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ABSTRACT

Optoelectronic devices, such as solar cells and photodetectors, rely on separating and 

transporting charge through semiconductors that have excess electron-hole pairs created 

by photon absorption. This talk will focus of several different semiconductor materials of 

various dimensionality, such as lead halide perovskites, wide bandgap SiC, graphene, 

semiconductor nanowires (NWs), and quantum dots (QDs). 

The results of Chapter 2 demonstrate the dependence of the perovskite/hole transport 

layer on carrier transport of perovskite films for solar cells. Efficient charge separation at 

the interfaces of the perovskite with the carrier transport layers is crucial for perovskite 

solar cells to achieve high power conversion efficiency. A systematic experimental study 

on the hole injection dynamics from MAPbI3 perovskite to three typical hole transport 

materials (HTMs) is discussed. 

Graphene layers grown epitaxially on SiC substrates are attractive for a variety of 

sensing and optoelectronic applications because the graphene acts as a transparent, 

conductive, and chemically responsive layer that is mated to a wide-bandgap 

semiconductor with large breakdown voltage. Recent advances in control of epitaxial 

growth and doping of SiC epilayers have increased the range of electronic device 

architectures that are accessible with this system. In particular, a recently introduced 

Schottky-emitter bipolar phototransistor (SEPT) based on an epitaxial graphene (EG) 

emitter grown on a p-SiC base epilayer has been found to exhibit a maximum common 

emitter current gain of 113 and a UV responsivity of 7.1 A W−1. In Chapter 3, the sub-
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bandgap performance of the device is addressed, and a visible rejection ratio is 

calculated. Additionally, scanning photocurrent microscopy (SPCM) shows the localized 

effects of the photocurrent and the presence of an 8H- stacking fault. A new device 

fabricated with a thinner base region and SiF4 mediated EG growth process will be 

studied in Chapter 4. The spatial response of the photocurrent allows for determination of 

the visible rejection ratio, as well as a model of how generated carriers interact within the 

device. 

Nanoscale optoelectronic devices of semiconductor CdS nanowires (NWs) and PbS 

quantum dots (QDs) are investigated in Chapter 5. The fabrication techniques, 

responsivities, on/off ratio, and spatial dependence of the devices will be discussed.
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CHAPTER 1 

INTRODUCTION TO CHARGE CARRIERS IN SEMICONDUCTOR MATERIALS 

1.1. Semiconductors 

Semiconductors are materials that have an electrical conductivity between that of 

conductors, such as metals, and insulators, such as glass.  They possess a fundamental 

energy band gap based on their valence and conduction band potentials. Their optical and 

electronic properties can be flexibly modified by choice of material, dimensionality, 

application of electric or magnetic fields, heat, light, and doping levels, among other 

properties. Devices based on semiconductors can be used for amplification, switching, 

energy harvesting and energy conversion. 

Semiconductors in their intrinsic state are poor conductors, as their valence bands are 

filled, preventing the flow of electrons. Typically, semiconductors are doped to create 

excess electrons (n-type) or a deficiency of electrons (p-type). The imbalance of electrons 

allows a current to travel through the material. By joining two differently doped 

semiconducting materials, one can create a semiconductor junction, resulting in transfer 

of electrons and holes across the interface until equilibrium is reached. By changing the 

electric potential or using a different semiconductor material, with a different band gap, 

equilibrium can be disturbed where ambipolar diffusion of electrons and holes can occur. 

By changing temperature or exposing the semiconductor to light, excess electrons and 

holes can be created by “generation” until electrons and holes return to equilibrium by 

“recombination.” Optoelectronic devices, such as solar cells and



2 

photodetectors, rely on separating and transporting charge through semiconductors that 

have excess electron-hole pairs created by photon absorption.  

1.2. Optoelectronic devices (solar cells and photodetectors) 

Solar cells are electronic devices that convert light energy directly into electricity 

through the photovoltaic effect. Many solar cells rely on a built-in potential of a p-n 

junction. Photovoltaics work by absorbing light in a semiconductor (based on the 

semiconductor’s band gap), separating the generated charge carriers across an electric 

field, and extracting of carriers to an external circuit to produce power. The efficiency of 

a solar cell depends on the absorptivity of the chosen semiconductor, the ability for 

charges to be separated, and the conductivity of the materials that the charges must move 

across. Typical efficiency losses are due to recombination losses and parasitic resistances 

known as series and shunt resistances. Series resistance depends on the resistance of 

charge carriers across the base of the solar cell, the contact resistance between the outer 

metal contacts and the absorbing material, and the resistance of the top and bottom metal 

contacts. Losses based on shunt resistance are normally due to manufacturing defects, as 

low shunt resistance allows an alternative current path that reduces the current flowing 

out through the circuit. Losses due to resistance are characterized in the solar cell by the 

fill factor of the device. 

Photodetectors are very similar to solar cells, in that they are sensors of light energy 

based on p-n junctions that convert light photons into current. For solar cells, the main 

objective is to capture as many photons as possible, but for photodetectors the response 

time of the device is also important. Additionally, an externally supplied voltage may be 

used to increase the electric field beyond that arising at equilibrium in a semiconductor 
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junction. Photodetector performance is characterized by several figures of merit: spectral 

response, quantum efficiency, responsivity, noise-equivalent power, detectivity, gain, 

dark current, and response time. 

