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Abstract. Organic aerosol (OA) represents approximately

half of the submicron aerosol in Mexico City and the Cen-

tral Mexican Plateau. This study uses the high time reso-

lution measurements performed onboard the NCAR/NSF C-

130 aircraft during the MILAGRO/MIRAGE-Mex field cam-

paign in March 2006 to investigate the sources and chemi-

cal processing of the OA in this region. An examination of

the OA/1CO ratio evolution as a function of photochemi-

cal age shows distinct behavior in the presence or absence

of substantial open biomass burning (BB) influence, with

the latter being consistent with other studies in polluted ar-

eas. In addition, we present results from Positive Matrix

Factorization (PMF) analysis of 12-s High-Resolution Time-

of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) OA

spectra. Four components were resolved. Three of the com-

ponents contain substantial organic oxygen and are termed

semivolatile oxygenated OA (SV-OOA), low-volatility OOA

(LV-OOA), and biomass burning OA (BBOA). A reduced

“hydrocarbon-like OA” (HOA) component is also resolved.

LV-OOA is highly oxygenated (atomic O/C∼1) and is aged

organic aerosol linked to regional airmasses, with likely

contributions from pollution, biomass burning, and other

sources. SV-OOA is strongly correlated with ammonium ni-
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trate, Ox, and the Mexico City Basin. We interpret SV-OOA

as secondary OA which is nearly all (>90%) anthropogenic

in origin. In the absence of biomass burning it represents

the largest fraction of OA over the Mexico City basin, con-

sistent with other studies in this region. BBOA is identified

as arising from biomass burning sources due to a strong cor-

relation with HCN, and the elevated contribution of the ion

C2H4O+

2 (m/z 60, a marker for levoglucosan and other pri-

mary BB species). WRF-FLEXPART calculated fire impact

factors (FIF) show good correlation with BBOA mass con-

centrations within the basin, but show location offsets in the

far field due to model transport errors. This component is

small or absent when forest fires are suppressed by precipi-

tation. Since PMF factors represent organic species grouped

by chemical similarity, additional postprocessing is needed

to more directly apportion OA amounts to sources, which is

done here based on correlations to different tracers. The post-

processed AMS results are similar to those from an indepen-

dent source apportionment based on multiple linear regres-

sion with gas-phase tracers. During a flight with very high

forest fire intensity near the basin OA arising from open BB

represents ∼66% of the OA mass in the basin and contributes

similarly to OA mass in the outflow. Aging and SOA forma-

tion of BB emissions is estimated to add OA mass equivalent

to about ∼32–42% of the primary BBOA over several hours

to a day.
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1 Introduction

The MILAGRO campaign took place during March 2006

and was designed as a comprehensive study to characterize

the emissions and chemical transformations from a tropical

megacity (Molina et al., 2010). Results from this campaign

have shown that approximately half of the submicron aerosol

mass is composed of organic species (referred to as “organic

aerosols”, OA) (DeCarlo et al., 2008; Kleinman et al., 2008;

Aiken et al., 2009b) consistent with results from previous

winter/spring campaigns in Mexico City (Chow et al., 2002;

Vega et al., 2004; Salcedo et al., 2006; Molina et al., 2007).

Since OA is a major component of submicron aerosols, it

is important to determine their sources in Mexico City. OA

source apportionment (SA-OA) is an active area of research

where many uncertainties remain. A commonly applied SA-

OA technique is chemical mass balance of organic molec-

ular markers (CMB-OMM) (Schauer et al., 1996). In the

last 5 years SA-OA based on factor analysis of Aerodyne

AMS mass spectra has become established as an alternative

source apportionment technique. The AMS-based technique

is less chemically specific, but has the advantages of (a) very

high time resolution, and (b) apportionment based on chem-

ical patterns of the whole OA mass, rather than only based

on tracers that contribute minimally to OA mass. Zhang

et al. (2005a) developed a Custom Principle Components

Analysis (CPCA) method to separate organic aerosol into

hydrocarbon-like organic aerosol (HOA) and oxygenated or-

ganic aerosol (OOA), which is typically interpreted a sur-

rogate for secondary OA (SOA). Zhang et al. (2007) re-

ported results at multiple worldwide locations using a Mul-

tiple Component Analysis (MCA) method and showed that

OOA was the largest component, even in urban areas, and

became overwhelmingly dominant at rural and remote lo-

cations. Positive Matrix Factorization (PMF) (Paatero and

Tapper, 1994; Paatero, 1997) has also been applied to AMS

datasets, typically identifying two types of OOA and some-

times additional primary OA sources (Lanz et al., 2007; Lanz

et al., 2008; Nemitz et al., 2008; Allan et al., 2010; Jimenez

et al., 2009; Lanz et al., 2009; Ng et al., 2010; Ulbrich et

al., 2009). Results from PMF-AMS have been compared

with four other techniques to determine the POA/SOA split

(Zhang et al., 2005b; Takegawa et al., 2006; Docherty et

al., 2008) and with the CMB-OMM method at two locations

(Docherty et al., 2008; Aiken et al., 2009b), with overall

good agreement.

Several methods of source apportionment of OA (or of

fine PM in some cases) during MILAGRO have been ap-

plied, with generally consistent results but also with some

differences. A study by Stone et al. (2008) concluded that

49% of the organic carbon (OC) in the city was due to mo-

tor vehicle emissions while 32% of the OC on the periphery

was attributed to this source. Aiken et al. (2009b) estimated

that urban combustion sources, including motor vehicles but

also other sources such as meat cooking, contributed 29%

to the total OA concentrations at the T0 supersite. Aiken et

al. (2009b) also identified a local, presumably industrial, OA

source that contributed 9% of the OA at T0.

Rapid and intense secondary OA (SOA) formation (from

chemical reactions of gas-phase species) from urban emis-

sions in Mexico City has been reported by several stud-

ies. The amount of SOA formed is greatly underpredicted

by SOA models which only consider SOA formation from

volatile organic compounds (VOCs) (sometimes referred to

as “traditional” SOA models, meaning those in use before

2006) (Volkamer et al., 2006; Kleinman et al., 2007; Dzepina

et al., 2009; Fast et al., 2009; Hodzic et al., 2009; Tsimpidi et

al., 2010; Wood et al., 2010). The amount of SOA observed

after a few hours of photochemistry is several-fold the initial

POA concentration. This is consistent with results at many

other locations (e.g. de Gouw and Jimenez, 2009, and refer-

ences therein; Hallquist et al., 2009). Models which include

SOA formation from semivolatile and intermediate volatility

species (S/IVOCs) predict much larger amounts of SOA that

match or even exceed the observations, although the inten-

sive properties of the SOA (volatility, O/C) are not well pre-

dicted and the level of mechanistic understanding remains

low (Dzepina et al., 2009; Tsimpidi et al., 2010; Hodzic et

al., 2010).

The addition of SOA to primary urban emissions in

pollution-dominated airmasses can be estimated by ratios of

OA to (approximately) conserved tracers to remove the effect

of dilution of polluted airmasses with cleaner background

air away from sources. Carbon monoxide (CO) has a life-

time against oxidation by OH of approximately one month

in Mexico based on the measured 24 h average OH concen-

trations of 1.6×106 molec cm−3 and thus can be used as a

reasonably conserved tracer of emissions to account for dilu-

tion on timescales of hours to days. The variation of CO in

this region is driven by the addition of CO from combustion

sources (traffic and biomass burning) on top of a regional

background. With the “CO-tracer method”, POA is esti-

mated from the measured CO (minus the CO background)

and the POA/CO emission ratio while the difference between

the total measured OA and the estimated POA is attributed to

SOA (Takegawa et al., 2006; Docherty et al., 2008). Several

aircraft-based studies have similarly used CO as a conserva-

tive tracer (e.g. Kleinman et al., 2007; Peltier et al., 2007; de

Gouw et al., 2008; Dunlea et al., 2009) to study OA forma-

tion and evolution. Additional studies have observed a strong

correlation between primary or total OA and CO (Zhang et

al., 2005b; Kleinman et al., 2007; Peltier et al., 2007). A brief

description of the OA vs CO relationship for this dataset was

given in DeCarlo et al. (2008) but a more in-depth exami-

nation of this ratio is of interest to place our observations in

the context of other studies in Mexico City and elsewhere,

and to evaluate the effect of very different biomass burning

influences.

