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Abstract
Vegetation indices (VI), especially the normalised difference vegetation index (NDVI), are 
used to determine management units (MU) and to explain quantity and quality of vine-
yard production. How do NDVI maps from different sensing technologies differ in a pro-
duction context? What part of the variability of yield and quality can they explain? This 
study compares high-resolution multispectral, multi-temporal data from CropCircle, Spec-
troSense + GPS, Parrot Sequoia + multispectral camera equipped UAV, and Sentinel-2 
imagery over two seasons (2019 and 2020). The objective was to assess whether the date 
of data collection (phenological growth stage) influences the correlations between NDVI 
and crop production. The comparison of vineyard NDVI data from proximal and remote 
sensing in both a statistical and a productive context showed strong similarities between 
NDVI values from similar sensors (0.69 < r < 0.96), but divergences between proximal and 
airborne/spaceborne observations. Exploratory correlation analysis between NDVI lay-
ers and grape yield and total soluble solids data (TSS) showed high correlations (maxi-
mum |r|= 0.91 and |r|= 0.74, respectively), with correlations increasing as the season pro-
gressed. No relationship with must titratable acidity or pH was found. Finally, proximal 
sensors explained better the variability in yield and quality for grapes in the early and late 
growth stages. The UAV’s MUs described the yield of both years better than the other 
sensors. In 2019, the PCA-based MUs explained the TSS variability better than the UAV-
related zones. Due to their coarse spatial resolution, the satellite data proved inconsistent in 
explaining the variability.
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Introduction

Precision viticulture is a management strategy that uses spatio-temporal data and observa-
tions to capture, describe and manage vineyard variability to improve productivity. The aim 
is to gain insights into how vineyard management can be improved through the adoption of 
new technologies to increase efficiency, quality, yield and sustainability, while minimising 
environmental impacts (Balafoutis et al., 2017a, 2017b). This is particularly important in 
regions where high-quality standards for wine production justify the use of site-specific 
management practises to increase grape quality and yield. Vineyards are inherently spa-
tially variable and spatial production decisions in response to this variability can be very 
profitable (e.g. Bramley & Hamilton, 2004).

Canopy characterisation is an important component of site-specific crop management 
techniques. Remote sensing is widely used in agriculture, especially for monitoring crop 
growth and estimating crop quality and yield (Mulla, 2013). In viticulture, non-destructive 
remote sensing methods, especially geo-referenced information on canopy structure and 
field-level variability, are a highly beneficial alternative to in-situ field sampling, allow-
ing rapid assessment of large areas (De Castro et al., 2018; Giovos et al., 2021; Hall et al., 
2002; Johnson, 2003). Maps or images based on a variety of vegetation indices (VI) from 
remote sensing can be used to monitor the condition of vegetation and quantitatively assess 
its health and vigour. The spectral response of the vine canopy needed to calculate VIs can 
be determined directly, accurately and non-destructively either remotely or proximally (at 
close range) using a variety of sensors and sensor configurations on terrestrial, airborne or 
satellite platforms (Hall et al., 2002; Sozzi et al., 2020). There are many different VIs that 
can be calculated based on the available spectral (band) information collected, but the most 
widely used in viticulture (and crops generally) is normalised difference vegetation index 
(NDVI) (Rouse et al., 1973; Taylor & Bates, 2021). The NDVI uses a combination of red 
and near infra-red reflectance, which relates to vegetation vigour and biomass. The NDVI 
has been extensively researched and associated with various structural and physiological 
characteristics of grapevines and is often used as data for spatial management decisions 
in vineyards (Acevedo-Opazo et  al., 2008). Recent work has highlighted that the NDVI 
may not be the most effective VI in viticulture (Matese & Di Gennaro, 2021; Taylor et al., 
2021), but it is still a relatively robust VI and remains the default VI used in many research 
and commercial applications.

Variations in vineyard micro-climate and soil properties lead to significant changes in the 
size and structure of the vine canopy within vineyard blocks (Gatti et al., 2022; Hall et al., 
2011). NDVI data can provide information on vine canopy variation that in turn may affect 
the critical characteristics of yield and berry composition (Hall et  al., 2002). A common 
approach to relate NDVI to vineyard production is to perform statistical and regression analy-
ses, including descriptive statistics, Pearson correlation and regression models. Pearson’s cor-
relation coefficient has been quantified in several studies to determine the spatial correlation 
between VIs (usually but not always NDVI) and yield components, suggesting that the zones 
with the highest vine vigour are also the highest yielding (e.g. Anastasiou et al., 2018; Gatti 
et al., 2016; Hall et al., 2011; Sun et al., 2017). Others have investigated correlations between 
NDVI and fruit quality indices, such as berry size, total soluble solids, anthocyanins, grape 
colour and total phenolic content (Anastasiou et al., 2018; Baluja et al., 2012; Hall et al., 2011; 
Kasimati et al., 2021a). These studies differ in their relationships between NDVI, yield and 
quality, often because of differences in the viticulture system. Although higher NDVI values 
are generally associated with higher yields and lower quality, this is not always the case. The 
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reverse relationship has been observed, with zones of low vigour (NDVI) tending to produce 
higher quality wine in some instances.

In addition to direct comparisons between VIs, particularly NDVI, and crop production 
attributes, other research has examined the strength of relationships between different types of 
NDVI maps in the same vineyards, e.g. Sozzi et al. (2019) and Kasimati et al. (2021b). This 
has shown that there are differences in the spatial structuring of VIs when the images come 
from different types of sensors. However, whether comparing NDVI maps from different sen-
sors or comparing NDVI values to vineyard production, a commonality is that these relation-
ships tend to only be reported in a statistical context and mostly via correlation analyses. None 
of the previous papers have considered how these relationships would be translated into deci-
sions in an operational context, i.e. very little was understood about how differences in NDVI 
maps might influence spatial production decisions and ultimately affect the management of 
yield and quality variability in vineyards.