1.3. Electronic transport in semiconductor materials 

Electronic transport in semiconducting materials depends heavily on the mobility of 

charges throughout the material. When an electric field, E, is applied across a 

semiconductor, the electrons (or holes) move across the material with an average velocity 

called the drift velocity, vd. Electron mobility, µ, is defined as the average drift velocity 

per electric field: 𝜇 = 𝑣𝑑 𝐸⁄ , given in cm2/Vs. Mobility depends on impurity 

concentrations, defect concentrations, temperature, and electron and hole concentrations 

within the material, as well as applied electric field. 

Electron mobility is typically inferred from Hall effect measurements or transistor 

behavior. The Hall effect states that the charge carriers in a current-carrying 

semiconductor under a magnetic field experience a force perpendicular to the magnetic 

field and the current. This pushes the charge to one side of the conductor. Charge buildup 

at the semiconductor edge results in a measurable voltage. The Hall mobility can then be 

calculated based on the sheet carrier density, ns or ps, and the sheet resistance, RS: 𝜇 =1 𝑞𝑛𝑠𝑅𝑆⁄ . Alternatively, mobility can be measured from field-effect transistors (FETs). 

FETs consist of three channels: source, drain, and gate. Carriers enter the channel through 

the source, leave the channel through the drain, and the gate modulates the channel 

conductivity. By changing the channel conductivity, σ, the carrier concentration, n or p, is 

modified and the mobility is measured through the transconductance, gm: 𝜎 = 𝑛𝑒𝜇 and 𝑔𝑚 = 𝜕𝐼𝐷𝑆 𝑑𝑉𝐺𝑆⁄ = 𝜇𝐶𝑊𝑉𝐷𝑆 𝐿⁄  for a metal-oxide semiconductor FET (MOSFET) 
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configuration, where IDS is the drain-source current, VGS is the gate-source voltage, C is 

the capacitance of the dielectric layer, W is the channel width, L is the channel length, e is 

the elementary electron charge and VDS is the drain-source voltage. 

In addition to mobility, two important metrics to consider for optoelectronic devices are 

the diffusion length and the carrier lifetime. Diffusion length is the average distance that 

generated carriers can travel before they are lost to recombination. Mobility and diffusion 

are linked by the Einstein relation: 𝐷 = 𝜇𝑘𝐵𝑇 𝑒⁄ , where D is the diffusion constant, kB is 

Boltzmann’s constant, and T is the absolute temperature. Fick’s first law of diffusion 

relates the diffusion coefficient as a proportionality constant of the diffusion current to 

their concentration gradient. By relating this law with the Einstein relation, a diffusion 

length, 𝐿𝐷 = √𝐷𝜏, can be established where τ represents the carrier lifetime. Measuring 

either carrier lifetime or diffusion length is a good measure of the carrier dynamics of the 

system, as they can always be converted from one to another using this relationship. Long 

carrier lifetimes correspond to long diffusion lengths. The ability of charges to travel for 

long distances without recombination leads to the ability to make material thicknesses 

larger, allowing for greater absorption of photons in optoelectronic devices.  

1.4. Scanning photocurrent microscopy 

Scanning photocurrent microscopy (SPCM) is an experimental tool used to investigate 

optoelectronic properties of semiconductors. By raster-scanning a laser, a photocurrent is 

generated at each position of the device from which internal electric field, charge 

transport, and recombination dynamics can be evaluated.1 This technique is similar to 

other scanning probe microscopy techniques, but unlike those techniques, SPCM can use 

a focused light beam or a probe tip to locally excite the material. Similar to a 
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photocurrent measurement, the laser beam excites a semiconductor, in this case locally, at 

which point the electrons and holes are free to relax, recombine, drift, and diffuse. If 

these carriers reach the electrodes before recombination, a photocurrent is measured.  

The current design for the SPCM system I have built is shown in Figure 1.1. A 444nm 

diode laser is used in conjunction with an x-y-z motion stage and a high numerical 

 

Figure 1.1. Diagram of a home-built scanning photocurrent 

microscope. The system utilizes a white light lamp for visual imaging 

and a 444 nm diode laser for the photocurrent microscopy. The 

system is equipped with two objective lenses − one 20x magnification 
with a numerical aperture of 0.42 and one 100x magnification with a 

numerical aperture of 0.70. Dual lock-in amplification is used to 

record the reflected and photocurrent signals simultaneously. 
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aperture long working distance objective lens to create a diffraction-limited laser spot. A 

current pre-amplifier and lock-in amplifier are used to isolate the signal at the chopping 

frequency of the laser beam and improve the signal-to-noise ratio for measuring small 

currents. Using a dual lock-in amplifier setup allows for us to record a reflected signal 

optical micrograph alongside the photocurrent map. This allows us to couple the physical 

features of the device to its photocurrent signals. Figure 1.2 (left) shows a reflected 

signal of a silicon photodiode, which has been covered with a mask of holes. Figure 1.2 

(right) shows the given photocurrent map for the same exact device area. A custom 

MATLAB script allows for analysis of a profile along the maps shown in Figure 1.2. The 

resulting profiles indicate a sharp rectangular rise in the photocurrent signal around the 

edges of the holes that corresponds to the drop at the same position in the reflected signal 

profile.  

SPCM has been typically used to measure diffusion lengths in semiconducting 

materials, but also has applications in characterizing electronic field distribution, carrier 

lifetimes, doping density, and more.1 This technique has been used to study 

semiconductor nanowires2–6, carbon nanotubes7–9, graphene10–13, two-dimensional 

semiconductor materials14, nanoporous layers of dye-sensitized solar cells15,16, colloidal 

quantum dots17,18, and perovskite absorbers19,20. In the simplest 1-D case, it has been 

shown that the electron current density of a material, Je, is proportional to the gradient of 

excited carriers, Δn, leading to the following equation: 𝐽𝑒 = −𝑒𝐷𝑒(𝜕∆𝑛 𝜕𝑥⁄ ) ∝ 𝑒−𝑥 𝐿𝑒⁄  

where De is the diffusion constant for electrons and Le is the diffusion length for 

electrons.1 This equation can also be equated for holes if they are the minority carrier 

instead of electrons. In the simplest case, by fitting the exponential decay away from the 
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peak photocurrent, one can solve the minority carrier diffusion length of the given 

material. 