“Open” biomass burning from forest fires and some agri-

cultural burning near Mexico City was an important source of
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OA during MILAGRO. Yokelson et al. (2007) compared es-

timated fire PM amounts from aircraft-based emission mea-

surements to the emissions inventory from the Mexico City

metropolitan area and estimated that ∼79–92% of the pri-

mary particle mass generated in the Mexico City area is from

forest fires near Mexico City, and ∼50%±30% of the aged

PM2.5 (not just of the OA) is from fires. However these

authors estimated the urban primary contribution from the

MCMA emissions inventory, which has been shown to sub-

stantially underestimate primary fine particles (Aiken et al.,

2009b; Fast et al., 2009; Zavala et al., 2009), and also as-

sumed a doubling of the POA/1CO ratio for BB plumes due

to SOA formation, which is likely too large as discussed

below, and thus the actual percentage BB contribution to

PM2.5 is likely lower. Querol et al. (2008) estimate that BB

contributed about 10% of the PM2.5 during MILAGRO at

the T0 urban supersite, which would correspond to about

18% of the OA. Source apportionment of organic carbon

by Stone et al. (2008) found that 16% and 32% of the OC

could be attributed to biomass burning at T0 and the rural

supersite (T1) respectively. Similar fractional contributions

are reported from analysis of AMS data at T0 by Aiken et

al. (2009a). Aiken et al. (2009a) show that while absolute

levels of biomass burning organic aerosol (BBOA) are lower

in the afternoon, much higher column amounts of BBOA are

present when scaling by boundary layer heights. Two 14C

datasets from Marley et al. (2009) and Aiken et al. (2009a)

report about 15% higher modern carbon during the high-fire

periods vs. the low-fire period, consistent with the quantifi-

cation of biomass burning OA at T0 by Querol et al. (2008),

Stone et al. (2008), and Aiken et al. (2009a). The substan-

tial levels of modern carbon during periods of very low for-

est fires indicate that sources other than open biomass burn-

ing (e.g. cooking, regional biogenic SOA, biofuel use, trash

burning etc.) contribute to the modern carbon fraction of OA

in Mexico City. Another source apportionment study, using

parts of the same aircraft dataset as this study, used constant

ratios of OA to gas phase tracers of fire emissions and ur-

ban emissions and reported that approximately half of the

organic aerosol during several afternoon flights could be at-

tributed to fire sources above the city, decreasing to ∼25%

at the surface, but with an even larger contribution on the re-

gional scale (Crounse et al., 2009). Although forest fires near

Mexico City were a large source of OA during MILAGRO,

they were estimated to contribute 2–3% of the fine PM in

Mexico City as an annual average, which is lower due to the

seasonality of the fires (Aiken et al., 2009a). The contribu-

tion of more distant sources like the Yucatan (Yokelson et al.,

2009) was small during MILAGRO (Aiken et al., 2009a) but

is known to produce large impacts on Mexico City at other

times (e.g. Salcedo et al., 2006).

This paper analyzes HR-ToF-AMS data taken on an air-

craft platform in order to quantify the sources and processing

of OA aloft during MILAGRO. The evolution of OA/1CO

during contrasting periods of high and low BB is discussed.

PMF is applied to aircraft high-resolution AMS data for the

first time. The use of high resolution (HR) data as opposed

to unit mass resolution (UMR) data reduces ambiguity about

factors, and improves the separation of factors by inclusion

of individual ion signals instead of total signal at one m/z,

which is especially important for the separation of BBOA

from other components (Aiken et al., 2009b). PMF was ap-

plied to a combined dataset of two selected flights during the

MILAGRO campaign with very different levels of open BB

influence. The BBOA factor correlates well with Fire Impact

Factors (FIF) calculated from FLEXPART dispersion model-

ing, consistent with results at T0 (Aiken et al., 2009a). Post-

processing of PMF results allows for better apportionment

the OA mass to specific sources (BB vs. urban plus non-BB

regional sources), and a comparison to the results of Crounse

et al. (2009) is presented.

2 Methods

2.1 Measurements and regressions

Measurements of gas-phase CO, NO, NO2, O3, and HCN

were performed with custom instruments on the NCAR/NSF

C-130 research aircraft. Aerosol measurements were made

with the High Resolution Aerosol Mass Spectrometer (HR-

ToF-AMS, DeCarlo et al., 2006). A more detailed descrip-

tion of the instruments used in this study, the quantifica-

tion and data analysis techniques, and instrumental intercom-

parisons can be found in DeCarlo et al. (2008) and Dun-

lea et al. (2009). The atomic O/C ratio of OA is calculated

from the HR spectra with the method of Aiken et al. (2007,

2008). This paper will focus on the data from two Re-

search Flights (RF) during the MILAGRO campaign, RF3

on 10 March 2006 and RF12 on 29 March 2006, which

are selected based on excellent data coverage and quality

and very different amounts of open biomass burning in-

fluence. A Google Earth image with the flight tracks of

these 2 flights can be found in Supplementary Information

Fig. SI-1, http://www.atmos-chem-phys.net/10/5257/2010/

acp-10-5257-2010-supplement.pdf. All linear regressions

were performed using the Orthogonal Distance Regression

routine, as implemented in the ODRPACK95 in Igor Pro 6

(Wavemetrics, Lake Oswego, OR) software package.

2.2 Methods for OA/1CO analyses

2.2.1 Conceptual framework

The conceptual framework for the application of the

OA/1CO method and the determination of the CO back-

ground is shown in Fig. 1. In the source region, OA/1CO is

related to the emission ratios of the main sources of OA and

CO, their relative strengths, and SOA formation, while on the

regional scale, aloft, and in the absence of wet deposition,

the dominant processes affecting OA/1CO are mixing of the
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Source 

Region
CO = COb + COsource (ΔCO=COsource)

OA = POAsource + ΔPOA + SOA

Background Air

CO = COb (ΔCO=0)

OA ~ 0 μg m-3

Dominant Processes Affecting OA/ΔCO
Source Region:

1.) Primary Emissions 

2.) SOA formation

3.) Evaporation upon dilution

4.) Mixing

Outflow:

1.) Mixing

2.) Additional OA aging

3.) Wet and dry deposition

Mixing at Edges

Outflow

Fig. 1. A conceptual schematic for the application of the OA/1CO method, and the interpretation of the CO background for the present

dataset.

source region plume with clean regional air and any addi-

tional evolution of OA (additional SOA formation, oxidation,

volatilization, etc.). When the source region is a large ur-

ban area, the “CO-tracer method” described above uses this

conceptual framework to estimate SOA formation by char-

acterizing the overall primary OA/1CO emission ratio and

assigning increases in the OA/1CO ratio to SOA formation

(Takegawa et al., 2006; Docherty et al., 2008). However, in

the presence of strong BB sources which can have very high

POA/1CO ratios, the interpretation of the results from this

method is more complex. DeCarlo et al. (2008) showed that

for this region the OA/1CO ratio ceases to increase on the

regional scale, yet the aerosol continues to become more ox-

idized. This behavior indicates that OA aging continues even

after no additional SOA mass is formed, consistent with the

conceptual framework proposed by Jimenez et al. (2009) and

the results of Dunlea et al. (2009) who report continuing OA

aging on timescales of nearly 1 week.

2.2.2 Estimation of CO background

In order to investigate the evolution of OA/1CO, a deter-

mination of the CO background is necessary. The relevant

CO background is that of the air into which the emissions

of interest (in this case from Central Mexico) were injected;

it has lost the OA that was associated with the background

CO due to e.g. wet deposition, and thus the background CO

can vary in time and between different regions. The large-

scale background CO in Central Mexico arises from long-

distance transport and large-scale photochemical production

(from CH4 and other organic species) in roughly equal pro-

portions (Emmons et al., 2010). In and around the Mexico

City Metropolitan Area (MCMA), 1CO (CO above back-

ground) is mainly associated with anthropogenic combustion

and biomass burning, with some contribution from the oxi-

dation of hydrocarbons, but the latter process is expected to

be diffuse and not affect correlations. Based on the concep-

tual framework in Fig. 1, the regression of OA vs. CO for

regional air aloft would have an x-intercept (when OA = 0)

of the CO background value. Table 1 of DeCarlo et al. (2008)

shows the results of this regression for all flights with AMS

data for MILAGRO.

A test for the robustness in the determination of

the CO background is to examine the transition regions

where the urban plume and clean regional air are mix-

ing, and perform the regression only on the subset of

data in the plume-to-clean-air mixing transition. Fig-

ure SI-2, http://www.atmos-chem-phys.net/10/5257/2010/

acp-10-5257-2010-supplement.pdf shows the results of this

method for RF3. The CO background value calculated from

the regression of plume-edge-only data is 55±7 ppbv, and is

very close to the value of 60 ppbv found using all data less

than 200 ppbv CO, as in DeCarlo et al. (2008). The crite-

rion of all data less than 200 ppbv provides more data points

for the regression and removes the subjective interpretation

of what constitutes a plume edge, so results from Table 1

in DeCarlo et al. (2008) will be used for the remainder of

the paper: CO background values of 60ppbv and 93 ppbv are

used for RF3 and RF12, respectively. In general, the regional

background of CO is lower in Mexico than the East Coast of

the United States due to cleaner air advecting into Central

Mexico from the Pacific Ocean (Emmons et al., 2010).

As a side point, the plume mixing edge data in

Fig. SI-2 http://www.atmos-chem-phys.net/10/5257/2010/

acp-10-5257-2010-supplement.pdf can also be used to pro-

vide a first-order evaluation of the degree of evaporation of
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the regional aged OA upon dilution. Using a CO concen-

tration of 200 ppbv and the calculated background value for

RF 3 (60 ppbv), one can calculate the CO concentration as

a function of dilution ratio for the dilution of the 200ppbv

plume with 60ppbv background air. A modeled OA con-

centration can also be determined as a function of dilution

ratio assuming a starting concentration of 10 ug/m3. The

blue line in Fig. SI-2, http://www.atmos-chem-phys.net/10/

5257/2010/acp-10-5257-2010-supplement.pdf the graph is

the modeled volatile loss of OA from dilution for a com-

bination of state-of-the art SOA models for Mexico City,

as described in Dzepina et al. (2009). Most of the data-

points lie around the straight line and above the dilution line,

which suggests that the volatility of the OA predicted by cur-

rent models is overestimated, consistent with results of direct

volatility measurements in Mexico City (Cappa and Jimenez,

2010; Huffman et al., 2009a).

2.2.3 Primary OA/1CO ratio for urban and BB plumes

Reports of the ratio POA/1CO for urban sources vary in

the range ∼2–16 µg sm−3 ppmv−1, although the higher val-

ues likely contain some SOA (de Gouw and Jimenez, 2009,

and references therein). Urban POA/1CO ratios of ∼7–

8 µg sm−3 ppmv−1 in Mexico City have been estimated from

the ground-based Mexico City data of Salcedo et al. (2006),

Aiken et al. (2009b), and Wood et al. (2010).