An alternative approach to correlation and regression analyses is to use classification algo-
rithms. Spectral information can be classified, with or without other data such as soil or pro-
duction information, to ‘group’ these data into potential management units (MUs) or zones 
(MZs). To this end, clustering techniques have been widely used in precision agriculture 
and precision viticulture, in particular the k-means algorithm and its variants (Fridgen et al., 
2004; Taylor et al., 2007). The k-means algorithm assumes that these different data sources 
are located in one place. This often requires appropriate interpolation as a pre-processing step, 
as data collected at different times and/or with different measurement systems are rarely col-
lected at the same location. However, the advantage of this method is that classes (MUs) are 
generated that have a more homogenous (i.e. VI) response within each MU, and these can be 
considered as operational management units.

In previous work, NDVI data from four sources, including two terrestrial crop reflectance 
sensors, a UAV-mounted multispectral camera and Sentinel-2 satellite imagery, were analysed 
using both a correlation and a MU approach to determine how similar these data sources were 
in a production environment (Kasimati et  al., 2021b). The correlation coefficients and MU 
maps showed that NDVI data from different sensors, especially from satellite platforms, pro-
vided different information for decision-making. When it comes to production considerations, 
not all NDVI maps are equal. However, this previous research only investigated the tempo-
ral evolution of operational relationships between NDVI maps in vineyards over time. It did 
not examine the operational relationships of different NDVI data with grape yield and quality 
within the same vineyard.

Therefore, building on previous work, this research compared NDVI data collected by 
different proximal and remote sensing systems over the same vineyard at the same time and 
determined the extent to which these data sources correlate with each other and with grape 
yield and quality data at the operational level. The operational, production context was 
explored by including management units in the analysis, which currently represent the most 
common type of spatial and variable management in crop production systems. The aim was to 
determine whether different NDVI data sources at different times in the season, which respond 
differently to some extent, ultimately lead to different management decisions.
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Materials and methods

Study area

The study was conducted in a commercial vineyard located at 420  m above sea level 
on a steep slope (16%) on a commercial vineyard, the Palivos Estate in Nemea, Greece 
(37.8032° N, 22.69412° E, WGS84). It is planted with Vitis vinifera L. cv. ’Agiorgitiko’ 
for wine production, and the training system is a vertical Guyot system with cane prun-
ing. The data used for the analysis were obtained in 2019 and 2020 from an area of 
approximately 2 ha within the estate. The row orientation is northeast-southwest and the 
row spacing is 2.2 m (Fig. 1).

Data collection—sensors

A HiPer V RTK GPS (Topcon Positioning Systems Inc., Livermore, CA, USA) was 
used to record the field boundaries and elevation data. Four surveys were performed 
during each of the two seasons (2019 and 2020) based on identified key phenological 
stages and the quality of sensor data obtained in each campaign (Kasimati et al., 2021b). 
The four dates selected were early June, early July, early August and late August, repre-
senting floraison, fruit set, berries pea-size and veraison stages (Table 1).

For each campaign, vine vigour was assessed using two vehicle-mounted proximal 
sensors simultaneously using an ad-hoc mounting structure (Fig. 2). These sensors were 
a CropCircle active proximal canopy sensor (ACS-470, Holland Scientific Inc., Lincoln, 
NE, USA) and a SpectroSense + GPS passive canopy sensor (Skye Instruments Ltd, 
Landrindod Wells, UK) were mounted on a tractor. The CropCircle was mounted hori-
zontally to image the side curtain of the canopy, following the method of Drissi et al. 
(2009) while the SpectroSense + GPS was mounted above the canopy to collect data 
from a nadir position. Both sensors were adjusted to maintain an appropriate distance 
(0.3–0.5  m), according to manufacturer specifications, from the vines at each growth 
stage. They record proximal reflectance measurements from the side and top of the can-
opy. All proximally recorded data were georeferenced using either a Garmin GPS16X 
HVS (Garmin, Olathe, Kansas USA) or the integrated built-in global navigation satellite 
system (GNSS).

Remote assessments of vine vigour were made using Sentinel-2 satellite imagery and 
a Phantom 4 Pro UAV (SZ DJI Technology Co., Ltd., Shenzhen, Guangdong, China) 
equipped with a Parrot Sequoia + multispectral camera (Parrot SA, Paris, France) and asso-
ciated 3-axis georeferencing metadata using the camera’s integrated positioning system. 
The aerial UAV imagery were acquired around midday with nadir flights at 30 m above 
the ground on the same days as the proximal measurements. The acquisition interval of 
the multispectral camera was set at 2 s, and the flight plan overlap and sidelap were 80% 
and 70%, respectively. The ground sampling distance (GSD) of the image ortho-mosaics 
was ~ 30 mm. Atmospherically corrected Sentinel-2 satellite 2A images, with a spatial res-
olution of 10 m pixels and a 5-day revisit time, were downloaded from the official Coper-
nicus Open Access Hub (scihub.copernicus.eu) for the date closest to the date of the proxi-
mal and UAV surveys. This usually occurred within 2 days in the mid-late season surveys 
but was up to 9 days after the ground-based observations earlier in the season due to high 
cloud coverage effects in the nearest ingestion dates (Table 1).
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Two Vantage Pro 2 weather stations (Davis Instruments Corp., Hayward, CA, USA) 
(Fig.  2, Left) with a rain sensor to detect precipitation, anemometer to measure wind 
speed and direction, air temperature sensor, humidity sensor and barometer to monitor 

Fig. 1   Left: the national (inset) and local position of the study vineyard, with the target area within the 
Palivos Estate indicated by the white rectangle and; Right: close up of the satellite image of the commercial 
vineyard and the 100-cell grid developed parallel to the trellis lines (Google Earth Pro, 2021)

Fig. 2   Pictures of vineyard-based data collection with different sensors during the survey. Left: two vehicle-
mounted sensors, SpectroSense + GPS and CropCircle, for measuring canopy reflectance; and Right: The 
Phantom 4 Pro UAV in use within the vineyard to collect proximal imagery. An on-site weather station is 
also shown in the left image
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air pressure were installed inside the vineyard. The weather data were recorded during 
the entire growing season.