1.5. Emerging material systems and reduced dimensionality 

For optoelectronic devices, choice of material is extremely important. For both solar 

cells and photodetectors, crystalline silicon is the most prevalent bulk material used. 

Typical silicon photodiodes have a spectral range of up to 200-1100 nm and single crystal 

non-concentrator silicon solar cells have reached an excess of 25% solar conversion 

efficiency.21 While silicon technology is well studied and understood, many problems 

alongside intrinsic limitations still exist. Precise control of crystalline silicon seed growth 

is required, as well as control of oxygen defects and dopants on the surface. Additionally, 

silicon is an indirect bandgap material (requiring larger absorption cross sections), 

leading to a lower absorption coefficient and requiring a greater thickness to achieve the 

same absorbance compared to direct band gap materials. These fabrication processes 

 

Figure 1.2. Top left and right show a reflected signal micrograph and a photocurrent 

map of a silicon photodetector masked by a repeated pattern of holes. When the light 

passes through the holes, a large photocurrent signal is observed as seen by the red 

colored circles. Below each map is a linear profile of the drawn dotted line on each 

map. 
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increase the cost for production of silicon. The search for emerging materials that may be 

able to deliver efficiencies close to that of silicon at lower cost have been researched for 

the last several decades. 

Some emerging materials, such as semiconductor nanowires and quantum dots, rely on 

their interesting properties arising from their reduced dimensionality. In bulk 

semiconductors electronic states are delocalized in the material and the filled and empty 

electronic states are separated by an energy bandgap. The continuous electronic states 

result in band-like structure where the conduction band defines the electronic states and 

the valence band defines the hole states. In bulk semiconductors, electrons remain 

unconfined and experience the periodic electric potential of the crystal lattice. The 

bandgap of the materials determines not only what wavelengths the material can absorb, 

but also determines the wavelength of photons emitted by radiative recombination of 

electrons and holes. In bulk materials, these properties are independent of size. When the 

size of one or all dimensions of a semiconducting material are reduced to a length scale 

similar to the Bohr radius for electron-hole pairs, the material changes from the three-

dimensional (3-D) bulk to 2-D quantum wells, to 1-D quantum wires, to 0-D quantum 

dots. Consequently, the density of electronic and hole states changes measurably from 

continuous states to discrete states (0-D) or sub-bands (1-D, 2-D) governed by quantum 

mechanical solutions to the confined potential. In this regime, the semiconductor 

demonstrates size-dependent properties, such as bandgap tunability. This leads to unique 

advantages in emerging materials with lowered dimensionality, such as quantum dots or 

quantum nanowires. In the following paragraphs, four emerging material systems will be 
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discussed that will be investigated in the following chapters: lead-halide perovskites, 

epitaxial graphene on SiC, semiconductor nanowires, and quantum dots. 

1.5.1 Perovskites 

In the last few years, tremendous growth has been achieved in the research of lead 

halide perovskite solar cells. Efficiencies of greater than 20% have been achieved.21 

These materials have garnered high interest because of their unique electronic properties, 

composition of abundant elements, and their ease of processing methods. Perovskite 

absorbers also offer flexibility as they possess direct bandgaps that can be tuned by 

adjusting their inorganic and organic components.  

Perovskites are defined as any materials that adopt the same structure as calcium 

titanate, CaTiO3, with a general formula of ABX3. Traditionally, perovskite materials are 

fabricated by solid-state synthesis at high temperatures.22 However, hybrid 

organic/inorganic lead halide perovskite solar cells can be fabricated at low temperatures 

by simple solution processable methods, which make them of interest for low cost solar 

cells. Three main compositions of lead halide perovskite materials have been studied for 

use in solar cells, namely methyl-ammonium lead iodide CH3NH3PbI3 (MAPbI3), methyl-

ammonium lead bromide CH3NH3PbBr3 (MAPbBr3), and a mixed halide of methyl-

ammonium lead iodide/chloride CH3NH3PbI3-xClx (MAPbI3-xClx). However, much work 

has begun on more sophisticated perovskite structures employing cesium (in place of the 

organic cation), tin (in place of lead), and other materials.23 Halide perovskite materials 

are usually either deposited on mesoporous scaffolds, such a TiO2, or employed as a thin 

film in a planar heterojunction. In either configuration, the perovskite is paired with 

electron and hole transport layers to extract the generated carriers in the perovskite layer. 
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An organic molecular layer of spiro-OMeTAD began as the hole transport material 

(HTM) of choice, but researchers are beginning to search for higher mobility materials. 

Spiro-OMe-TAD only shows a hole mobility of around 10-4 cm2/V/s, which can be 

increased by doping.24 To achieve the highest fill factors, high-mobility transport layers 

are needed. Other organic materials such as poly (triaryl amine) (PTAA) and poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) have been studied, 

however most organic transport layers result in less stable perovskite devices, which 

naturally decompose over a few days. In an attempt to move past spiro-OMe-TAD, some 

research has shifted towards inorganic HTMs. Subbiah et al. employed NiO and CuSCN 

as hole collectors in planar mixed halide perovskite solar cells.25 Solar cells using NiO 

demonstrated a 7.3% efficiency with an open-circuit voltage similar to cells using spiro-

OMe-TAD. NiO-based solar cells have also demonstrated much greater stability, 

showing stable performance for 60 days.26 Investigation of the stability and performance 

of perovskite solar cells using different HTMs is of utmost importance to commercialize 

perovskite solar cells.  