Reported values of emitted POA/1CO and ambient

OA/1CO vary widely for biomass burning (BB), in a

range at least spanning 50–200 µg sm−3 ppmv−1 (de Gouw

and Jimenez, 2009). Most relevant to this study are the

values from Yokelson et al. (2007) who report an aver-

age value of 148 µg sm−3 ppmv−1, with a range of 91–

242 µg sm−3 ppmv−1 for 5 pine-savanna fires around the

Mexico City basin during the MILAGRO campaign. For pri-

mary BBOA (P-BBOA), the ratios to 1CO (P-BBOA/1CO)

are more than an order of magnitude higher than for urban

POA, which make the estimation of SOA in Mexico City

using the CO-tracer method very difficult during periods in

which BB is prevalent. Fortunately, the influence of BB, as

measured by e.g. fire satellite counts and fire tracers, var-

ied widely during MILAGRO due to varying meteorological

conditions and precipitation (Fast et al., 2007; de Foy et al.,

2008; Aiken et al., 2009a). This variation provides contrasts

between different periods (such as RF3 and RF12) that can be

used to evaluate the influences of BBOA vs. pollution SOA

on OA/1CO and other variables.

Another factor to consider when examining the POA/1CO

ratios is the potential effect of evaporation upon dilution.

Both urban POA and P-BBOA have been shown to be

semivolatile, evaporating a substantial fraction of their mass

upon dilution from source levels (mg m−3) to ambient con-

centrations (few µg m−3), or upon light heating (Shrivastava

et al., 2006; Robinson et al., 2007; Cappa and Jimenez, 2010;

Grieshop et al., 2009b; Huffman et al., 2009a). This may

reduce the POA/1CO ratio compared to ratios determined

under very high source concentrations. For urban POA the

evaporation is thought to occur on a timescale of minutes

(Zhang and Wexler, 2004; Zhang et al., 2004); thus urban

POA/1CO ratios measured in the urban background or from

aircraft should not be significantly perturbed by additional

evaporation. On the other hand, the dilution of large BB

plumes with hundreds or even a few thousand µg m−3 of OA

to concentration levels more typical of ambient atmosphere

can take much longer, and since BB plumes can be injected

higher into the atmosphere, this effect needs to be considered

for aircraft datasets. The P-BBOA/1CO ratio of a biomass

burning plume is therefore likely to be a function of dis-

tance from source and dilution. Thus P-BBOA/1CO num-

bers such as reported by Yokelson et al. (2007) from very

fresh and concentrated smoke are likely upper limits, and the

ratios in the more dilute outflow can be expected to be lower.

If the fresh high-concentration P-BBOA from the forest fire

plumes during MILAGRO has volatility characteristics sim-

ilar to those reported by Shrivastava et al. (2006) and Cappa

and Jimenez (2010), we can estimate that the P-BBOA/1CO

ratio can be reduced by a factor of 2–4 due to this effect. As

discussed below, much of the evaporated mass may return to

the particle phase after gas-phase oxidation, forming SOA.

2.2.4 Evolution of SOA/1CO for urban and BB plumes

Dzepina et al. (2009) summarized OA/1CO ratio from sec-

ondary formation during the MCMA-2003 campaign, as well

as from two studies during MILAGRO (Kleinman et al.,

2008; de Gouw et al., 2008). The OA/1CO ratio from urban

emissions reaches ∼35 µg sm−3 ppmv−1 after ∼0.4 days of

photochemical age, and larger values of up to ∼80 µg sm−3

ppmv−1 may be reached after about a day of photochem-

istry for periods of low BB emissions (DeCarlo et al., 2008;

Kleinman et al., 2008). This suggests that SOA formation is

rapid, with about half of the SOA formed in short timescales

of ∼1/2 day. In general, the OA/1CO values measured for

aged polluted airmasses in Mexico are consistent with the

range of values reviewed by de Gouw and Jimenez (2009).

The quantification of SOA formation from concentrated

BB plumes is more complex due to the competing effects

of evaporation and SOA formation which occur at the same

time. As it is very difficult at present to constrain the P-

BBOA vs. secondary BBOA (S-BBOA) fractions of total

BBOA using direct measurements, a more direct approach is

to characterize the net effect of aging (including both evap-

oration and SOA formation) in total BBOA mass (de Gouw

and Jimenez, 2009). This net effect of aging in OA mass

in ambient BB plumes is poorly constrained in the literature

(Reid et al., 2005), with some studies finding increases of

aerosol mass relative to inert tracers on very short time scales

(Babbitt et al., 1997; Yokelson et al., 2009), and others a de-

crease or constant levels (Liousse et al., 1995; Andreae et al.,

1998; Capes et al., 2008). Yokelson et al. (2009) reported
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a doubling of the OA mass (i.e. net effect of aging in OA

mass ∼P-BBOA) for a plume from agricultural burning in

the Yucatan. In a pseudo-Lagrangian study of savanna fires in

Africa, Capes et al. (2008) saw little change in the OA/1CO

ratio of fire emissions several days downwind (i.e. net effect

∼0); however. the aerosol was increasingly oxygenated in

transport, implying SOA formation had occurred but without

a net increase in OA mass. Hecobian et al. (2010) also report

a lack of net SOA formation in plumes from boreal forest

fires during the ARCTAS campaign. Yokelson et al. (2009)

report that biomass burning can be a strong source of HONO,

which photolyzes very quickly to OH + NO, leading to very

rapid initial photochemistry, and complicating the definition

of the initial P-BBOA state. The reasons for the reported

variability across different studies are unclear, but may be

due to differences in the type of biomass and its burning con-

ditions (flaming vs. smoldering). E.g. very large variability

in the volatility of P-BBOA from open burning in the lab-

oratory has been recently reported (Huffman et al., 2009b),

which may strongly influence both P-BBOA evaporation and

the amount of SOA formed from semivolatile aging (Robin-

son et al., 2007).

2.3 Methods for PMF analysis

2.3.1 PMF model description

PMF is a bilinear unmixing model which identifies factors

which serve to approximately reconstruct the measured or-

ganic mass spectra for each point in time; each factor is

comprised of a (constant) mass spectrum and a time series

of mass concentration and all values in the factors are con-

strained to be positive. The model is solved by minimizing

the sum of the weighed squared residuals of the fit (known as

Q). The PMF model using as inputs the high-resolution OA

mass spectral matrix and associated error matrix described

in the following section was solved with the PMF2.exe algo-

rithm v.4.2 (Paatero and Tapper, 1994; Paatero, 2007). Re-

sults were investigated using the Igor Pro-based PMF Eval-

uation Tool (PET) developed to allow rapid and comprehen-

sive exploration of the PMF2 solution space (Ulbrich et al.,

2009). The application of PMF to AMS OA spectra has been

described in detail previously (Lanz et al., 2007; Ulbrich et

al., 2009).

2.3.2 HR data and error matrix preparation for PMF

High resolution data were processed according to the meth-

ods detailed in DeCarlo et al. (2006; 2008). The high res-

olution data matrix was generated by the difference of the

“open” (particle beam + background) and “closed” (back-

ground only) high resolution ion areas (Jimenez et al., 2003;

DeCarlo et al., 2006). Negative values resulting from the dif-

ference of the open and closed mass spectra were set to zero

in the data matrix. In addition, only ions originating from

organic species with m/z ≤100 were included in the data

matrix. The corresponding error matrix used in the PMF

algorithm was estimated as the sum in quadrature of Pois-

son counting statistics and electronic noise for each ion in

the data matrix, according to the procedure detailed in Al-

lan et al. (2003) and Ulbrich et al. (2009). This method may

underestimate the true error, especially for smaller ion sig-

nals adjacent to larger ion signals, as it does not account for

error in the high resolution fitting procedure, but it is a ro-

bust estimate of the error for the most important ions at each

nominal m/z, as discussed below. Indeed the values of the

normalized Q values (Q/Qexpected) for the PMF solutions

considered here are of the order of 1 (Fig. A1), as expected

when the errors are properly specified. Air interference for

some specific ions (e.g. CO+

2 ) was subtracted using the same

procedures specified in the unit mass resolution (UMR) frag-

mentation table (Allan et al., 2004), and the errors from the

subtraction were propagated in the error matrix. In addition,

CO+, H2O+, OH+, and O+ were added to the data and error

matrix as 1, 0.225, 0.0563, and 0.0141 times the concentra-

tion of the particulate CO+

2 ion signal, as suggested by Aiken

et al. (2008), and downweighed before PMF analysis as dis-

cussed by Ulbrich et al. (2009). “Bad” ions with low signal-

to-noise (SNR), defined as an average SNR over the whole

data set of 0.2 or less, were removed from the data and er-

ror matrices (Paatero and Hopke, 2003). “Weak” ions (ions

with SNR between 0.2 and 2) were not downweighted for this

analysis. Lastly, error values in the matrix less than 0.05 Hz

were set to 0.05 Hz to account for the minimum amount of

noise observed in the data. Both the data and error matri-

ces were converted from ion signal Hz to mass concentra-

tions under standard pressure and temperature (µg m−3 un-

der STP or µg sm−3, 1013.25 hPa or 1atm and 273 K). The

mass spectral datasets from RF3 and 12 were combined into

a single dataset, with the mass spectral matrix (mass spectra

vs time) from RF12 appended as rows to the mass spectral

matrix from RF3. PMF2 was run on the combined dataset to

force retrieved mass spectral profiles to be identical for both

flights. Additionally, each flight was run independently (not

shown), and similar results were found, with the main differ-

ence being that for RF12 only 3 factors were retrieved (no

BBOA factor was found).

