Mg(OH)2·4H2O) seeds, obtained from Fisher 81 

Scientific (UK) with a specific surface area of 43.5 m2/g, were used as nucleation seeds to stimulate 82 

the nucleation and growth of hydration products. The SEM image of hydromagnesite (Fig. 2(b)) 83 

demonstrated these seeds as spherical agglomerations with a diameter of ~1-7 µm, composed of 84 



~0.5 µm diameter disks [24]. Fine aggregates with a maximum particle size of 1.18 mm was used 85 

in a saturated surface dry (SSD) condition to formulate the AAS mortars. 86 

 87 

Table 1 Chemical composition and physical properties of GGBS. 88 

 89 

 Chemical composition (%) Physical properties 

 SiO2 Al2O3 CaO MgO SO3 TiO2 LOI Specific gravity 

(g/cm3) 

Blaine surface 

area (m2/g) 

GGBS 29.65 15.56 39.37 7.54 4.32 1.75 4.0 2.85 > 300 

 90 

 91 

 92 

Fig. 2 SEM images of (a) nanoclay and (b) hydromagnesite seed [20] 93 

 94 

The AAS used in this study was composed of only GGBS and 10% activator (i.e. by mass of slag) 95 

in line with the findings of a previous study [26]. Mixtures were prepared using water to binder 96 

(w/b) ratios of 0.35 and 0.40 for all pastes and mortars (i.e. at a sand/binder ratio of 0.83), 97 

respectively. AAS mortars without NC were prepared by adding water to the slag and sand mixture 98 

and mixed until a homogenous blend was obtained. For the preparation of mixes containing NC, 99 

NC was first blended into the predetermined amount of water for 3-4 minutes, after which it was 100 

added into the slag and sand mix and further mixed for another 2 minutes to ensure effective 101 

dispersion. For mixes involving the use of seeds, the seeds were first dispersed in half of the 102 

required total water and added into the mix, followed by the addition of NC, which was mixed 103 

with the remaining water. 104 

 105 



 106 

2.2 Methodology 107 

 108 

2.2.1 Static yield stress 109 

 110 

A commercial rheometer (Anton-Paar MCR 102) was used to measure the static yield stress of the 111 

prepared AAS mortars. To initiate the study, freshly prepared AAS mortars were loaded in a 112 

measuring cup. Stress growth test was then performed by applying deformation at a constant shear 113 

rate of 0.1 s-1. The shear stress progressively developed to a maximum value, followed by its 114 

decline to reach an equilibrium value. The static yield stress was defined as the peak shear stress 115 

value [27]. 116 

 117 

 118 

2.2.2 Thixotropy (shear thinning and viscosity recovery) 119 

 120 

Thixotropy is an important property of printable materials, which can be characterized by a high 121 

viscosity at low stress and vice versa [39]. While there are various methods to quantify thixotropy, 122 

the “viscosity recovery” test was used to measure the thixotropy of AAS mixtures in this paper. 123 

Shear thinning property was measured by applying a constant shear rate of 300 s-1, while viscosity 124 

recovery was measured by following a three-stage protocol, as previously described in [28]. The 125 

three stages and their respective shear rates and shearing timings were decided by mimicking the 126 

concrete printing process, where the state of the material starts from rest (i.e. at hopper) followed 127 

by high shear (i.e. extrusion) and finally ends at rest (i.e. on print bed). Fig. 3 shows the schematic 128 

of the protocol used for the evaluation of viscosity recovery. In addition to thixotropy, the 129 

structural build-up rate was also calculated from the evolution of static yield stress after 0, 5, 10 130 

and 15 minutes of rest, which was used to assess the buildability property of the AAS mortars. 131 

 132 



 133 

 134 

Fig. 3 Viscosity recovery protocol for measuring the thixotropy of AAS mortars 135 

 136 

 137 

2.2.3 3D printing 138 

 139 

The printability criteria employed in this study were: (i) ease of extrusion through a rectangular 140 

nozzle (i.e. extrudability) and (ii) stability of the layered printed filament (i.e. buildability). A 4-141 

axis gantry printer [29] was used to test the extrudability of AAS mortars using a 30 (L) x 15 (W) 142 

mm nozzle. The printer was connected to a screw pump and the print speed was varied from 60 to 143 

100 mm/sec at a constant flow rate to find the optimum speed for better shape stability of the 144 

filaments. This was followed by the printing of a hollow cylinder with the optimum combination 145 

of flow rate and speed to demonstrate the buildability of the AAS mortar. 146 

 147 

 148 

2.2.4 Microstructural characterization (XRD and FESEM) 149 

 150 

Samples extracted from AAS pastes were stored in acetone to stop hydration, followed by vacuum 151 

drying in preparation for XRD and FESEM analyses. XRD was recorded on a Philips PW 1800 152 

spectrometer using Cu Kα radiation (40 kV, 30 mA), with a scanning rate of 0.04° 2θ/step from 153 