Data collection—production attributes

The quantity and quality of the harvest was sampled manually, with grapes harvested 
by hand at the end of each growing season (mid-September). A regular 100-cell grid 
(10 m × 20 m) covering the entire area  (Fig. 1) was created using ArcMap v10.3 (ESRI, 
Redlands, CA, USA) and then laid out in the field by creating landmarks to facilitate 
field measurements of grape yield and quality. This sampling strategy was agreed with 
the vineyard manager and the grid size was considered by the vineyard manager to be 
the basic minimum size for management. Yield was determined by counting the total 
number of crates filled per cell and multiplying it by the average crate weight of the har-
vested grapes (Fig. 3). Grape quality characteristics were assessed by randomly select-
ing fifty berries from each cell in the vineyard. Qualitative analysis of the common vine-
yard quality indicators, total soluble solids (°Brix) in must, total titratable acidity and 
pH, was carried out according to Stavrakaki et al. (2018) at the Laboratory of Viticul-
ture, Agricultural University of Athens. Total soluble solids in the must were measured 
without temperature correction using an ATAGO N1 refractometer (Atago Co. Ltd., 
Tokyo, Japan) with a measuring range of 0–32 °Brix in 0.28°Brix increments. For the 
determination of the titratable total acidity, a titration with a 0.1 N NaOH solution was 
carried out. The most abundant organic acid in grapes, tartaric acid, was used to repre-
sent the total titratable acid. The must pH was determined using a pH meter.

Fig. 3   Pictures taken during the collection of manual grape production data. Left: the regular 100-cell grid 
(10 m × 20 m) plan covering the entire area and empty baskets ready to be filled; and Right: filled baskets in 
the vineyard awaiting collection and recording
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Data preparation

The geographic co-ordinates for all the tractor-mounted, proximally acquired canopy 
reflectance data collected during the season were first converted to projected co-ordi-
nates (UTM Zone 34 N) and pre-processed by cleaning and removing data points out-
side the field boundaries and removing outliers (values >  ± 2.5σ) (Taylor et al., 2007). 
Data were interpolated to a common 2.2-m grid (corresponding to the row spacing in 
the vineyard) using block kriging on a 5 × 5-m block size with a local variogram with 
the Vesper software (Minasny et al., 2005). Using ArcMap, the interpolated data were 
scaled up to 10 m × 20 m plots (corresponding to the cells used for manual sampling) 
using a mean aggregation of the 2.2  m grid points. Ultimately, this produced a time 
series of NDVI maps with a spatial resolution of 10 m × 20 m, aligned parallel to the 
vineyard rows.

The multispectral images captured by the UAV were mosaicked using Pix4D soft-
ware (Pix4D S.A., Prilly, Switzerland) through the ‘Ag Multispectral’ photogram-
metric model pipeline. Radiometric calibration was applied to the generated ortho-
mosaic using the reference images of a radiometric calibration target (airinov aircalib) 
acquired after each flight. Finally, the generated NDVI ortho-mosaic was fitted to the 
boundaries of the vineyard and the data were scaled up to the same 100 management 
plots (10 m × 20 m) using a mean aggregation approach.

The Sentinel 2A images have a spatial resolution of 10 m and the NDVI was cal-
culated using bands 4 and 8 (red and near-infrared, respectively). A spatial correc-
tion was made along the boundaries of the experimental field based on ground control 
points from the detailed UAV map before scaling up the data to the 10 m × 20 m plots 
by averaging the NDVI of all pixel centroids within the plots. A schematic and exam-
ples of the collection and processing flow for each data source is shown in Fig. 4.

The final step of data processing was the creation of a geodatabase at the grid cell 
level that contained the centroid co-ordinates of each cell (management plot), the mean 
NDVI values of each sensor for a given cell at a given date, the date associated with 
each sensor survey and the manually acquired yield and quality values for each cell.

Data analysis

Exploratory analysis of NDVI and crop production attributes

Descriptive information relating to the NDVI data used in this study has previously 
been published (Kasimati et  al., 2021b). Pearson’s correlation analysis using R soft-
ware (R Core Team, 2022) was carried out to investigate the relationships between 
the NDVI data from all four sensors for the four selected measurement dates to exam-
ine whether the different combinations of NDVI maps exhibited a homogeneous 
trend. Correlation r-values > 0.50 were considered to exhibit a moderate to strong 
relationship.

Descriptive statistics (mean and standard deviation) for the crop production data 
were generated to quantify the yield and quality attributes. Pearson’s correlation was 
again used to directly link the mean NDVI response to crop production attributes at the 
100 m grid cell level as a preliminary analysis.
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Delineating management units (MUs)

Before delineating the MUs, PCA was performed to analyse the relationships between 
NDVI maps. The PCA was performed using the built-in R software program function 
prcomp() (R Core Team, 2022), to group the NDVI data into statistical factors and create 
linear independent variables that remove multi-collinearity and describe the spatio-tempo-
ral information collected. The results of the PCA (principal components—PCs) were plot-
ted to show trends and also saved to be used in the delineation of the potential MUs.

Fuzzy k-means classification using the Management Zone Analyst (MZA) software 
(Fridgen et al., 2004) was used to classify the data into MUs. The MZA software was oper-
ated with the following parameter settings; using the Mahalanobis similarity measure for 
multivariate clustering, fuzziness exponent = 1.3, the maximum number of iterations = 300, 
and the convergence criterion = 0.0001. The FPI (Fuzziness Performance Index) and NCE 
(Normalised Classification Entropy) indices were used to determine the optimal number 
of zones (Fridgen et al., 2004; Tagarakis et al., 2013) by minimising both indices. Initially, 
clustering was performed with all selected dates and with all sensor data. This procedure 
was referred to as the ‘All’ approach and was considered as the ‘reference’ MU map. Then, 
each individual NDVI sensor time series for both years were classified separately to create 
sensor-specific MU maps. A MU map was also created by classifying the PCA outputs. 