2.4 Fire Impact Factor FIF from WRF-FLEXPART

modeling

The calculation of Fire Impact Factors (FIF) has been de-

scribed in detail in Aiken et al. (2009a). Briefly, satellite

data on number and location of fires from the MODIS-Terra,

MODIS-Aqua, and GOES satellite sensors were used in con-

junction with CO emissions estimated via the method of

Wiedinmyer et al. (2006). Forward particle trajectories for

CO were calculated with the WRF-FLEXPART Lagrangian

dispersion model (Stohl et al., 2005; Doran et al., 2008) using

wind fields from the Weather Research and Forecast (WRF)
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mesoscale meteorological model as described in de Foy et

al. (2009b). Identical to Aiken et al. (2009a), two alternative

diurnal emission scenarios were simulated, with emissions

either from 12:00–20:00 Local Standard Time (LST, equiv-

alent to UTC –6 h) or from 14:00–24:00 LST. Particle tracer

counts were calculated for the aircraft flight track by count-

ing the number of particles in a 10 by 10 km box centered on

the current aircraft position. In the vertical, alternative FIFs

were calculated for boxes extending 100, 500 and 1000 m

above and below the flight altitude, as well as for the total

vertical column.

2.5 A note on correlations of species in aircraft data sets

In this paper and in other studies, correlations between

species are often used to evaluate when different pollu-

tants have similar sources or arise from similar processes

in the atmosphere. For regional pollution, correlations can

be driven not just by co-located sources or processing be-

havior, but simply by measurements being made in and out

of a pollution plume or well-mixed polluted airmass. Fig-

ure SI-3, http://www.atmos-chem-phys.net/10/5257/2010/

acp-10-5257-2010-supplement.pdf shows the correlation of

aerosol SO4 and gas phase HCN in regional air during RF3.

SO4 and HCN have different dominant sources in this region,

namely volcanoes, power plants, and petrochemical facilities

for SO4 (through secondary processes) vs. biomass burning

for HCN (a primary emission). The correlation of these 2

pollutants in the regional outflow is driven by the aircraft en-

tering and exiting the advected plume at varying distances

from Mexico City. For the data in the city itself, it is clear

that the individual sources and processes of these pollutants

are not the same, but as they mix in the regional outflow, they

correlate well on the regional scale. In the remainder of this

paper, correlations will continue to be used as a metric for

choice of PMF solutions, but the underlying reasons for the

correlations must also be considered when interpreting the

results.

3 Results

3.1 Evolution of OA/1CO for RF3 and RF12

The OA/1CO ratio for RF3 and RF12 is shown in Fig. 2

as a function of the organic O/C atomic ratio (a surrogate

for photochemical age), colored by –log10(NOx/NOy) as an-

other age surrogate (DeCarlo et al., 2008). A very differ-

ent trend appears for each flight, with RF12 showing low-

est values of ∼35 µg sm−3 ppbv−1 for O/C ∼0.45 over the

urban area, entirely consistent with the values observed in

the urban area at the ground and from the G-1 aircraft in the

early afternoon (Kleinman et al., 2008; de Gouw et al., 2009;

Dzepina et al., 2009). The more aged air observed in RF12

shows increased O/C up to about 0.9 and OA/1CO centered

around 80 µg sm−3 ppbv−1 (range ∼50–120), also consistent

Fig. 2. The OA/1CO ratio vs. the O/C atomic ratio of Organic

Aerosol for RF3 (part a) and RF12 (part b). The color of the points

is given by –log10(NOx/NOy). The influence of biomass burning

is clear in the higher OA/1CO values shown for low O/C ratio in

RF3. RF12 shows increasing OA/1CO ratios with photochemical

age indicating SOA formation with aging.

with previous reports (DeCarlo et al., 2008; Kleinman et al.,

2008). As discussed in DeCarlo et al. (2008), the increasing

O/C with a reasonably stable OA/1CO implies that some or-

ganic carbon is lost from the aerosol phase as organic oxygen

is gained, consistent with recent laboratory studies of OA ag-

ing under high oxidant levels (George et al., 2008; Kroll et

al., 2009).

The evolution for RF3, shown in Fig. 2a and Fig. SI-

4, http://www.atmos-chem-phys.net/10/5257/2010/

acp-10-5257-2010-supplement.pdf, follows a very dif-

ferent pattern. Fresher BB plumes have O/C ratios in the

range 0.3–0.45 (Aiken et al., 2008; DeCarlo et al., 2008),

and high values of OA/1CO around 150 µg sm−3 ppbv−1.

As these plumes age and also mix with urban and regional

pollution, O/C reaches values of up to 0.8 while OA/1CO

remains between 60–90 µg sm−3 ppbv−1. An important

reason for the decrease of OA/1CO for aged air in RF3 is

the mixing with urban air with higher CO content. With

our limited data set and the intricate mixing of urban and

BB plumes in this study (see below, and also as described

by Crounse et al., 2009), it is not possible to evaluate

these processes for evolution upon aging of urban and BB

airmasses using the OA/1CO analysis alone. I.e. a range

of asymptotic “aged” values and aging timescales for urban

and BB airmasses can reproduce the observed patterns,

within the measurement scatter, and as the urban ratio is
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Fig. 3. A conceptual model of the evolution of the OA/1CO ratio as a function of photochemical age. For the MIRAGE campaign, data from

flights with a city and regional component are given. Primary emissions ranges from Biomass burning are taken from Yokelson et al. (2007).

for the Mexico City area. Primary emission ratios for urban emissions are taken from de Gouw and Jimenez (2009) and references therein.

Evolution of outflow from the Eastern US during NEAQS evolution was provided as a personal communication by J. de Gouw and is based

on the analysis from de Gouw et al. (2005).

increased the BB ratio is decreased and vice versa. Thus this

topic is revisited below with the results of the PMF analysis

and postprocessing. There is also likely some interaction

between BB and urban airmasses in terms of chemistry

and OA partitioning, which in principle would require a

modeling study, although this is not possible at present as

current models do not accurately capture OA aging and SOA

formation. At other locations with more spatially distinct

sources, it should be possible to better characterize the

separate evolution of urban and BB airmasses using highly

time-resolved OA/1CO data, as done for some previous

studies (e.g. Capes et al., 2008; de Gouw et al., 2008;

Yokelson et al., 2009).

Figure 3 presents an integrated schematic summarizing the

OA/1CO ratios for POA and SOA and a conceptual inter-

pretation of the OA/1CO evolution in the absence of large

aerosol loss processes (e.g. rainout) based on results from

this study and several previous studies in the Mexico City,

the Northeast US, and other locations. In the absence of

biomass burning, multiple studies report the rapid addition

of SOA mass in urban air greatly exceeding the initial ur-

ban POA emission ratios on the timescale of a day. It is in-

teresting to note that the northeastern US and Mexico share

the same trend and approximate magnitudes of SOA/1CO

increase for polluted airmasses, and are also generally con-

sistent with other polluted locations (Heald et al., 2008; de

Gouw and Jimenez, 2009). P-BBOA/1CO ratios from fires

near the MCMA start considerably higher than the OA/1CO

measured regionally in Central Mexico, reflecting the mixing

with CO-rich urban pollution, and do not appear to largely

perturb the regional OA/1CO ratios. The net effect of evap-

oration and SOA formation on total BBOA is revisited below.

3.2 PMF results

The timeseries and the mass spectra of the four-factor PMF

solution chosen for the combined flights (RF3 and RF12)

are given in Figs. 4 and 5 respectively. This solution was

chosen after extensive analysis of how the number of fac-

tors, FPEAK rotational parameter, and initial random starts

(“seeds”), changed the results, as discussed in Appendix

A. Analysis of the variability in the seed solutions was
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Fig. 4. Time series of the 4 factor PMF solution with tracer species for each factor. Scatter plots to the main tracers are shown to the right of

the timeseries, with red points corresponding to RF3 and green points corresponding to RF12. Regression statistics of Pearson R and slope

can be found in Fig. A2.

performed by examining Q/Qexpected, both the Pearson R

and the slope of regressions of the factors to known trac-

ers, and the total R2 of the time series of each solution with

tracers (Fig. A1), for both RF3 and RF12 (Fig. A2). The

combination of RF3 and RF12 datasets resulted in the re-

trieval of a minor BBOA factor (∼10% of the OA mass)

in RF12, not present when running each flight individually.

Based on known PMF behavior (Ulbrich et al., 2009) this

BBOA factor in RF12 could either be real (i.e. an OA com-

ponent that is present but too weak to be retrieved by PMF

when running RF12 alone) or an artifact of the PMF analysis

(by providing another spectrum to fit the data, some of the

mass in RF12 goes with this factor even if very little BBOA

was present). Figure 4 shows the time series of the PMF

components along with key tracer species. The four factors

retrieved are HOA, BBOA, low-volatility OOA (LV-OOA),

and semivolatile OOA (SV-OOA). LV-OOA corresponds to

OOA-1 and SV-OOA corresponds to OOA-2 from previously

published PMF-AMS datasets (Lanz et al., 2007; Aiken et

al., 2008; Lanz et al., 2008; Ulbrich et al., 2009). The nam-

ing based on volatility has been recently adopted on the basis

of several studies showing a relationship between higher oxy-

genation and lower volatility (e.g. Lanz et al., 2007; Huffman

et al., 2009a; Jimenez et al., 2009; Ulbrich et al., 2009; Cappa

and Jimenez, 2010). Figure 5 shows the mass spectral pro-

files (MS) for the different PMF factors, and the correspond-

ing elemental composition for each factor. A discussion of

each factor follows.