10 to 70° 2θ. FESEM was carried out with a Zeiss Evo 50 microscope to investigate the 154 

morphologies of the hydration products. The vacuum dried samples were mounted onto aluminium 155 

stubs using double-sided adhesive carbon disks and coated with gold before FESEM analysis. 156 

 157 

 158 

3. Results and Discussion 159 

 160 

3.1 Effect of nanoclay on extrusion rheology 161 

 162 

Printability is defined as the ability of a mixture to be extruded (i.e. extrudability) and maintain its 163 

structural integrity when built in layers (i.e. buildability) [10, 32]. In this respect, yield stress is an 164 

important rheological parameter that influences printability. Similarly, viscosity of a mixture is 165 

also related to its extrudability. Therefore, the yield stress and viscosity values obtained from a 166 

rotational rheometer were synergistically considered to analyse the printability of the prepared 167 

AAS mixes. Fig. 4 shows the effect of the inclusion of different amounts of NC on the static yield 168 

stress and apparent viscosity of AAS mortars. AAS mixes usually demonstrate low yield stress 169 

values due to the absorption of silicate anions (i.e. from the activator) on the slag surfaces, which 170 

results in strong double-layer repulsive forces between the slag particles, thereby causing particle 171 

separation and a low yield stress [31]. However, when compared to the control mix (0% NC), an 172 

increase in the NC content led to a higher static yield stress. Accordingly, the inclusion of a small 173 

amount of NC (0.4%) was sufficient to increase the yield stress by higher than three times when 174 

compared to the control mix. Therefore, the addition of NC enabled rapid flocculation, making it 175 

an ideal thixotropic material for 3D printing applications. 176 

 177 

While the use of NC increased the yield stress of AAS mixes, the apparent viscosity remained 178 

relatively constant under different NC contents. This could be useful in providing a smooth 179 

extrusion and deposition of the prepared mix, maintaining the shape fidelity of the filaments. Such 180 

unique behaviour of NC is attributed to the flocculation phenomena that controls the rheology, 181 

depending on the applied shear forces at different stages of concrete printing [32]. Accordingly, 182 

NC particles carry a negative and positive charge on their opposite ends. They tend to associate 183 

with each other by electrical attraction when the material is at rest. NC also presents a higher initial 184 



viscosity at rest, which then decreases under strong pre-shearing as the structure breaks down [33]. 185 

Amongst the mixes prepared, since the addition of 0.6% NC resulted in the maximum yield stress 186 

that was measurable by the rheometer, this was the highest amount of NC introduced into the 187 

prepared AAS mortars in this study. However, as it provided the highest yield stress within the 188 

extrudable limit (< 8 KPa), a NC dosage of 0.4% was selected as the optimum amount for 189 

subsequent analyses. Alternatively, the addition of 0.6% NC led to the extrusion of a discontinuous 190 

filament, which could negatively affect the interlayer bond strength due to the high yield stress of 191 

the mixture. 192 

 193 
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 195 

Fig. 4 Static yield stress and apparent viscosity as a function of NC dosage 196 

 197 

Fig. 5 shows the flow curves over a range of shear rates (1−300 s–1) for AAS motors with and 198 

without the addition of 0.4% NC. A shear-thinning behaviour was observed in both samples, which 199 

indicated increased viscosities with decreasing shear rates. When compared to the control mix, the 200 

NC modified mix resulted in higher viscosities at low shear rates, which could be helpful in 201 

maintaining the shape of the filament and support more layers. Alternatively, both mixtures 202 

demonstrated comparably low viscosities at high shear rates, which could enable a smooth 203 



concrete flow without any discontinuity in the filament deposition. These results have 204 

demonstrated the role of NC in contributing to the development of more rigid AAS mixes via the 205 

flocculation of clay, resulting in mixes with high viscosities at low shear rates and vice versa.  206 
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 209 

Fig. 5 Viscosity as a function of shear rate for the control (0% NC) and 0.4% NC modified AAS 210 

mortars 211 

 212 

In order to be ideal for extrusion based printing purposes, a material should be highly thixotropic 213 