1.5.2 Epitaxial graphene on silicon carbide (SiC) 

Graphene is one of the fastest developing material during the last several years. 

Graphene is a sheet of sp2 bonded carbon atoms arranged in a honeycomb lattice. Carriers 

in graphene possess up to ~10x higher mobilities than conventional semiconductors.27 

High mobility, current density, optical transparency (~2.3% absorption per layer) and 

thermal conductivity have made it an appealing material for emerging electronic 

technologies.28 
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Most of the aforementioned properties are related to pristine graphene in idealized 

conditions, however, graphene is typically used in more complex structure and at specific 

conditions targeted at specific applications. Several techniques have been developed to 

produce high quality graphene for electronics. Micromechanical exfoliation of graphene 

is the most common growth method to produce quality graphene for condensed matter 

physics experiments.28 However, this process is time consuming and the resultant 

graphene cannot be well controlled on a large scale, making this method unsuitable for 

industrial scale. Chemical vapor deposition (CVD) growth of graphene on transition 

metals has led to high quality graphene that may be produced on a large scale. With this 

method, the as-grown graphene must be transferred to an appropriate substrate. This 

transfer process commonly causes dislocations, grain boundaries, and other substrate 

issues that lower the quality of the graphene layer. 

To avoid the problems from micromechanical exfoliation and CVD-growth on 

transition metals, one approach has been to grow graphene by thermal decomposition of 

SiC.29 This method allows for graphene to be directly obtained on a commercially 

available substrate, which allows for scalable graphene growth without the need for 

transfer. Due to the vapor pressure of carbon being negligible compared to the vapor 

pressure of silicon, silicon can be evaporated from the surface to allow carbon atoms to 

rearrange to form graphene at high temperature.29 Epitaxial graphene (EG) based SiC 

devices have been used as FETs, radio frequency (RF) transistors, integrated circuits, and 

as sensors.27  

 

 



12 

1.5.3 Semiconductor nanowires 

Semiconductor nanowires are quasi one-dimensional nanostructures fabricated with 

control of diameter, length, composition, and crystalline phase. Typically, these materials 

have diameters ranging from few nanometers to hundreds of nanometers and length of 

microns to millimeters. Their specific geometry and unique properties separate these 

materials from their bulk counterparts and has led to nanowires being used in many 

fields: nanosensors, photonics, lasers, thermoelectrics, photovoltaics, artificial 

photosynthesis, lithium-ion batteries, and more.30 Nanowires with diameters on the scale 

of the Bohr radius or shorter can exhibit quantum confinement, which allows for tuning 

of the optical bandgap by the given NW size. Among various semiconductors, nanowires 

of binary groups III-V and II-VI compounds, such as ZnS31, InAs32, GaAs32, CdS31, and 

GaN33 have been studied, along with single elements of group IV, such as Si34 and Ge34. 

Wide band gap II-VI semiconductors, such as CdSe and CdS, have been studied widely 

due to their potential in photodetector applications. Their visible absorption and potential 

for high quantum efficiency compared to silicon-based devices, which have a quantum 

efficiency of around 10%, demonstrates their potential for innovation.35 

Nanowires possess potential for photovoltaic applications due to their tunable 

geometric effects, high carrier mobility compared to thin films, and inexpensive 

processing at a relatively low temperature. One key geometric advantage is the ability to 

separate absorption and charge separation length scales. For example, the ability to 

absorb light along the nanowire axis and separate charges radially, which removes the 

competing length scales of absorption depth and diffusion length found in traditional 
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planar cells.36 Other advantages include decreased net reflectance, increased junction 

area, and reduced material use.37  

1.5.4 Quantum dots 

Quantum Dots (QDs) are zero-dimensional crystalline semiconductor nanoparticles 

typically with inorganic composition of groups II-VI, III-V, and IV-VI.38 Due to their 

confined electronic states in all three dimensions, they exhibit tunable optical and 

electronic properties. By changing the QD size, shape, composition, or structure, the 

wavelength of absorption and emission can be tuned, along with the mobility and charge 

carrier dynamics.39 Due to these unique properties, they have been used in biomedical 

imaging, light-emitting devices, photodetectors, and solar cells.40 Properties of QD solid 

films are additionally sensitive to their spacing and organization within the solid. As the 

interparticle distance between QDs decreases, the interaction of wavefunctions of the 

QDs increases, possibly leading to long range QD superlattices. 

QDs are typically grown with insulating, long-chain alkyl stabilizing ligands to retain 

the size, surface, and colloidal stability of the QD. These are unfavorable for electronic 

applications, so post-synthetic treatments, such as ligand exchange of QDs, are necessary 

for efficient optoelectronic devices. Chemical methods have been used to exchange 

ligands for various types of shorter or conjugated organic molecules and inorganic 

ligands. Generally, as the ligand chain length decreases, the mobility of the QD film 

increases.41 

Great advances in recent QD devices have shown an increase to mobilities of ≥10 cm2 

V-1 s-1.38 This increase has greatly depended on the evolution of charge transport in QDs 

from “hopping” like behavior between localized states, to band-like transport throughout 
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the extended QD film. In QD solid films, large inhomogeneities in QD size and shape, 

disordered packing, incomplete ligand exchanges, and trap sites caused by unpassivated 

atoms on the surface continue to lower the mobility of QD films. QD film mobilities still 

lag behind traditional semiconductors and other nanostructures, such as semiconductor 

nanowires, and QD solar cell efficiency remains below 15%. To take advantage of their 

unique properties, solution-based processing, and ability to be printed on flexible 

substrates, much research remains to be done in the QD electronics field. 