3.2.1 Hydrocarbon-like organic aerosol, HOA

The MS of this component is similar to lubricating oil/long

chain hydrocarbons and partially burned fuel, consistent with

its low O/C ratio of 0.06, and is consistent with many previ-

ous studies in Mexico City (e.g. Aiken et al., 2009b; Dzepina

et al., 2009) and other urban areas (e.g. Zhang et al., 2005a;

Lanz et al., 2007; Zhang et al., 2007; Ulbrich et al., 2009).

A strong correlation with CO (R =0.79) was found, with the

slope varying between flights, 11.6 µg sm−3 ppm−1 in RF3

and 7.2 µg sm−3 ppm−1 in RF12. Part of the difference in

slope is likely due to part of the HOA factor being due to

biomass burning emissions during RF3 (R2 value of HOA

with HCN=0.7 for RF3). All investigated seed solutions

(excluding one solution with low HOA to CO correlation)

in RF3 have regression slopes systematically higher com-

pared to RF12, indicating this is a general observation for

this dataset. This is likely due to the fact that RF3 sampled
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Fig. 5. Mass spectra of the 4 factor PMF solution with the corre-

sponding elemental analysis of the mass spectra giving O/C, H/C,

N/C atomic ratios and the OM/OC ratio.

a large dynamic range of photochemical ages for BBOA, so

the true spectra of BBOA are variable, not constant. PMF fits

a fixed MS for each factor, which often represents an average

of the sampled states, and thus the BBOA factor is dominated

by a partially aged spectrum. A less oxidized BBOA spec-

trum can be approximated by the combination of the PMF

retrieved HOA + BBOA mass spectral profiles, to best fit the

measured data. In Sect. 3.5 we have produced a “postpro-

cessed” PMF solution in which we will use the difference in

slope of HOA vs. CO to add some HOA mass to the BBOA

component (for RF3 only). This may allow a potentially

more correct apportionment of OA to sources, rather than the

grouping by chemical similarity produced by the direct PMF

output.

3.2.2 Biomass burning organic aerosol, BBOA

During RF3 the BBOA factor accounts for a substantial frac-

tion of the OA and appears to be dominated by biomass burn-

ing emissions, with high correlation to both HCN and aerosol

chloride. Its importance is much reduced in RF12 when fire

activity was much lower. The high m/z 44 in the MS of this

factor and the reduced signal at larger m/z compared to P-

BBOA MS from PMF analysis at T0 and from laboratory

open burning of pine (the forests near the MCMA are mainly

pine forests) (e.g. Fig. 7 of Aiken et al., 2009b), indicate

that this factor probably contains some S-BBOA, although

the fraction of P-BBOA vs. S-BBOA is difficult to estimate.

Similarly, the MS of this factor compares better to the “aged

BBOA” than the P-BBOA for smog chamber aging to wood-

stove emissions (Grieshop et al., 2009a). Finally, many of

the fire plumes intercepted by the C-130 were sampled sev-

eral hours after emission during the mid-afternoon and had

time for photochemical aging and SOA formation. With in-

creased residence time in the atmosphere the material in the

BBOA factor will be further oxidized and begin to transition

into LV-OOA type material (Jimenez et al., 2009). In general

the BBOA factor captures the majority of the fire-associated

aerosol, and its time series is consistent with the general ob-

servations of very reduced fire activity later in the campaign.

3.2.3 Semi-volatile oxygenated organic aerosol,

SV-OOA

Based on strong correlations with submicron nitrate and CO

(Pearson R=0.93 and 0.88 respectively), this component is

thought to be dominated by relatively fresh urban SOA.

Its MS is more oxidized than the MS of fresh urban SOA

from other studies in Mexico City (e.g. Aiken et al., 2009b;

Dzepina et al., 2009; Huffman et al., 2009a). This could

be due to the timing of the flights in the afternoon, well af-

ter the onset of SOA formation in the Mexico City basin.

This factor is unlikely to have an important contribution from

BB emissions, as the Pearson R correlation with HCN is

low at 0.4. Additionally, we can rule out a major contri-

bution of biogenic SOA to SV-OOA for this dataset. Bio-

genic SOA makes a relatively small background contribu-

tion (∼1 µg m−3) to the Mexico City region during this pe-

riod (Hodzic et al., 2009) which is far lower than the SV-

OOA levels (reaching 20 µ g sm−3) observed in this dataset,

and biogenic CO would also make low and slowly varying

contributions which could not explain the intense plumes of

400–600 ppbv of CO observed here. The O/C atomic ratio

of this factor, 0.64, is between the HOA (0.06) and BBOA

(0.42), and LV-OOA (1.02) ratios. Similar to the BBOA fac-

tor, increasing residence time in the atmosphere, and contin-

ued oxidation, is expected to evolve OA mass from this factor

towards the LV-OOA factor on regional scales via processes

such as gas-phase oxidation of semivolatiles and heteroge-

neous chemistry (Jimenez et al., 2009). A case study of this

process is examined in Sect. 3.3. below.

3.2.4 Low-volatility oxygenated organic aerosol,

LV-OOA

This is the most oxygenated of all OA components, and is

similar to LV-OOA MS from many previous studies (e.g.,

Lanz et al., 2007; Aiken et al., 2008; Ulbrich et al., 2009).

Its MS appears to represent an end-product of OA oxida-

tion (Jimenez et al., 2009; Ng et al., 2010). The actual
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Fig. 6. The timeseries of stacked PMF factors for RF 3, showing

the correlation between the sum of SV-OOA and LV-OOA and Ox.

sources of this factor cannot be determined from its MS as

continued oxidation of many sources give MS similar to LV-

OOA (Jimenez et al., 2009). Correlation of this factor with

SO4 has also been reported in other studies (e.g. Lanz et

al., 2007; Ulbrich et al., 2009). This correlation (in and

out of the city) is most likely due to the accumulation of

both secondary products in regional aged air, as discussed

in relation to Fig. SI-3, http://www.atmos-chem-phys.net/

10/5257/2010/acp-10-5257-2010-supplement.pdf above, al-

though cloud-processing or acidity-influenced reactions may

also play a role. Note that much of the SO4 in the Mex-

ico City basin and outflow is neither from urban nor BB

sources, so caution in the interpretation of the correlation is

warranted.

3.2.5 Relationship of OOA to Ox

Odd oxygen (Ox =NO2 + O3) is a photochemical product

which is better conserved than O3 (since the NO + O3 reac-

tion produces NO2 which can photolyze to reform O3). Ox

has been shown to correlate with total OOA (the sum of SV

and LV-OOA for this study) at several locations during MI-

LAGRO (Herndon et al., 2008; Aiken et al., 2009b). The

aircraft data shows similar values for the ratio of OOA to

Ox for RF 3 and 12. Figure 6 shows the timeseries of the

PMF factors for RF3 and of Ox, demonstrating the strong

temporal correlation. The 1OOA/1Ox slopes are 147 and

153 for RF3 and RF12, respectively (see Fig. A2), and are

also in the middle of the range given for Pico Tres Padres, a

small mountain inside Mexico City, by Herndon et al. (2008)

of 120–180 µg sm−3 ppm−1 (their reported values have been

converted from ambient measurement to STP of 273, 1 atm,

using a factor of 1.5). Further discussion of the relationship

between OOA and Ox is discussed by Wood et al. (2010).

3.3 Evolution of OA in urban-pollution dominated air

Quantification of the OA/1CO, PMF factors, and O/C ratios

allow us to characterize the evolution of bulk OA in terms

Fig. 7. (a) shows the average absolute concentration of OA and

PMF factors for each flight segment in the vicinity of T0, T1,

and T2, respectively during RF12. (b) shows the average PMF

Factor/1CO ratio for each flight segment. (c) shows the mass frac-

tion of each PMF factor and the mass-weighted average OA O/C

atomic ratio for each flight segment.

of amount and oxidation state. This section characterizes the

chemical aging of urban OA as it is transported away from

Mexico City. RF12 overflights of the ground supersites at T0,

T1, and T2 coupled with dominant wind transport to the NNE

allow for an analysis in a pseudo-Lagrangian framework.

The approximate distance from T0 to T1 is 30 km, which

corresponds to a ∼3 h transport time for the wind speeds dur-

ing this day; from T0 to T2 the distance is 63 km or ∼6 h of

transport time. Figure SI-5, http://www.atmos-chem-phys.

net/10/5257/2010/acp-10-5257-2010-supplement.pdf shows

the flight track and the portions of the flight that were aver-

aged together for the data points at the T0, T1, and T2 legs

of the flight. Figure 7a shows the absolute concentration of

OA of each factor. For all of factors except LV-OOA, there

is a decrease in concentration due to dilution during advec-

tion. Figure 7b shows the OA/1CO ratios in order to re-

move the effect of dilution and Fig. 7c shows the mass frac-

tions of the different factors as a function of distance from

the city. HOA/1CO is stable over this timescale (7.3, 6.9,

and 7.0 µg sm−3 ppmv−1 at T0, T1, and T2 respectively), in-

dicating that HOA is conserved in this dataset on a timescale
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of ∼6 h of aging, at least within PMF’s ability to retrieve

this component. BBOA/1CO increases slightly downwind,

although the interpretation of BBOA in this flight is uncer-

tain as discussed above. SV-OOA is already the dominant

factor in the city, consistent with the rapid SOA formation

from urban emissions identified in previous studies. There

is a clear increase in OA/1CO with distance from the city,

driven by additional SOA formation. This additional SOA

formation appears to level off by T2, again consistent with

the fast timescale for this process identified in previous stud-

ies (de Gouw et al., 2008). Both SV-OOA and LV-OOA

are approximately constant from T1 to T2, but when the ra-

tios to 1CO are used SV-OOA decreases by approximately

10% from T1 to T2 (from 44 to 40 µg sm−3 ppmv−1), po-

tentially indicating the further processing of SV-OOA mass

into LV-OOA associated mass. The most likely mechanism

for this processing would be through gas-phase reactions of

semivolatile species, as heterogeneous reactions were shown

to be too slow to explain the observed gain of oxygen (De-

Carlo et al., 2008). Also shown in Fig. 7c is the average

atomic O/C for the total aerosol sampled over each leg of the

flight. A clear increase in this ratio from 0.47 to 0.64 is seen

over short oxidation timescales of ∼6 h transport time. As

shown here, the combination of PMF and OA/1CO analyses

allows further insights than either type of analysis alone.