[10, 34]. In this respect, a low viscosity under a high shear force and the recovery of the viscosity 214 

to its original value after the removal of the shear force are preferable. Therefore, it is important 215 

to know how fast a deposited AAS mortar can recover its initial viscosity before the next layer is 216 

printed. Accordingly, Fig. 6 shows the viscosity recovery curves of AAS mortars including 217 

different amounts of NC. Although the initial viscosity (i.e. at stage I) of the control sample was 218 

higher, its recovery ability after strong shearing (i.e. at stage III) was much lower. This difference, 219 

shown by the blue arrow mark (Fig. 6), was an indication of the low recovery property of the 220 

control sample, which would negatively affect its shape retention after deposition as the viscosity 221 

after extrusion reduced due to poor recovery ability. On the other hand, mixes including NC 222 

revealed significantly better recovery properties, as shown by the red arrow mark (Fig. 6). The 223 

improved recoveries of these samples were attributed to the thixotropic property of NC. Amongst 224 



the prepared samples, AAS including 0.4% NC was chosen for the assessment of its printability 225 

and structural build-up property due to its extrudable nature and 25% higher recovery ability than 226 

the control mix (0% NC). 227 
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Fig. 6 Effect of the NC on the viscosity recovery of AAS mixtures 231 

 232 

 233 

3.2 3D printing 234 

 235 

3D printing of cementitious materials is a complex process, during which material properties, part 236 

design and process parameters interact with each other and define the characteristics of the final 237 

product. Process parameters like printing speed, nozzle shape and flow rate have a strong impact 238 

on the dimensional accuracy and mechanical properties of the final product [3, 29]. Fig. 7(a) shows 239 

the effect of printing speed (i.e. ranging between 60-100 mm/sec) on the dimensional accuracy of 240 

the filaments, while flow rate was kept constant. The printing process revealed that the printing 241 

speed and flow rate were dependant on each other. Accordingly, at each flow rate, there was an 242 

optimum speed that enabled the production of filaments with the same dimension as the nozzle 243 



inlet. An increase or decrease in the speed beyond this optimum value would cause extra or 244 

insufficient material deposition, respectively. Out of the trials performed, setting the printing speed 245 

to 90 mm/s resulted in extrudates with a width (W) that was equivalent to the nozzle dimension 246 

(30 mm). Therefore, to demonstrate the possibility of using the developed AAS mortars in 3D 247 

printing applications, this speed was used in the printing of a cylinder with a diameter of 20 cm. 248 

Accordingly, the AAS mix containing 0.4% NC was printed up to 15 layers without the 249 

deformation of the bottom layer, as shown in Fig. 7(b). The deformation during printing can also 250 

be simulated by using optical techniques based on digital photogrammetry or terrestrial laser 251 

scanning, as discussed in previous studies [34]. 252 

 253 

 254 

 255 

Fig. 7 3D printing of AAS mix containing 0.4% NC, showing the effect of: (a) printing speed on 256 

filament dimension and (b) buildability of several layers 257 

 258 

 259 

3.3 Time-dependent rheological properties 260 

 261 

The rheology of the material changes with time according to binder chemistry and presence of 262 

additives. The evolution of rheology with time is an important parameter for the printing process 263 

since fresh concrete is deposited in a layer-by-layer manner. This necessitates the material to 264 

possess fresh properties that can provide a 3D printed structure with structural stability [35].  265 

Depending on the printing volume and speed, the material can be tailored to gain sufficient strength 266 



before the printing of subsequent layers. The early strength of the material can be indirectly 267 

measured from its yield strength. Accordingly, Fig. 8 shows the yield stress values of the control 268 

AAS mix and the AAS mix containing 0.4% NC at different time intervals, obtained directly from 269 

the stress growth test. The inclusion of NC was found to increase the static yield stress of AAS 270 

mixes, revealing values that were three times higher than those of the control mix. This 271 

improvement in the yield stress was associated with the flocculation of NC particles, as discussed 272 

earlier in Section 3.1. 273 
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 276 

Fig. 8 Evolution of the static yield stress of AAS mortars with and without 0.4% NC 277 

 278 

Alternatively, the rate of change of yield stress over time, also known as the structural build-up 279 

rate, was not significantly affected by the addition of clay. AAS mix containing 0.4% NC 280 

progressively gained yield stress, similar to the control sample. This observation was in line with 281 

the findings of previous studies [32, 33], where the addition of NC was reported to have an 282 

immediate impact on the yield stress, but have little or no influence on the rate of change of the 283 

yield stress over time. To overcome this issue, an accelerator can be added into AAS mixtures, 284 

which will enhance the build-up rate by accelerating the chemical (i.e. hydration) reaction. 285 



Previous studies [24-26] have shown that nucleation seeds such as Ca- or Mg-based 286 

hydrate/carbonate phases can provide additional nucleation sites for the rapid and increased growth 287 

of hydration products. Therefore, different amounts of hydromagnesite 288 

(4MgCO3·Mg(OH)2·4H2O) seeds were introduced into the AAS mix containing 0.4% NC to 289 

investigate their effectiveness in improving the build-up rate and early age mechanical properties. 290 