Fig. 4   Sequence of data processing and created NDVI maps. The first row shows the sensor type and posi-
tioning relative to the vine canopy (orientation and relative distance) during data acquisition. NDVI images 
derived from either interpolated ground points or captured images (second row) at their original resolution 
were used to create a series of transformed NDVI maps with a spatial resolution of 10 m × 20 m, aligned 
parallel to the vineyard rows (third row). This was done at four dates in both years to track the spatio-tem-
poral change in the vine canopy response. (Reproduced from Kasimati et al., 2021b)
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The results of the ‘All’ classification in each year were compared with the map results of 
each individual sensor or PCA. Comparisons were made by determining the Degree of 
Agreement (DoA) (Tagarakis et al., 2013) between MU maps, i.e. the number of cells or 
‘pixels’ belonging to the same class in the reference (All) and target maps. This method 
provides a visualisation of the spatial NDVI correlation in terms of production, but does 
not provide a direct linear correlation index.

Analysis of variance (ANOVA) was used to test how well the variability in grape yield 
and quality is explained by the various sensor-specific MU maps. Each harvest variable 
(yield, TSS, TA and °Brix) was analysed individually against the sensor-specific MU maps 
using a one-way ANOVA analysis. As the MUs formed the defacto ‘treatments’ for the 
ANOVA, and were unequal in size, an unbalanced one-way ANOVA was performed and 
the adjusted R2 value recorded. The threshold of significance (p-value) for the statistical 
tests was 0.05. The analysis was performed in R with the package MANOVA.RM (Frie-
drich et al., 2019).

Results

Weather data

The climate of Nemea is described as Mediterranean, mild, with an average (thirty-year) 
rainfall of 690  mm distributed from October to April. Total precipitation ranged from 
1093  mm (for 2019) to 518  mm (for 2020) and the average annual temperature ranged 
from 17.0 °C in 2019 to 18.1 °C in 2020, with a maximum temperature of 40.3 °C in 2020, 
while the lowest temperature was − 7.6 °C.

Descriptive analysis of yield and quality parameters

The mean (μ), standard deviation (σ) and range of the yield and quality attributes across 
the 100 sampling plots is given in Table 2. Mean yields (and variances) were low (50 kg/
plot = 2.5 Mg/ha), but typical for premium wine production of this region. Yields in 2019 
were higher than in 2020. The Brix values were similar in both years and these values 
according to the estate winemaker are indicative of “ripe” and ready to harvest grapes. The 
pH values were considered high by the winemaker, especially in 2019, and are associated 
with over-ripe grapes. In contrast, the TTA values were considered normal values for Vitis 
vinifera L. cv. ‘Agiorgitiko’, although much higher TTA values were observed in 2019 than 
in 2020.

Table 2   The minimum and maximum values along with the mean and standard deviation of all yield and 
quality parameters

TSS total soluble solids, TTA​ total titratable acidity

Year Statistic Yield (kg/plot) TSS (°Brix) pH TTA (g/l)

2019 Min–Max 24.0–75.0 20.42–24.36 3.89–4.26 6.04–6.78
Mean ± SD 47.8 ± 19.7 22.04 ± 1.38 4.02 ± 0.11 6.39 ± 0.22

2020 Min–Max 33.2–74.4 20.58–23.19 3.84–3.89 4.61–4.89
Mean ± SD 54.3 ± 14.0 21.91 ± 0.83 3.86 ± 0.01 4.78 ± 0.09
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Exploratory correlation analysis between NDVI layers

As reported previously (Kasimati et al., 2021b), there were generally good positive correla-
tions (r > 0.50) between the NDVI maps from different sensors and dates in both 2019 and 
2020, indicating high similarity between the different sources of information. For 2019, the 
correlation coefficients between sensors per date were strong (r > 0.70), indicating sensor 
reliability. The maximum correlation (r = 0.90) for 2019 was observed for the Sentinel-2 
data between early and late August (i.e. in the mid-late season with full canopy growth). 
For 2020, the correlations were strongest (r = 0.96) for the UAV data, between early June 
and August. All Sentinel 2 images were strongly correlated (0.69 < r < 0.96); however, 
in 2020, the satellite NDVI had relatively weak correlations with the other three sensing 
systems (0.27 < r < 0.40). Among the sensors for specific dates (phenological stages), the 
SpectroSense + GPS was found to correlate best with the other sensors in both years. How-
ever, no temporal pattern was observed as the best correlations were noticed in late season 
in 2019 and early season in 2020. (Full details on these correlation results can be found in 
the supplementary material, Table S1).

Exploratory correlation analysis between NDVI layers and grape yield and quality

Summary information relating to the exploratory correlation analysis between sensor-spe-
cific NDVI layers and grape yield and quality are shown in Tables 3 and 4 respectively. 
The upper part of Table 3 shows the best intra-sensor correlations between NDVI data and 
yield, attaining higher values at the middle of the growing season. The maximum correla-
tion (r = 0.91) for 2019 was observed in early August for UAV data, followed by early and 
late August for the Sentinel-2 and UAV data, respectively (r = 0.90). In 2020, correlations 
were stronger in early August for the UAV data (r = 0.81), followed by early July for the 
SpectroSense + GPS data (r = 0.79). All Sentinel-2 NDVI variables had weak correlations 
with yield in 2020 (0.32 < r < 0.35). For the given dates during the growing season, the 
UAV NDVI data was found to correlate best with yield in early and late August.