3.4 Comparison of BBOA factor with

WRF-FLEXPART results

Given the good correlation of the modeled WRF-

FLEXPART fire impact factor (FIF) with the impact of BB

emissions at T0 (Aiken et al., 2009a) and similar agreement

for the dispersion of industrial NO2 and SO2 emissions by

Rivera et al. (2009), it is of interest to compare this type

of FIF with the calculated PMF BBOA during our flights.

Figure 8 shows the comparison between the BBOA factor

and the +/−500 m vertically-integrated FIF for both emission

scenarios. Other vertical integration scenarios showed poorer

correlation and are not shown. The FIF comparison shows

relatively good correlation in and around the city basin for

the 12:00–20:00 LST (18:00–02:00 UTC) emission scenario,

especially when considering the 10 km horizontal resolution

of the model and the uncertainties in vertical dispersion and

integration. In the far field, the BBOA and FIF have peaks

of the same relative magnitude compared to the city, but they

appear spatially offset, likely due to model transport errors.

The different emission scenarios show quite different pre-

dictions in the city basin with the earlier emission scenario

(12:00–20:00 LST) showing broader plumes which are more

consistent with the BBOA observations, while the 14:00–

24:00 emission scenario produces a spikier FIF (smaller spa-

tial extent of the plumes) which is less consistent with obser-

vations. Aiken et al. (2009a) concluded that the FIF with the

14:00–24:00 emission scenario produced better agreement

with the observations at T0, which on the surface contrasts

with our conclusion. However we note that ground-based

observations are most sensitive to the tail end of the emis-

sions, which are injected into the shallow nighttime bound-

ary layer and thus lead to high concentrations at the ground

in the early morning. The time when emission start may vary

from day to day, and ground-based observations will be less

sensitive to the emissions between 12:00–14:00 which are

dispersed into a very deep boundary layer and may not be

completely mixed down to the ground (Crounse et al., 2009).

For the aircraft comparison, fire impacts will be very sensi-

tive to the modeled start of the emissions since aircraft sam-

pling in the city occurs 1–3 h after the start of the emissions

for one scenario and 3–5 h for the other. The doubling of the

amount of time available for smoke dispersion in the model

results in large differences in the spatial character of the FIF

predictions. Overall the performance of WRF-FLEXPART

for MILAGRO appears to be quite good, considering the

uncertainties of models and measurements, and it is highly

recommended that future studies explore the use of WRF-

FLEXPART FIFs for the characterization of the dispersion

of open fire emissions.

3.5 Postprocessing of RF3 PMF solution for more direct

source apportionment

The factors directly output by PMF are groupings of organic

species of similar chemical composition (as viewed by the

fragmentation in the analysis method of the AMS), which

associate with sources and processing of OA in the atmo-

sphere. HOA and BBOA are factors more typically associ-

ated with sources of aerosol, but as discussed above, the sep-

aration of HOA and BBOA may not be perfect and may be

improved with postprocessing. SV-OOA and LV-OOA are

better associated with processes in the atmosphere, namely

SOA formation, and OA and SOA aging, respectively. Al-

though some OOA spectral features may be more associated

with specific SOA sources such as biogenic SOA (Kiendler-

Scharr et al., 2009; Ng et al., 2010) at present PMF-AMS

spectra have not been shown to be sufficiently specific for

determining SOA sources directly. For a dataset such as the

one in RF3, with several strong source types and a large dy-

namic range of photochemical aging, postprocessing of the

PMF results using external information such as source trac-

ers is required. Although the postprocessing technique has

limitations which can be further explored in other datasets,

it is clear that the explicit PMF solution does not adequately

report direct source apportionment, and that postprocessing

will improve the attribution of OA mass to specific sources.

Post processing of the PMF solution for RF3 will yield 2

sources Urbanpp and Firepp, with the subscript indicating that

they are the source attribution from the post-processed PMF

solution.
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Fig. 8. Shown here is the timeseries of the BBOA factor from PMF analysis with the FIF calculated from WRF-FLEXPART modeling. The

two diurnal fire emission scenarios for the +/− 500 m vertical integration for FIFs around the aircraft altitude are given. The inset shows a

zoom of a portion of data within the MCMA basin.

3.5.1 Attribution of HOA in RF3 to urban and BB

sources

Both RF3 and RF12 regressions show good correlation of

HOA and CO, and HOA/1CO within the observed range as

discussed in Sect. 3.2.1 above, as shown in Fig. 4 and A-

2. However, it is unlikely that the same urban source would

have such different HOA/1CO for the 2 different flights,

and presumably the difference in the slopes of the regression

is due to a portion of the HOA factor in RF3 arising from

biomass burning aerosol as discussed above. In addition to

excess HOA coming from biomass burning, some of the CO

in RF3 will also be from biomass burning. Results of the

CO apportionment between urban and fire sources (Crounse

et al., 2009) suggest that approximately 30% of the CO in

the region could be attributed to biomass burning activities

during RF3. Ascribing 30% of the 1CO to fire sources and

the rest of the 1CO to traffic sources we can then set the

HOA/1CO ratio from RF3 to be equal to the observed ratio

in RF12. Using these assumptions we estimate that for RF3,

51% of the PMF HOA factor is attributable to urban sources

for, and we assign the other 49% to BB sources. For RF 12

all HOA and CO are assigned to urban sources.

3.5.2 Relationship between BBOA and HCN

The regression between BBOA and HCN clearly shows a

BBOA factor being retrieved consistently in RF3 with all

regressions showing R values around 0.9 (see Figs. 4 and

A2), although there is significant variability in the slope

of BBOA to HCN. RF12 shows little correlation between

BBOA and HCN and the regression slope has a low value,

consistent with the uncertainty about the origin of BBOA

in RF12. During RF12, narrow plumes with elevated HCN

levels were intercepted. These plumes of HCN were not

associated with BBOA but rather with the Tula petrochem-

ical complex, see Fig. SI-6, http://www.atmos-chem-phys.

net/10/5257/2010/acp-10-5257-2010-supplement.pdf. For

RF 3 one can approximate BBOA/1CO for this factor us-

ing the measured BBOA/1HCN and MILAGRO literature

values for the 1HCN/1CO emission ratio. Yokelson et

al. (2007) report an 1HCN/1CO for forest fire emissions

of 117 (mol/mol), while Crounse et al. report 104 (mol/mol).

Using these values the BBOA PMF factor found in this anal-

ysis has BBOA/1CO of 148 or 165 µg sm−3 ppmv−1 using

the 1HCN/1CO from Yokelson and Crounse, respectively.

These calculated values are consistent with the range of re-

ported values of the primary OA/1CO emission ratios given

www.atmos-chem-phys.net/10/5257/2010/ Atmos. Chem. Phys., 10, 5257–5280, 2010
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Yokelson et al. (2007) (Fig. 3), but smaller than the ambient

BBOA/1CO ratio derived from multiple linear regression

in the Crounse et al. (2009) study of 211 µg sm−3 ppm−1.

This analysis is consistent with some of the BBOA being ap-

portioned by PMF into other factors with a more reduced

(HOA) or more oxidized (OOA) chemical profile. As dis-

cussed above, this dataset spans a very large range of pho-

tochemical ages for BBOA, from nearly fresh emissions to

BBOA advected regionally and which has undergone intense

photochemistry. The variablitlity in the true BBOA spectrum

cannot be fit by PMF due to the needed assumption of con-

stant mass spectra; the postprocessing attempts to separate

some mixing of chemistry and sources in the factors.

3.5.3 Lack of influence of BB sources on SV-OOA

As both aerosol nitrate and SV-OOA are fast secondary prod-

ucts of photo-oxidative processes, one expects a correla-

tion of these factors due to similar production mechanisms

and timescales. The SV-OOA/NO3 ratio is quite consis-

tent, and is driven mostly by the MCMA parts of the flights

where the NO3 and SV-OOA levels have the most dynamic

range (Fig. 4). Away from the city in the regional air, SV-

OOA/NO3 increases, most likely due to evaporation of ni-

trate (DeCarlo et al., 2008), as this species is more volatile

than SV-OOA (Huffman et al., 2009a), and potentially also

to the reaction of NO3 with dust (Querol et al., 2008). Due to

the consistency of this ratio across the 2 flights with very dif-

ferent biomass burning influence, and the lack of correlation

of SV-OOA with HCN, we conclude that SV-OOA is dom-

inated by fresh urban SOA and does not have a substantial

contribution from BB emissions.