 291 

Fig. 9 shows the effect of 1% and 2% seed addition into the AAS mortar with and without the use 292 

of NC. Along with the findings of previous studies, where it was revealed that high seed contents 293 

were not effective due to dispersion issues [24, 25], only up to 2% seed addition was investigated 294 

in this study. Although the seed dosage had a little effect on the yield stress of both mixes, its 295 

influence on increasing the rate of change of yield stress over time, which can enhance the 296 

buildability of the printed structure without the need for any additional admixtures, should be 297 

evaluated before any final conclusions on the effectiveness of seeds could be made. Accordingly, 298 

Fig. 10 shows a successfully printed twisted column involving the use of the AAS mix containing 299 

0.4% NC and 2% hydromagnesite seeds. As a part of this approach, a slender column was printed 300 

directly from the CAD model demonstrated in Fig. 10(a). This process was completed without any 301 

significant bottom layer deformation, as can be seen in Fig. 10(b). While this was an indication of 302 

the necessary stiffness of the AAS mix in resisting deformation imposed by top layers, its higher 303 

stiffness resulted in a rough surface texture, which could be improved for better printing results. 304 
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 307 



Fig. 9 Effect of nucleation seeds on the yield stress of AAS mixes containing 0.4% NC, obtained 308 

just after mixing 309 

 310 

 311 

 312 

Fig. 10 3D twisted column generated by using the AAS mix containing 0.4% NC and 2% 313 

hydromagnesite seeds, showing: (a) 3D CAD model and (b) actual printed structure 314 

 315 

 316 

3.4 Microstructural characterization 317 

 318 

The feasibility of using the developed AAS mix in large-scale printing applications was further 319 

evaluated via the assessment of its microstructural properties Fig. 11 presents the XRD patterns of 320 

the AAS mix containing 0.4% NC and 0-2% hydromagnesite seeds after 14 days of curing. The 321 

main hydrate phase observed in both samples was C-(A)-S-H gel (i.e. 30-31° 2θ; PDF #00-033-322 

0306), which was in line with the findings of previous studies [37, 38]. A comparison of the XRD 323 

patterns of both samples revealed the higher intensity of C-(A)-S-H in the seeded sample when 324 

compared with the unseeded sample. Along with C-(A)-S-H, a small amount of calcite (CaCO3; 325 

PDF #01-071-3699) and hydrotalcite (Mg6Al2CO3(OH)16·4(H2O)) were also observed. 326 

Furthermore, the microstructures of both samples, shown in Fig. 12, revealed the denser 327 

microstructure of the seeded sample in comparison to the unseeded sample. The wide-spread 328 

growth of C-(A)-S-H gel on the surfaces of the rosette-like hydromagnesite particles confirmed 329 



the role of these seeds in providing additional nucleation sites for the increased precipitation of 330 

hydration products, which could lead to fast setting and improved early mechanical performance 331 

[36, 40]. 332 
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 335 

Fig. 11 XRD patterns of the AAS mix containing 0.4% NC and 0-2% hydromagnesite seeds after 336 

14 days of curing (Ht: hydrotalcite and C: calcite) 337 

 338 



 339 

 340 

Fig. 12 SEM images and elemental composition of the AAS mix containing 0.4% NC and (a) 0% 341 

seeds and (b)-(c) 2% seeds 342 

 343 

 344 



4. Conclusions 345 

 346 

This paper aimed to improve the rheological properties of alkali-activated slag (AAS) binders for 347 

extrusion‐based 3D printing. While slag was used as the main binder, different amounts of 348 

nanoclay (NC) were introduced to enable the development of extrudable and buildable (i.e. 349 

printable) mixes. Selected mixes were subjected to a range of rheological measurements to 350 

determine their yield stress, viscosity and thixotropy recovery required for 3D printing 351 

applications. The AAS mix by itself was found to exhibit a low yield stress due to the plasticizing 352 

and deflocculating effects of the silicate particles. Inclusion of 0.4% NC in these AAS mixes 353 

significantly improved the initial yield stress due to the flocculation effect. However, structural 354 

rebuilding rate remained unaffected even in the presence of NC and this was resolved via the 355 

addition of 2% hydromagnesite seeds, which can increase the rate of the hydration reaction and 356 

early strength development of AAS mixes, contributing to the buildability property necessary for 357 

large-scale concrete printing. 358 

 359 

While this study has paved the way for the development of alternative binders with improved 360 

properties for 3D printing applications, further studies focusing on the optimization of the mix 361 

design in terms of the NC content and seed type could enable the end users to fully harvest the 362 

benefits of each additive in creating sustainable mixes with an enhanced performance.363 
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