Table 3   NDVI–Yield Correlation Co-efficient: The first two higher Pearson’s correlation coefficients 
between NDVI data from all four proximal and remote sensors and yield for a given sensor (upper part) and 
for given time periods during the season (bottom part)

CC CropCircle, SS SpectroSense + GPS, UAV unmanned aerial vehicle, S2 Sentinel-2

Per Sensor CropCircle SpectroSense + GPS UAV Sentinel-2

2019 0.78 (End Aug) 0.80 (Early Aug) 0.91 (Early Aug) 0.90 (Early Aug)
0.71 (Early Aug) 0.71 (End Aug) 0.90 (End Aug) 0.87 (End Aug)

2020 0.62 (Early Jul) 0.79 (Early Jul) 0.81 (Early Aug) 0.35 (End Aug)
0.5 (End Aug) 0.74 (End Aug) 0.77 (End Aug) 0.32 (Early Jul)

Per Date Early June Early July Early August End August

2019 0.79 (S2) 0.85 (S2) 0.91 (UAV) 0.90 (UAV)
0.78 (UAV) 0.83 (UAV) 0.90 (S2) 0.87 (S2)

2020 0.61 (UAV) 0.79 (SS) 0.81 (UAV) 0.77 (UAV)
0.58 (SS) 0.73 (UAV) 0.69 (SS) 0.74 (SS)
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Table  4 shows the equivalent correlations for TSS instead of yield. The correlation 
matrices for 2019 and 2020 generally showed a low negative correlation with TSS, with 
slightly lower values for 2020 than for 2019. The best correlation (|r|= 0.74) was observed 
for SpectroSense + GPS data at the end of August 2019, followed by CropCircle NDVI 
in late August (|r|= 0.69). For 2020, correlations were strongest for SpectroSense + GPS 
data (|r|= 0.70) in early July and late August. All Sentinel-2 NDVI variables had relatively 
weaker correlations with TSS in both years (0.28 <|r|< 0.58) when correlated with total 
soluble solids. Across both years, the higher resolution NDVI data (SpectroSense + GPS, 
CropCircle and UAV) performed consistently well, with r > 0.5 on at least one date.

The pH and TTA data had low correlation values (|r|< 0.30) with the NDVI data, regard-
less of the sensing platform, at all crop stages. This indicated that pH and TTA was not 
determined by vine vigour in this vineyard system.

Application of principal component analysis (PCA) to the NDVI data layers

PCA was applied to all the NDVI maps that constituted each year’s dataset (four sensors at 
four dates). For the 2019 dataset, the first two principal components (PC1, PC2) described 
85.7% of the variability in all NDVI maps. For the 2020 dataset, PC1 and PC2 described 
85.2% of the variance in the dataset. The results of these three PCAs are summarised in 
Table 5 and plots of the first two PCs are shown in Fig. 5.

Table 4   NDVI–Total Soluble Solids Correlation Co-efficient: Selected best performed Pearson’s correla-
tion coefficients between NDVI data from all four proximal and remote sensors and total soluble solids for a 
given sensor (upper part) and for given time periods during the season (bottom part)

CC CropCircle, SS SpectroSense + GPS, UAV unmanned aerial vehicle, S2 Sentinel-2

Per Sensor CropCircle SpectroSense + GPS UAV Sentinel-2

2019  − 0.69 (End Aug)  − 0.74 (End Aug)  − 0.63 (End Aug)  − 0.58 (Early Aug)
 − 0.52 (Early Aug)  − 0.67 (Early Aug)  − 0.62 (Early Jun, Early Aug)  − 0.52 (End Aug)

2020  − 0.54 (Early Jul)  − 0.70 (Early Jul)  − 0.58 (Early Aug)  − 0.33 (End Aug)
 − 0.41(End Aug)  − 0.67 (End Aug)  − 0.52 (Early Jul, End Aug)  − 0.28 (Early Jul)

Per date Early June Early July Early August End August

2019  − 0.62 (UAV)  − 0.58 (UAV)  − 0.68 (SS)  − 0.74 (SS)
 − 0.36 (S2)  − 0.48 (S2)  − 0.62 (UAV)  − 0.69 (CC)

2020  − 0.62 (SS)  − 0.70 (SS)  − 0.61 (SS)  − 0.79 (UAV)
 − 0.33 (CC)  − 0.50 (CC)  − 0.58 (UAV)  − 0.67 (SS)

Table 5   Cumulative proportions 
and standard deviations 
associated with principal 
components (PCs) from the 
analysis of all selected NDVI 
layers from all sensors in each 
year (2019 or 2020)

Year Statistic PC1 PC2 PC3 PC4 PC5

2019 Cum. proportion 0.716 0.857 0.895 0.928 0.948
SD 0.144 0.064 0.033 0.031 0.025

2020 Cum. proportion 0.580 0.852 0.896 0.925 0.948
SD 0.130 0.089 0.036 0.029 0.026
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Delineating management units from combinations of NDVI layers and PCs

In the fuzzy k-means classification, the FPI and NCE indices were most often minimised 
when k = 3, so this value was adopted for all classifications to ensure direct comparisons 
were possible. The fuzzy k-means classification and the MU maps as well as the total DoA 
analysis between the different sensors are shown in Fig. 6 and Table 7. The classes were 
labelled according to the mean NDVI response, with the red cluster always representing the 
lowest mean NDVI value, the green cluster representing intermediate mean NDVI values 
and the yellow cluster representing the highest mean NDVI value. Table  6 presents the 
NDVI ranges of each sensor-specific classification for the 3-class reference classification 
(low, medium and high NDVI) for both years.