3.5.4 Apportionment of LV-OOA to open BB vs. other

sources

The regression of LV-OOA to aerosol SO4 yields different

slopes for the 2 different flights (see Figs. 4 and A2). Several

potential reasons for this difference exist, such as different

source strengths of SO2 during the two periods, in particular

for volcanic sources that are major contributors to regional

SO2 and can be quite variable in time (Grutter et al., 2008;

de Foy et al., 2009a). Another possible cause for changes in

this ratio is differences in wet deposition during the periods,

which may affect LV-OOA and SO4 differently as the slowly

reacting and less soluble SO2 is left behind in the airmass

while the SOA precursors are exhausted faster, as proposed

by Brock et al. (2008). The observations, however, do show

roughly similar concentrations of SO4 during both flights, so

an alternative explanation for the higher ratio in the first flight

would be additional LV-OOA from oxidation of BBOA pre-

cursors. The magnitude of this contribution to LV-OOA can

be estimated by assuming that the LV-OOA/SO4 ratio seen

in RF12 as the base urban/regional ratio (with little biomass

burning influence) is correct for this area and this time of

year, and then we can estimate the impact of BB on LV-OOA

for RF3 using the measured slopes. Taking the ratio of the

slopes of RF12/RF3, we arrive at an estimate that only 36%

of the LV-OOA measured in RF3 is due to urban/regional

pollution with the remaining 64% arising from the enhanced

BB during that period.

Once this postprocessing has been applied, the fraction of

OA associated with BB increases from 49% to 67% above

the Mexico City basin, and from 31% to 67% for regional

air. The main effect of postprocessing is due to the addition

of part of the LV-OOA in RF3 into Firepp.

3.6 Comparison to previous tracer-based source

apportionment study

This Total Least Squares (TLS) source apportionment ap-

proach used by Crounse et al. (2009) analysis is indepen-

dent of the PMF results here (with the minor exception of

the use of the Crounse et al. (2009) CO apportionment for

our HOA postprocessing, as discussed above) and therefore

it is of interest to compare its results to those from our study.

Figure 9a-d show the flight time series comparison for the

postprocessed urban + non-BB regional OA (Urban OApp)

and total fire associated aerosol (Firepp) with the Crounse

et al. (2009) time series of the urban and fire components.

Statistics for the comparison given in figure 9 e-f indicate

good agreement between the different apportionment meth-

ods with R2 larger than 0.8 in both cases and slopes between

0.8 and 1.12 for the urban + non-BB regional OA and fire

associated OA respectively. For RF3 our results agree well

with those of Crounse et al. (2009). RF3 can roughly be

broken into 2 separate segments: prior to 20:30 the aircraft

was sampling regionally, while afterwards it was sampling

in and around the basin. The comparison is good for both

segments. This is consistent with the aging of BBOA trans-

forming some of the material into an LV-OOA type mixture

on this scale. Within the city basin, the fractional contribu-

tion of LV-OOA and HOA to Firepp is smaller. For RF12 the

agreement is better for the urban area than for regional air,

where the uncertainties are larger for both methods, as dis-

cussed above for the PMF postprocessing results, and as ex-

emplified by Fig SI-3, http://www.atmos-chem-phys.net/10/

5257/2010/acp-10-5257-2010-supplement.pdf for the use of

tracers in regional air. Firepp contributes 66% of the OA in

RF3 (∼50% in urban area) and 10% in RF12, while the ur-

ban + non-BB regional factor contribution is 34% and 90%

for RF3 and RF12 respectively.

Overall the TLS tracer method and our PMF-based method

produce a very similar picture of the contribution of OA

sources to air aloft over the urban area and the Central Mex-

ican Plateau, and the differences are probably within the

uncertainties of both methods. The underlying assumption

in the TLS method is that the ratios of tracer species to

pollutants are constant, which, especially for urban OA, is

known not to be the case. This is mostly due to strong SOA

Atmos. Chem. Phys., 10, 5257–5280, 2010 www.atmos-chem-phys.net/10/5257/2010/
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Fig. 9. (a–d) show the RF3 and RF12 comparison to the Crounse et al. (2009) study for the urban OA factor and the fire OA factor. The

postprocessed PMF components contribution to urban and fire sources are the solid colors stacked on top of each other. Parts e and f are

scatter plots comparing the postprocessed PMF urban OA vs. Tracer method urban OA and the postprocessed PMF fire OA vs the Tracer

method fire OA respectively. The points are colored by flight.

formation as photochemical age increases. Uncertainty in

the PMF solution results from fitting constant MS to truly

variable chemical signatures, which is addressed in an ap-

proximate manner by the postprocessing method described

above.

The higher fraction of OA associated with fire sources in

this aircraft dataset contrasts with lower fractions (∼15–23%

averaged over the campaign, Aiken et al., 2009a) determined

by many studies for the T0 supersite inside the urban area.

The reasons for these differences have been discussed in

detail by Aiken et al. (2009a) and include: (a) the ground

concentrations are 24-hr averages, including periods of shal-

low boundary layer at night when ground OA concentrations

from urban sources are highest, as compared to the flights

which occur in the afternoon at the peak of the fire emis-

sions; (b) the difference between surface (relevant to T0) and

column-integrated concentrations (more relevant to the air-

craft), with the latter being more heavily influenced by open

BB; (c) although mixing in the afternoon BL is thought to

be vigorous, it may not be complete inside of the basin since

many of the open BB sources are close to the urban area;

e.g. Crounse et al. (2009) reported a 50% lower relative im-

pact of BB at the ground vs. aloft which is presumably due to

this; (d) the potential impact of other BB sources with lower

emission ratios at the ground.

3.7 Net effect of aging and SOA formation on BBOA

mass

We can use the results of our study and that of Crounse et

al. (2009) to estimate the net effect of SOA formation on OA

mass from open BB emissions from ∼3 h to 1 day of pho-

tochemical processing. Figure 10 shows the regressions of

Urban OApp vs. 1COUR and Firepp vs. 1COBB, where the

OA is estimated from our study and 1CO according with the

Crounse et al. (2009) method. Figure 10a shows the scatter

plot of Urban OApp/1COUR, which shows similar slopes for

both flights. The slope increases as 1COUR decreases for

more aged air, consistent with the larger fractional effect of

SOA formation on urban OA/1CO as discussed above. Fig-

ure 10b shows for RF3, that the BBOApp/1COBB ratio ap-

pears to be approximately constant at 210 µg sm−3 ppbv−1,

which is almost identical to the ratio of 211 determined

by Crounse et al. (2009). Compared to the P-BBOA ra-

tios of Yokelson et al. (2007) of 148 µg sm−3 ppmv−1 and

www.atmos-chem-phys.net/10/5257/2010/ Atmos. Chem. Phys., 10, 5257–5280, 2010
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Fig. 10. Scatter plots of urban/regional OA vs. urban CO and fire-

associated OA vs. fire-associated CO are shown in parts a) and b)

respectively. Points are colored by flight with RF3 as red points and

RF12 as green points. CO data comes from the Crounse et al. (2009)

analysis. Lines of different slopes in part a) are intended to guide

the eye.

the ratio for fresh plumes from DeCarlo et al. (2008) of

160 µg sm−3 ppmv−1, this suggests a net effect of OA evap-

oration, aging, and SOA formation resulting in an addition

of mass of ∼32–42% of the P-BBOA mass in several hours

to a day. Yokelson et al. (2007) had estimated a doubling

of P-BBOA/1CO due to SOA formation (i.e. a net effect

of 100%), but such a large fractional SOA formation does

not appear to be observed in this study. This is also consis-

tent with the lack of observation of BB plumes at twice the

P-BBOA/1CO ratio (which would correspond to about 356–

370 µg sm−3 ppbv−1) in this study. This study reinforces the

conclusion from previous studies that the net effect of aging

and SOA formation on BBOA mass may be quite variable

Fig. 11. This figure shows the timeseries of the measured and the

PMF modeled signal for C2H4O+
2

. A scatter plot of the measured

vs. PMF modeled signal for C2H4O+
2

is shows as part of the inset.

depending on parameters such as biomass burned, flaming

vs. smoldering fraction, etc. The BBOApp/1COBB slope for

RF12 is much lower, which may be due to the influence of

local burning sources with lower emission factors.

3.8 Apportionment of C2H4O+

2 (m/z 60) and reduction

of its fractional signal during aging

AMS m/z 60 is commonly used as a marker for BB emis-

sions in AMS datasets, including both open burning and

woodstove emissions (Schneider et al., 2006; Alfarra et al.,

2007). High-resolution observations confirm that almost all

the signal at this ion for ambient and source datasets is due

to C2H4O+

2 (Aiken et al., 2009b; Mohr et al., 2009). Due to

the range of BB plume ages sampled in this study, it is of in-

terest to see if PMF can reproduce the time series of this ion.