1.6. Dissertation overview 

In this thesis, the studies are focused on measuring critical length scales, figures of 

merit, conductive pathways, and carrier dynamics of several optoelectronic devices. By 

creating working mechanisms of how charges move and interact in devices, 

optoelectronic devices can be more readily developed with an idea of how to interface 

given semiconductors and improve performance. The last three chapters will employ the 

home-built SPCM system described in Chapter 1 to study carrier dynamics. 

The first study in Chapter 2 is focused on studying the diffusion and mobility of 

charges across perovskite solar cells. Transient transmission spectroscopy is used to study 

the dynamics of generated carriers near and far away from the HTM/perovskite interface 

in a planar perovskite solar cell. This technique, in addition to several others, allows for 

an estimation of the diffusion constant of the perovskite and compares the differing 

results between three HTMs with respect to actual device performance. 

Chapter 3 focuses on studying a Schottky-emitter bipolar phototransistor (SEPT) based 

on an epitaxial graphene (EG) emitter grown on a p-SiC base epilayer. Devices created 

with this architecture have exhibited large current gains and high UV responsivity. The 
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high performance and relatively novel operational principles of this device make it 

critically important to analyze the visible response of the device. Employing scanning 

photocurrent microscopy (SPCM) with sub-bandgap light as well as a variety of other 

techniques, the device was investigated to determine the possible sources of visible 

absorption.  

Chapter 4 continues the study on SEPT devices. In this chapter, a new SETP device is 

created with a thinner base epilayer and a new graphene grown method using SiF4. This 

device showed better performance than the device created in Chapter 3. SPCM is once 

again used not only to classify sub-bandgap absorption, but also UV absorption. By 

mapping the photocurrent in different modes using different excitation wavelengths, a 

working model of charge generation and carrier dynamics in the device is proposed. 

Chapter 5 focuses on photocurrent studies of low-dimensional semiconductors – 

namely semiconductor nanowires and colloidal quantum dots. By establishing a 

measurement system and device fabrication routine for these materials in our lab, it opens 

many possible research directions for optoelectronic devices employing these materials. 

SPCM is also used to clarify photocurrent generation and to demonstrate the ability of 

our microscope to resolve small nanostructures. 
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CHAPTER 2 

DIRECT OBSERVATION OF ULTRAFAST HOLE INJECTION FROM LEAD HALIDE 

PEROVSKITE BY DIFFERENTIAL TRANSIENT TRANSMISSION SPECTROSCOPY1 

2.1. Preface 

In August 2013, I received a National Science Foundation Integrative Graduate 

Education and Research Traineeship (NSF IGERT) grant. This grant supported two years 

of research and an overseas internship experience. The IGERT program aimed to bring 

together different scientific departments within the university to promote interdisciplinary 

collaborative research. Through this research program, students were to develop 

teamwork skills and diversify their education towards contribution to solving complex 

research problems of significant scientific and societal importance at the national and 

international level. One such problem is the energy crisis and the development of cleaner 

and sustainable energy. 

As I mentioned previously, one component of the IGERT program is a 3 to 6-month 

international internship. Several opportunities were presented to us from different 

universities and institutes across Asia. While many of my fellow students chose to study 

catalysis, I opted to study perovskite solar cells at the National Institute for Materials 

Science (NIMS) in Japan under Dr. Kenjiro Miyano. I was drawn to this topic due to 

developing interest in solar energy production from my previous experiences in the 

                                                           

1 Reprinted with permission from Ishioka, K.; Barker, B. G.; Yanagida, M.; Shirai, Y.; Miyano, K. Direct 
Observation of Ultrafast Hole Injection from Lead Halide Perovskite by Differential Transient 
Transmission Spectroscopy. J. Phys. Chem. Lett. 2017, 8 (16), 3902–3907. Copyright 2017 American 
Chemical Society. 
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IGERT program, as well as my own personal interests in the quickly emerging research 

based on perovskite solar cells. 

While at NIMS, I made several solar cells featuring various hole transport materials 

and tested them with techniques such as current-voltage curves to measure power 

conversion efficiency (PCE), external quantum efficiency (EQE), transmission 

spectroscopy, photoluminescence (PL), time-resolved PL, x-ray diffraction (XRD), 

scanning electron microscopy (SEM), and infrared spectroscopy. I also led a project 

looking at carrier dynamics using transient absorption (TA) while probing in the infrared 

region. While progress on this project was slow, I met with Dr. Kunie Ishioka to measure 

the same samples I fabricated using her TA system probing in the visible region. This led 

to a fruitful collaboration, in which my previous data from the techniques mentioned 

above were combined with her expertise in transient transmission to produce a 

collaborative research journal article. In this article, I prepared the samples, measured the 

samples using the previously listed techniques, and then forwarded them to Dr. Ishioka to 

measure. Upon collection of the data, I routinely met with her to discuss the resulting 

analysis of the data and this analysis was compiled into a complete journal article 

described in this chapter. 