The resulting MU maps (Fig.  6) showed the highest DoA between the different 
approaches for the high NDVI class, followed by the low and then the medium NDVI 
classes, i.e. regardless of the sensing platform chosen, the NDVI information was able to 
consistently represent high vigour zones but was less consistent on the zoning of interme-
diate or medium NDVI values. The SpectroSense + GPS data showed the highest DoA with 

Fig. 5   PCA cluster plots visualising the values of PC1 vs. PC2 and the relative statistical ellipses for the 
three classes (95% confidence interval). The closer the major axes of the statistical ellipse of each class are 
to the parallel, the higher the reliability of the classification. (Class 1/Red: low NDVI = 0.48–0.56; Class 2/
Green: medium NDVI = 0.53–0.61; Class 3/Blue: high NDVI = 0.56–0.63 as determined by the MZA soft-
ware analysis (see next section))

Fig. 6   Management units (3 classes) resulting from the fuzzy k-means classification of different NDVI val-
ues obtained from different sensors in 2019 and in 2020. The analysis was carried out on 10 m × 20 m plots, 
which were considered as minimum management plots. Each plot was assigned to a class based on its mean 
NDVI response (Red: low NDVI; Green: medium NDVI; Yellow: high NDVI)  (Reproduced from Kasimati 
et al., 2021b)
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the reference map (‘All’) in 2019 (85%), while it was the Sentinel-2 data in 2020 (71%). 
This latter result is due to the large deviation between the Sentinel-2 maps and the other 
sensors, such that the All (and PCA) result has a skew within it to account for the satel-
lite data deviation, and subsequently fits the satellite data better. The MZA-derived ‘All’ 
clustering was almost identical to the PCA-based MU map in both years, which was to be 
expected as PCs were derived from the ‘All’ dataset.

ANOVA

Each harvest quality variable (TSS, TA and pH) as well as yield was analysed individu-
ally from sensor-specific MU maps using a one-way ANOVA analysis. The pseudo-design 
for the ANOVA was unbalanced because there was a difference in the number of plots 
assigned to each class based on their average NDVI response. The adjusted R2 for the fits 
of the ANOVA are shown in Table 8. These values are indicative of the amount of variabil-
ity in yield and quality attributes that was explained by the MUs created from the reference 
(All), PCA and sensor-specific NDVI data.

Table 6   The NDVI ranges of each sensor-specific classification for the 3-class reference classification (low, 
medium and high NDVI) for both years

Class (NDVI) PCA CropCircle Spectro-
Sense + GPS

UAV Sentinel-2 All

1 (low) Min 0.48 0.52 0.70 0.39 0.32 0.48
Max 0.56 0.56 0.80 0.48 0.47 0.56
Avg 0.54 0.54 0.76 0.45 0.40 0.54

2 (mid) Min 0.53 0.53 0.76 0.49 0.38 0.53
Max 0.61 0.58 0.84 0.55 0.48 0.61
Avg 0.57 0.55 0.80 0.52 0.43 0.57

3 (high) Min 0.56 0.55 0.78 0.54 0.42 0.56
Max 0.63 0.59 0.85 0.62 0.54 0.63
Avg 0.59 0.57 0.82 0.57 0.47 0.59

Table 7   The Degree of Agreement (DoA) table shows the number of plots (10  m × 20  m) that agreed 
between the 3-class reference classification (All) (low, medium and high NDVI) and the corresponding 
3-class output of each sensor-specific classification for 2019 and 2020 across all 100 plots

Year Class (NDVI) All PCA CropCircle Spectro-
Sense + GPS

UAV Sentinel-2

2019 1 (low) 16 14 12 13 16 5
2 (mid) 36 34 25 30 28 22
3 (high) 48 48 28 42 34 46

Total 100 96 65 85 78 73
2020 1 (low) 29 29 18 24 26 13

2 (mid) 30 29 11 11 09 20
3 (high) 41 41 25 19 24 38

Total 100 99 54 54 59 71
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As for the correlation analysis, the NDVI-derived MUs had good fits with yield and 
TSS, but poorly explained the variance observed in TA and pH. Yield for both years was 
better explained by UAV-generated MUs, with an adjusted R2 of 0.76 and 0.59 for 2019 
and 2020, respectively. The TSS data were better explained by PCA-derived MUs in 2019 
(adj. R2 = 0.49), followed by SpectroSense + GPS and All MUs. The TSS ANOVA results 
were poor in 2020 with only the UAV-derived NDVI MUs showing any relationship with 
TSS (adj. R2 = 0.30).

The mean production responses for the MUs are provided in Supplementary Data 
(Table S2). The low and medium NDVI MUs were characterised by similar yields, that 
were lower than the high NDVI MU. The medium and high NDVI MUs were characterised 
by similar but lower °Brix values than the low NDVI MU. There was little differentiation 
in pH and TA between the MUs, which is consistent with the observed correlation results 
with NDVI. Therefore, the three MUs can be relatively considered as (i) Low NDVI MU 
with low yield and high TSS; (ii) Medium NDVI MU with low yield and low TSS; and (iii) 
High NDVI MU with high yield and low TSS.

Discussion

Comparison among the NDVI data from all four sensors, i.e. the vine-only NDVI values 
extracted from two proximal sensors (CropCircle and SpectroSense + GPS) and two remote 
sensors (UAV and Sentinel-2 images) showed increasing correlations as the season pro-
gressed and the canopy size expanded. This conforms with previous studies (Hall et  al., 
2011; Taylor et al., 2013), and reflects the fact that as the relative surface area of the vine 
canopy increases (and the background signal decreases), there is less difference between 
sensors that only measure the canopy (proximal sensors) and those that capture the entirety 
of the vineyard (vines, weeds and soil) and have ‘mixed pixel’ effects. Although there were 
differences in the absolute recorded NDVI values between sensor systems, mainly due to 
whether the system sensed the canopy-only or the canopy and the background, a stability in 
the inter-annual NDVI response was observed across all sensors.