Figure 11 shows the timeseries of the measured C2H4O+

2 and

PMF-modeled C2H4O+

2 . The inset of Fig. 11 shows the scat-

ter plot of measured vs. PMF modeled C2H4O+

2 . The time-

series and scatter plot clearly show that at higher C2H4O+

2

concentrations corresponding to strong BB plumes, the mod-

eled C2H4O+

2 is underestimated by PMF, whereas outside

strong BB plumes, modeled C2H4O+

2 more closely follows

the measured C2H4O+

2 . This result is indicative of some loss

of the species producing this ion as the plume dilutes and/or

is photochemically processed, due to either evaporation or

chemical reactions. This loss appears to be initially rapid

and of the order of 30% (Fig. 11 inset) and followed by a

stabilization. The possibility of evaporation is supported by

the results of Huffman et al. (2009a) who showed that the

species producing m/z 60 are among the more volatile ones in

source and ambient BBOA, based on tandem thermodenuder

Atmos. Chem. Phys., 10, 5257–5280, 2010 www.atmos-chem-phys.net/10/5257/2010/
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+ HR-ToF-AMS studies. The possibility of chemical reac-

tion is supported by laboratory chamber studies from Henni-

gan et al. (2010) who show a reduction of m/z 60 of about

30% after several hours of OH exposure. Since m/z 60 is

often used as a proxy for levoglucosan and related species,

the loss of m/z 60 with time indicates that care must be taken

to use m/z 60 to organics or levoglucosan/BBOA appropriate

to the BBOA observed (fresh vs. aged), as otherwise BBOA

concentrations could be under or overestimated.

4 Conclusions

The sources and processing of submicron organic aerosol

above Mexico City and the Central Mexican Plateau have

been characterized using data from 2 research flights dur-

ing the MILAGRO campaign in March 2006. The general

trends of the OA/1CO ratio for these two flights were very

consistent with observations made in many other field stud-

ies. The OA/1CO ratio for RF12 in the absence of strong

biomass burning influence shows a substantial increase in

this ratio indicating rapid SOA formation, coincident with

a corresponding increase in the O/C atomic ratio of the bulk

OA. Biomass burning has high initial OA/1CO ratios and

lower O/C atomic ratios. PMF was applied to a high-mass-

resolution organic mass spectral aircraft dataset for the first

time. Two flights, representing high and low biomass burn-

ing influence were combined, and 4 factors were used to de-

scribe the dataset: HOA, BBOA, SV-OOA, and LV-OOA.

BBOA was correlated with a fire impact factor derived from

WRF-FLEXPART modeling, with some location offsets in

the far field, most likely due to transport errors. Correla-

tions of aerosol nitrate, sulfate, and Ox with OOA confirm

the dominance of SOA in the region during periods with low

wildfire activities. A pseudo-Lagrangian case study of the

evolution of urban OA during RF12 shows the increase in the

OOA/1CO ratio and bulk O/C ratio, and the stability of the

HOA factor when accounting for dilution on the timescale

of transport (∼6 h). Due to the large range of photochemi-

cal ages spanned by our aircraft study, post-processing of the

PMF results was used to achieve better correspondence with

source contributions rather than chemical similarity. Dur-

ing the high BB flight, BBOApp accounted for ∼2/3 of the

total OA. In the flight with low BB activity, the BBOA re-

trieval was uncertain and accounted for only ∼10% of the

OA. These results compared well with a previous indepen-

dent source apportionment study based on tracer ratios. Our

study confirms that the influence of BBOA was greater aloft

and over regional scales than at the ground inside the city,

likely due to the aircraft measurements being made aloft,

where the biomass burning emissions are injected, and dur-

ing the afternoons, when the fires are strongest. The net ef-

fect of BBOA evaporation, BBOA aging, and SOA formation

is estimated as an addition of mass of about ∼32–42% of the

primary BBOA. An examination of the apportionment of the

AMS BB marker C2H4O+

2 (m/z 60) is consistent with previ-

ous results that indicate that although it is not a completely

conserved tracer, at least a fraction of it persists during aging

and it remains a good marker for BBOA.

Appendix A

Methodology for the choice of PMF solution

A1 Choice of number of factors

The choice of the 4-factor solution was made based on the

mass spectral profiles and time series of the factors for so-

lutions with varying numbers of factors. As mentioned pre-

viously, when the flights were run individually a satisfactory

4-factor solution was obtained for RF3, but for RF12 the 3-

factor solution was the most reasonable solution. A com-

bined dataset of RF3 and RF12 was therefore run to force

factor profiles to be identical. In this combined dataset, four

factors should also be resolved. Table A1 provides a subjec-

tive description of the 2–8 factor solutions and reasons for

choosing the 4-factor solution as a starting point from the

combined RF3–RF12 dataset.

A2 Variation in the 4-factor solution

PMF was run with 50 random initial values at the start of the

iterative solution procedure (“seeds”) to explore the solution

space for FPEAK=0. These solutions showed considerable

variability, and therefore the analysis presented here will first

focus on the choice of solution from the variability in the seed

solutions.

Solutions from each seed were sorted into dif-

ferent “family” types by visual inspection of the

factor mass spectra and time series (see Figs. SI-

7, http://www.atmos-chem-phys.net/10/5257/2010/

acp-10-5257-2010-supplement.pdf and SI-8 for typical

MS and profiles for each solution type). Figure A1 shows

the results of this initial sorting into family types with the

solutions within each family type sorted by the Q/Qexp

value; low Q/Qexp values indicate a better fit to the data

and can be used as one criterion to choose a suitable PMF

solution (Lanz et al., 2007; Ulbrich et al., 2009). Six of

the 50 seed solutions (Solution type 1) converged to nearly

identical solutions with the lowest value of Q/Qexp, see

Fig. A1a. Although the total range of Q/Qexp varied by only

∼1.5% (0.739–0.750) there were substantial differences

across the 50 solutions.

Second, a more subjective but quantifiable approach to

choosing the best solution was performed. For each of the

seed solutions the 4 factors were assigned as HOA, BBOA,

SV-OOA or LV-OOA based on mass spectral and time se-

ries profiles. This allows the possibility of a systematic re-

gression analysis between the tracer and factor time series.

Previous studies have shown strong correlations of SV-OOA
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Table A1. This table describes the reasons for the choice of the 4 factor PMF solution.

Number of Factors Q/Qexp Description of solution

2 0.88 Too few factors, 2 OOA-like factors, MS appear mixed

3 0.78 Too few factors, m/z 60 split between multiple factors, suggesting that there are not enough factors.

4 0.74 HOA, BBOA, SV-OOA, and LV-OOA factors found

5–8 0.71–0.64 LV-OOA splitting evident. MS are not realistic with signal only at a few ions.
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Fig. A1. (a) shows the Q/Qexp and total R2 values for the 50 seed

solutions organized by solution type. Each solution type is then

sorted by increasing Q/Qexp. (b) and (c) show the mass fractions

of the different factors for each of the 50 seed solutions, and the

variability in the apportionment of the seed solutions.

(OOA-2) with NO3, LV-OOA (OOA-1) with SO4 (Lanz et

al., 2007; Ulbrich et al., 2009), OOA (the sum of LV-OOA

and SV-OOA) with Ox, (Herndon et al., 2008), and HOA

with CO (Zhang et al., 2005b; Lanz et al., 2007; Ulbrich et

al., 2009). Biomass burning organic aerosol (BBOA) is ex-

pected to correlate with HCN (DeCarlo et al., 2008). For

each of the 50 solutions and assigned factors, orthogonal

distance regressions between the factors and specific tracers

listed above were performed separately for each of the two

flights. In the case of the LV-OOA to SO4 correlations, data

points originating from either volcanic plumes or from the

petrochemical/power plant complex in Tula were removed

from the regression. These points were easy to identify due

to proximity to the source and the spiky behavior of SO4 as-

sociated with these sources. This slope for each regression

and the R2 value were recorded, and all regressions from

one solution were summed, yielding the total R2 value for

that particular seed solution (maximum value of 10 from 5

regressions for each of the 2 flights). Figure A1a shows the

results of the total correlation for each of the solutions. Solu-

tions with high overall correlations with appropriate tracers

may also be candidates for the most reasonable PMF solu-

tion. Figure A1 shows that the solution type 1 shows the

highest total correlation. Additionally, solution type 1 in-

cludes the solutions with the lowest Q/Qexp, indicating that

both criteria point towards similar solutions as the most rea-

sonable. It should be noted, however, that no solution is

uniquely best, and the variability within a general solution

group can be considered some measure of the uncertainty

of the final solution. Due to the consistency of the Q/Qexp

results and the total R2, the chosen PMF solution for this

dataset is the lowest Q/Qexp solution from type 1, the first

6 solutions in Fig. A-1. The effect of FPEAK for the four

factor solution was explored with FPEAK values of ±1.0 in

increments of 0.1. The variability from FPEAK on these so-

lutions was smaller than the variation amongst the solution

types, as already discussed.

In addition to the total R2 value above, additional infor-

mation on the slope and regression for each factor and tracer

can be examined. Figure A2 shows a scatter plot of the 50

solutions and the slope vs. the Pearson R for each of the re-

gressions. In this figure each point is labeled as the solution

type (1–5) and colored by the value of Q/Qexp. The final

PMF solution in each panel is shown as a black circle with

the value of the slope and R for this solution given in the

panel. The chosen solution generally has correlations with

tracers with Pearson R value greater than 0.8, and only in the

case of LV-OOA are the correlations lower for both RF3 and

12. A general observation from Fig. A2 is that for regres-

sions with high correlation (R >0.8) there is often a range

spanning up to a factor of 2 in the measured slope of the re-

gression. This indicates that the slope of a regression should

also be taken into account when choosing a PMF solution

and not only the correlation coefficient of a PMF factor to a

tracer.

Atmos. Chem. Phys., 10, 5257–5280, 2010 www.atmos-chem-phys.net/10/5257/2010/
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Fig. A2. The slope and Pearson R values from regressions of PMF factors vs. tracer species for the 50 seed solutions. The left column are

the correlations for RF3 with the right column the same correlations for RF12. The Pearson R and slope of the chosen PMF solution is given

in the caption and shown on the plot as the open black circle. Units when applicable are given in the row of the plot.
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