2.2. Introduction 

Lead halide perovskite photovoltaic cells have been developing rapidly in the past few 

years, with their power conversion efficiency (PCE) now exceeding 22%.21 Perovskites 

are direct semiconductors, and their photovoltaics can in principle work as a model p–i–n 

diode.42 The difficulty in the controlled impurity doping in perovskites can be 

circumvented by sandwiching the perovskite film between thin layers of electron- and 
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hole-transporting materials (ETM and HTM) in a planar heterojunction structure.43 These 

carrier transporting layers enable efficient and irreversible separation of the electrons and 

holes photoexcited in the perovskite and thereby lead to the high PCE of the perovskite 

solar cells. Whereas various inorganic and organic materials have been explored as ETMs 

and HTMs, based on their conduction and valence band energy offsets with respect to 

those of the perovskite, the actual device performance shows only a weak correlation 

with the energy levels.43,44  

Time-resolved photoluminescence (PL) and transient absorption (TA) spectroscopies 

have been employed extensively to investigate the microscopic effects of the ETM and 

HTM layers on the carrier dynamics in the perovskites. The previous PL studies

monitored the injections of the photoexcited carriers into the transport layers indirectly as 

the suppression of the PL intensity emitted at their recombination and the acceleration in 

the PL decay time on a tens of nanosecond time scale.45–49 Excitation density 

dependences of the PL decay time and of the solar cell external quantum efficiency 

(EQE) revealed a carrier-injection bottleneck at the interfaces with TiO2 and spiro-

OMeTAD at high excitation densities.50 The extraordinarily long electron and hole 

diffusion lengths in the perovskites were confirmed by the PL and TA measurements in 

the visible and THz ranges on perovskites with and without the ETM and HTM.51–54 The 

time scale of the charge injection from the perovskite to the HTM layer itself remains 

controversial, however, despite the extensive TA studies that aimed to directly time-

resolve the injection dynamics.51,55–63 The time constant of the hole injection from 

CH3NH3PbI3 (MAPbI3) to spiro-OMeTAD in the previous reports, for example, scattered 

widely from <80 fs55 to 0.7 ps56,57 to 8 ps.58 The hole injection to NiOx was reported to be 
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complete on the sub-picosecond time scale,59 whereas those to poly(triarylamine) 

(PTAA), poly(3-hexylthiophee-2,5-diyl) (P3HT), and poly[2,6-(4,4-bis(2-ethylhexyl)-

4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) 

were reported to occur on sub-nanosecond time scales.60 The apparent inconsistency 

among the different studies can be contributed by the different sample crystalline and 

interfacial qualities as well as the difficulty in separating hole injection from other carrier 

dynamics observed in the spectroscopic signals.  

In this work, we propose a differential transient transmission method to extract the 

carrier injection dynamics near the interface of the perovskite and the carrier transport 

layer. We measure transient transmission from both sides of the perovskite sample, the 

HTM side and the back (PVK) side, as shown schematically in Figure 2.1a, and take the 

difference between the two signals. By using excitation light whose optical absorption 

length is considerably shorter than the perovskite film thickness, we can exclusively 

 

Figure 2.1. (a) Schematics of the two different configurations of the pump–probe 
transmission measurements of the MAPbI3/HTM sample. The photoexcited region 
inside of the MAPbI3 film is designated by the hatched area. (b) Energy levels of 
the valence band maxima (VBM) of the HTMs in comparison with the VBM and 
the conduction band minimum (CBM) of MAPbI3. Copyright 2017 American 
Chemical Society. 
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monitor the carrier dynamics at the interface with the HTM. We systematically apply this 

method to the interface of MAPbI3 with three organic and inorganic HTMs typically used 

in the planar solar cells, PTAA, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS) and NiOx, whose valence band maxima (VBM) lie at slightly different 

energies (Figure 2.1b). 

2.3. Scanning electron microscopy and X-ray diffraction of MAPbI3 films 

Samples for spectroscopic measurements consist of a glass substrate, a thin layer of 

HTM (either PTAA, PEDOT:PSS, or NiOx),64,65 a 250 nm thick crystalline 

MAPbI3 film,66,67 and a poly(methyl methacrylate) (PMMA) capping layer, as 

schematically shown in Figure 2.1a. For comparison, we also prepare a sample without 

 

Figure 2.2. (a,b) Scanning electron microscope image of a MAPbI3 film on a glass 
substrate and on a PEDOT:PSS film on a glass substrate, respectively. (c) X-ray 
diffraction pattern of the films in (a,b) showing a near identical tetragonal pattern. 
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the HTM layer.  MAPbI3 films are prepared using chlorine-mediated interdiffusion, 

which has been shown to produce higher quality films.66,67 A cross-sectional scanning 

electron microscope image of a MAPbI3 film grown on a glass substrate is shown in 

Figure 2.2a, alongside a MAPbI3 film grown on PEDOT:PSS deposited onto a glass 

substrate is shown in Figure 2.2b. Both samples are capped with PMMA for protection 

from the atmosphere. Perovskite samples appear to be of similar quality with large crystal 

domains of continuous MAPbI3 film. Further characterization of the films by X-ray 

diffraction (XRD) of these two samples show nearly identical diffraction patterns, 

corresponding to a tetragonal perovskite structure (Figure 2.2c).68 Further work on NiOx 

samples is required, although they have been shown to create quality perovskite films 

using similar preparation methods.64,65 

 

Figure 2.3. (a) Absorption spectra of the MAPbI3 film without HTM and 
of the HTM layers only. The broken line and arrow indicate the 
wavelengths of the pump and probe lights. (b) EQEs for the solar cells 
with three different HTMs. The inset in (b) schematically illustrates the 
solar cell structure. Copyright 2017 American Chemical Society. 
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2.4. Absorption characteristics of MAPbI3 films 