The strongest correlations were observed between NDVI maps derived from similar 
platforms (either proximal sensor pairs or remote sensing pairs), with correlation coeffi-
cients being the highest for the proximal sensor NDVI (full details provide in Table S1). 
The weaker correlation coefficients between the UAV and Sentinel layers, both assessed 

Table 8   Adjusted R2 from ANOVA for each grape production attribute: grape quantity (yield) and quality 
(total soluble solids in °Brix, pH and total titratable acidity)

Approach Yield Total soluble solids pH Total titratable 
acidity

2019 2020 2019 2020 2019 2020 2019 2020

CC 0.54 0.21 0.42 0.14  − 0.01  − 0.01 0.03 0.03
SS 0.67 0.40 0.46 0.14  − 0.01 0.01 0.01  < 0.01
UAV 0.76 0.59 0.40 0.30 0.01 0.01 0.03 0.02
S2 0.69 0.06 0.25 0.04  − 0.01  < 0.01  < 0.01 0.01
ALL 0.74 0.41 0.46 0.14  − 0.01  < 0.01  < 0.01  − 0.01
PCA 0.71 0.36 0.49 0.18  − 0.01  < 0.01 0.01 0.01
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using a ‘mixed pixel’ approach, suggest lower reliability between these platforms. How-
ever, previous analysis (Kasimati et  al., 2021b) resulted in some data from the proxi-
mally sensed surveys being removed before analysis due to artefacts in the survey data 
(one SpectroSense + GPS and one CropCircle dataset for 2019 and two datasets col-
lected with CropCircle for 2020). Erroneous data were possibly related to either equip-
ment malfunction resulting in poor sensing during the survey, illustrating a major disad-
vantage of proximal sensing because the terrestrial sensors needed to be reattached each 
time and were more likely to be affected by operator error. Proximal sensing, especially 
side-mounted (Fig. 2) sensor set-ups are also more likely to be adversely affected by any 
canopy interventions during the season, such as hedging or defoliation to manage the 
ripening of the grapes. Canopy interventions will alter the characteristics of the canopy 
and consequently the measurements taken.

The difference between the strong correlations of the Sentinel NDVI layers with 
the other sensors in 2019 and the weaker correlations of these satellite layers with all 
other sensors in 2020, was a concerning outcome from the analysis. It also indicated a 
divergence between the satellite platform and the high-proximity terrestrial and UAV 
observations, even when these higher- spatial resolution data were upscaled and the 
correlations were performed at a similar scale to the satellite imagery. The reason for 
the lower performance of the satellite imagery in 2020 is unknown and there was no 
clear indication of system failure. The temporal series of satellite imagery in 2020 were 
strongly correlated indicating that it was not a ‘one-off’ effect. Khaliq et al. (2019) have 
previously discussed that satellite imagery resolution cannot be directly used to reli-
ably describe vineyard variability and several research papers (e.g., Darra et al., 2021) 
have pointed out that the use of medium spatial resolution satellites for vineyard fea-
ture assessment is less accurate due to large heterogeneity and narrow line spacing. The 
results here demonstrate that discrepancies may arise with satellite data acquisition and 
this might be the reason that few viticulture studies have been reported using such satel-
lite systems (Anastasiou et al., 2019; Erena et al., 2016).

Excluding the 2020 satellite NDVI data, the exploratory correlation analysis for 
2019 and 2020 between different NDVI layers and grape yield and TSS showed that the 
canopy reflectance data had absolute correlations of |r|> 0.60 with both attributes. Both 
attributes tended to have an increasing strength of correlation with NDVI (canopy vig-
our) as the season progressed, but a positive correlation with yield and a negative cor-
relation with TSS. An inverse relationship between yield and TSS is not uncommon in 
viticulture, and reflects situations where crop load (the ratio of yield:leaf area) is unbal-
anced (Taylor et al., 2019) and the partitioning of photosynthate within the vines varies. 
Vines with higher yield are often ‘unbalanced’ and have less photosynthate available to 
convert into carbohydrates (sugars) resulting in a lower TSS.

In line with the weaker inter-season NDVI correlations, the Sentinel-2 NDVI showed 
much weaker correlations with both yield and TSS in 2020, and a divergence from the 
2019 results, which were similar to the other NDVI sensors. The NDVI-yield correla-
tions were strongest around veraison (early August data; Table 3), while the late season 
NDVI data had the best correlation with TSS (Table  4). Similar results that showed 
that NDVI at late developmental stages had good correlations with crop yield and TSS 
attributes were also found by other researchers in Greek vineyard systems (Anastasiou 
et al., 2018; Fountas et al., 2014; Tagarakis et al., 2013). Mid to late-season NDVI-yield 
relationships have also been found by Garcia-Estevez et  al. (2017) in Spain (veraison 
NDVI) and Sun et al. (2017) (pre-harvest NDVI) in California.
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Among all the sensors, the strongest correlation with yield was observed for UAV-
derived NDVI data (2019 and 2020) and with TSS for NDVI data collected with Sentinel-2 
(2019) and SpectroSense + GPS, (2020) in the middle/late season with full canopy growth, 
for both years. While TSS was correlated with the NDVI data (and yield), this was not the 
case for the other two important grape quality attributes, TA and pH, which had low corre-
lation values (− 0.30 < r < 0.30) with the NDVI data at all crop stages. The development of 
acidity in these vines appears to be independent of the vigour:yield ratio in these systems.

The performance of each sensor varied and was influenced by the parameters of data 
collection, such as proximity to the vines and the specific technical characteristics of the 
equipment used. The UAV and SpectroSense + GPS appeared to perform better in the 
exploratory analyses and both systems were characterised by a similar mode of operation, 
i.e. the scan orientation was from above the vine canopy and at high resolution. Although 
the UAV system is classified as a remote sensor, it provides very high spatial resolution. 
The value of this over-head high resolution imaging is in agreement with previous studies 
in wine grape vineyards that have within-season canopy management (Dobrowski et  al., 
2008; Hall et al., 2011); however, it differs from Taylor et al. (2013), who observed satura-
tion effects with nadir, above canopy proximal sensing systems in high-wire, low-interven-
tion, sprawl juice grape vineyard systems in NY.

Although interesting and informative from a statistical and research perspective, correla-
tions between NDVI and crop production attributes have limited value from an operational 
and vineyard management perspective. In contrast, deriving management units (MUs) is 
useful as it presents an alternative way to manage the vineyard. After converting the NDVI 
layers into MUs, i.e. expressed on an effective production scale, some clear patterns were 
observed. First, the PCA approach was very similar to the ‘All’ reference approach. The 
use of PCA, or some other data reduction method, could lend itself to automating this form 
of the process. The MUs created for low and high NDVI classes had greater consistency 
and showed very high similarity for the 2 years, with both the remote and proximal sensors 
showing very similar patterns of variation. Therefore, regardless of the sensing platform 
used, areas of high and low vigour could be identified for management. In contrast, the 
MUs of the intermediate NDVI classes were more variable between sensors. This raises an 
interesting question from a production perspective: Does the farmer want to better manage 
only the high and low vigour areas or all vigour areas? If the former, then the high-resolu-
tion maps in that vineyard can be considered similar, if not equivalent. If management of 
the entire vineyard is required, then they are less equal.

The DoA of the Sentinel-2 NDVI data with the reference and the other sensors is of 
concern, as it failed to detect the low NDVI area at the western edge in 2019 and produced 
a much more random pattern in the low and mid NDVI class in 2020 (Fig. 6). In contrast, 
it detected the reference high vigour area very well. These results were not due to poor 
quality imagery at any particular date, as all temporal Sentinel-2 NDVI values were highly 
correlated. Rather, it suggested that the satellite NDVI may not be ‘the same’ in the pro-
duction context. Higher spatial resolution satellite imagery, such as imagery provided by 
PlanetScope (Planet Labs PBC, San Francisco, USA), could be an alternative.

The individual ANOVA results (Table  8) generally supported the notion that MUs 
derived from UAV data explained the greatest yield variation for both 2019 and 2020, fol-
lowed by ‘All’ and PCA-derived MUs. This means that it made sense to use the UAV data 
in zoning for yield management. This was the case when considering both direct correla-
tions and with zoning. For the variation in TSS, PCA, followed by SpectroSense + GPS 
and ‘All’, explained the largest part of variability for 2019 and UAV for 2020. Thus, in 
2019, zoning using SpectroSense + GPS outperformed UAV, and in 2020, the inverse was 
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observed. However, the direct Pearson’s correlation showed that SpectroSense + GPS 
outperformed UAV. Both sensors explained ~ 10% more variability in TSS than the other 
two systems (CropCircle and Sentinel-2), indicating that high-resolution NDVI data from 
above the canopy (nadir positioning) in these vineyards is preferable to side-curtain sens-
ing. From the aforementioned results, it is unclear if zoning with Sentinel-2 data, particu-
larly with the 2020 imagery, is sensible in these systems. Finally, as for the correlation 
analysis, the NDVI-derived MUs did not adequately explain the other grape quality attrib-
utes, TA and pH for any sensing system.

The results of the ANOVA indicated that it was not always appropriate to derive com-
mon MUs for both quality and quantity attributes. The amount of variability in yield and 
total soluble solids that was explained by the MUs created from different approaches did 
differ, especially between years. Yield for both years was better explained by UAV-gener-
ated MUs, explaining 76% for 2019 and 59% for 2020 (Table 8), but the best zoning was 
achieved from the SpectroSense + GPS data in 2019 (Table 7). The approach used here of 
assuming a reference layer from using all the data (‘All’) was affected in 2020 by the large 
divergence in the Sentinel-2 NDVI data from the other sensing platforms. Consequently, 
the fuzzy k-means classification generated MUs that tried to account for this divergence 
and, ultimately, generated MUs skewed towards explaining the different spatial patterns in 
NDVI in the satellite imagery. An unexpected result for this was that the DoA analysis in 
2020 generated a stronger result for the Sentinel-2 system (Table 7). As noted earlier, the 
reason for the divergence in differing spatial patterns between the satellite platform and 
the other platforms in 2020 was not obvious. It was not seen in 2019. When the Sentinel-2 
data was removed and the ‘All’ reference MUs regenerated with the UAV, CropCircle and 
SpectroSense + GPS data only, the DoA results did not improve (data not shown), although 
the SpectroSense + GPS was slightly better than the UAV (the inverse of the Table 7 2020 
results). The variance of the TSS data explained by the MUs was much lower than the level 
of yield variance explained. Again, the 2020 NDVI-MUs explained less of the TSS vari-
ance than the 2019 NDVI-MUs (Table 8), with only the UAV data providing reasonable 
ANOVA fits in both years (adj R2 > 0.3), but the UAV was not the best fit in 2019. The 
seasonal climatic data (not shown) or experiences of the vineyard manager did not show 
any clear reasoning for the poorer fits (correlations and MU analyses) in 2020 compared to 
2019. Further machine-learning approaches are targeted for these data which may help to 
understand the seasonal difference.

Conclusions

The overall aim of this research was to perform synchronous multi-platform multi-tem-
poral NDVI analysis with vineyard production parameters (grape yield and quality) at the 
operational level. The high-resolution overhead systems (SpectroSense + GPS and UAV) 
appeared to provide the best results for managing yield and berry soluble total solids qual-
ity in the middle and end of the season when canopy growth is full. In particular, UAV-
based data seems to be more relevant for this system, while at the same time this platform 
provides the benefit of fast data collection. The operational productive context was exam-
ined by deriving management units from the NDVI time series, with UAV-derived MUs 
on average explaining the largest variation in yield for both 2019 and 2020. Approaches 
that mixed multi-sensor information (’All’ and PCA-derived MUs) also performed well. 
Satellite data, on the other hand, was found to lack consistency, with significant differences 
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between the two years, suggesting that the satellite NDVI may not be ’the same’ in the pro-
duction context. This phenomenon of differences between satellite and UAV data is unclear 
and cannot be directly explained within the scope of this study. Further research needs to 
be conducted to repeat the analysis with satellite imagery for additional seasons. The vari-
ous MU maps showed that NDVI data collected from different sensors did provide differ-
ent information for decision making, which would lead to different spatial management in 
the vineyard. Growers in these types of systems should prioritise high-resolution overhead 
mid-late season NDVI mapping for differential vineyard management.
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