Transient transmission measurements are performed using 400 nm pump and 720 nm 

probe light pulses with 150 fs durations. The pump light has an absorption length 

considerably shorter than the perovskite film thickness (α–1 = 42 nm69) and thus provides 

inhomogeneous photoexcitation only near the HTM interface or near the back surface, as 

shown in Figure 2.1a. The probe light has an absorption length exceeding the film 

thickness (α–1 = 820 nm69) and monitors the carrier dynamics up to ∼0.1 eV above the 

band edge of MAPbI3 over the whole film thickness. The MAPbI3 film has broad 

absorption in the visible range, whereas the absorption of the pump and probe lights by 

the HTM layer is negligible except for the small absorption by PTAA at 400 nm, as 

shown in Figure 2.3a. 

2.5. Emission spectra and fluorescence decay lifetime of MAPbI3 films 

Figure 2.4a shows the emission spectrum recorded for several MAPbI3 films deposited 

on glass substrates with and without HTMs. For nearly every sample, a broad emission 

peak appears around 760 nm. In the presence of a HTM, the emission intensity decreases; 

this is due to photogenerated holes being transferred into the HTM, resulting in less holes 

available to recombine and emit. The fluorescent lifetime decay of several samples, 

including those with and without the chlorine-interdiffusion treatments mentioned 

earlier,66,67 are shown in Figure 2.4b. The presence of MACl promotes an increase in the 

lifetime of the perovskite-only sample from 349 to 408 ns. Upon the addition of HTMs 

PEDOT:PSS and PTAA, the average lifetime decreases to 30 ns and 2.4 ns, respectively, 

indicating quenching of photogenerated holes. The large difference in the lifetime of the 

sample using PEDOT:PSS and PTAA may indicate more efficient hole scavenging in 
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samples employing PTAA as a HTM in comparison to samples using PEDOT:PSS. 

Investigation of samples involving NiOx are still needed; however, a reduction of the 

average lifetime of a perovskite sample has been shown to decrease from 145 ns to 70 ns 

in the presence of NiOx.26 

2.6. Change in transient transmission of MAPbI3 films measured from the near 

and far side of the HTM/PVK interface 

Figure 2.5 compares the transient transmission changes ΔTPVK/T and 

ΔTHTM/T measured from the PVK and HTM sides of the samples. The transient signals of 

the perovskite without HTM show no systematic difference between the two 

 

Figure 2.4. (a) Emission spectrum of MAPbI3 films deposited on glass 
substrates with and without HTMs. (b) Fluorescence lifetime decays of 
MAPbI3 films with and without MACl treatment deposited on HTMs. Inset 
shows lifetime decay <500 ns. (c) The average lifetime, <t>, of the films 
shown in (b). 
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configurations; they both rise instantaneously (<∼1 ps) after photoexcitation and then 

decrease biexponentially, with time constants of τ1 = 0.16 and τ2 = 1.6 ns at a pump 

density of 0.5 μJ/cm2. Previous studies reported that either the short-wavelength tail of 

the photoinduced bleach (PB) of probe light55,70–72 or the long-wavelength tail of the 

photoinduced absorption (PIA) by photoexcited carriers62,73 can be dominant at 720 nm in 

the TA of MAPbI3, depending on the experimental conditions such as the perovskite 

 

Figure 2.5. Transient transmission changes of MAPbI3 with different HTMs and 
without, pumped at 400 nm and probed at 720 nm on picosecond (a), sub-
nanosecond (b), and nanosecond (c) time scales. Solid and broken curves denote 
the transient transmission photoexcited on the HTM and PVK sides, ΔTHTM/T and 
ΔTPVK/T, as illustrated in Figure 2.1a. The pump density is 0.5 μJ/cm2. Copyright 
2017 American Chemical Society. 
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crystalline quality, film thickness, aging history, the presence of the HTM and ETM 

layers, and the interfacial qualities, as well as the wavelength and density of the 

excitation. In the present study, the transient transmission change appears always positive 

(ΔT > 0), indicating that the PB dominates. 

 

 

Figure 2.6. (a) Transient transmission changes of MAPbI3 
without HTM pumped at 400 nm with a range of pump densities. 
(b,c) The amplitudes A1, A2 and decay rates τ1

-1, τ2
-1, obtained 

from fitting of the transient transmission traces to a biexponential 
decay, as a function of the pump density P. Solid lines in (b) 
represent fitting to a power function A(P) = A0Pn, with n = 1.5 and 
1 for A1 and A2. 
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The transient transmission of the MAPbI3 without HTM shows no systematic 

difference when measured from the two sides of the sample. The obtained transmission 

signals, shown for different pump densities in Figure 2.6a, rises instantaneously (≤1 ps) 

after photoexcitation, followed by a monotonic decrease that can be fitted to a 

biexponential decay:𝑓(𝑡) = 𝐴1𝑒−𝑡/𝜏1 + 𝐴2𝑒−𝑡/𝜏2 + 𝐶. With increasing pump density, the 

amplitude A1 of the fast-decaying component grows superlinearly, whereas that of the 

slow-decaying one, A2, grows linearly, as shown in Figure 2.6b. The decay rates τ1
-1 and 

τ2
-1 increases monotonically with the pump density, as shown in Figure 2.6c. Above 

pump density of 4 µJ/cm2 the transmission signal undergoes irreversible change during 

the time delay scan. Based on the observed pump density-dependences we attribute the 

fast- and slow-decaying components to the Auger (trimolecular) and non-geminate 

(bimolecular) recombinations.54,74 The observed carrier dynamics are consistent with a 

previous report on a 60 nm thick MAPbI3 film pumped and probed at the same 

wavelengths.71 

By contrast, the ΔTHTM/T (dotted lines) signals of the perovskite films with HTMs are 

systematically smaller than the ΔTPVK/T signals (solid lines) of the same sample at early 

time delays shown in Figure 2.5a and Figure 2.5b. This can be interpreted as the smaller 

hole population at the MAPbI3/HTM interface than that at the MAPbI3/PMMA interface. 

After undergoing complicated decays and rises on picosecond time scales, the signals 

measured from the two sides eventually converge on sub-nanosecond time scales, as 

shown in Figure 2.5b and Figure 2.5c, confirming that both sides of the perovskite films 

are excited at the same pump density. On the even longer time scale, the signals from 

both sides decay biexponentially (Figure 2.5c), like we have already seen for the 
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perovskite without HTM. The presence of the HTM layer reduces the amplitude of the 

faster component. In the case of MAPbI3 with PEDOT:PSS and PTAA, the decay time of 

the slower component becomes longer (τ2 = 5.2 and 3.0 ns, respectively), indicating that 

the electrons photoexcited in the perovskite film survive longer as a result of the 

deprivation of holes. 

2.7. Differential transient transmission of MAPbI3 films paired with HTMs 

The time evolutions of the transient transmission signals of the samples with HTM on 

picosecond time scales appear to be common to ΔTHTM/T and ΔTPVK/T and therefore not 

specific to the HTM interface. Moreover, ΔTPVK/T for the samples with HTM is 

systematically smaller than that without HTM at the early time delays shown in Figure 

2.5a and Figure 2.5b. This is not because of the absorption of the probe light by the 

HTM layer, since ΔT/T is the pump-induced fractional change. These results instead 

suggest that the presence of the HTM may cause other effects than the interfacial hole 

injection, such as PIA by the HTM layer and modification of the transport and 

recombination dynamics within the whole perovskite film. To extract the carrier 

dynamics directly related with the MAPbI3/HTM interface and cancel out other effects, 

we hereafter focus on the differential transient transmission ΔTdiff/T ≡ (ΔTPVK – 

ΔTHTM)/T plotted in Figure 2.7. This quantity can be regarded to be proportional to the 

difference in the hole populations photoexcited in the perovskite in the two 

configurations, Ndiff(t), if we neglect the small tail of the absorption bands of the oxidized 

species or polarons that have peaks at ∼1000 and ∼500 nm for PEDOT:PSS and 

PTAA.75,76 We see that ΔTdiff/T is very small for the perovskite without HTM, which 

guarantees the quantitative reproducibility of our measurements.  
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In the presence of the HTMs, ΔTdiff/T rises and then decays to nearly zero on different 

time scales for different HTMs. The rise implies the disappearance of holes at the 

MAPbI3/HTM interface due to the injection to the HTM layer (and other interfacial 

processes, if any). The decay can be interpreted as a result of the hole diffusion in the 

perovskite film, making the hole distribution more homogeneous. ΔTdiff/T for 

MAPbI3/PTAA rises rapidly after photoexcitation and reaches a maximum at t = 1 ps, 

providing direct evidence for the hole injection to be complete on the sub-picosecond 

time scale. The hole injection time observed here is comparable to those in the previous 

report on the sub-picosecond injection at MAPbI3/spiro-OMeTAD55,56 but orders-of-

magnitude faster than that reported for the MAPbI3/PTAA.60 The differential signal for 

MAPbI3/PEDOT:PSS exhibits similar behavior, except that the maximum is reached at a 

slightly later time (t = 2 ps). For MAPbI3/NiOx, by contrast, ΔTdiff/T exhibits a distinct 

two-step rise, whose first step is almost as fast as those for PTAA and PEDOT:PSS, but 

 

Figure 2.7. Differential transient transmission ΔTdiff/T = 
(ΔTPVK – ΔTHTM)/T of MAPbI3 with different HTMs and 
without. Copyright 2017 American Chemical Society. 
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the second step is considerably slower, reaching a maximum at t = 44 ps. The observation 

can be interpreted in terms of two injection paths to NiOx with different rates, for 

example, direct injection and injection via interfacial defect levels, or injections of holes 

with different excess energies. Either fast or slow step can, in principle, be contributed to 

by other interfacial processes as well, such as recombination, trapping by interfacial 

defects, and energy transfer from the HTM. 

2.8. Modeling the hole diffusion in perovskites to compare with the differential 

transient transmission results 

We perform numerical simulations on the hole diffusion in the perovskite to understand 

the decay of the ΔTdiff/T signals quantitatively. The previous studies reported different 

values of the diffusion constant D, ranging from 0.01 to 4 cm2/s, for different 

MAPbI3 crystalline qualities.51,58,77–79 We therefore calculate the depth- and time-

dependent hole distributions NPVK(z, t) and NHTM(z, t) for excitation on the PVK and 

HTM sides, as shown in Figure 2.8a, Figure 2.9, and Figure 2.10, using different values 

of D. We then obtain the differential hole population Ndiff(t) = NPVK
S(t) – NHTM

S(t), as 

plotted in Figure 2.8b, where 𝑁𝑖𝑆(𝑡) = ∫ 𝑁𝑃𝑉𝐾(𝑧, 𝑡)𝑑𝑧𝑑0  with i = PVK or HTM is the 

depth-integrated hole population. We find that Ndiff(t) decays on 100 ps and 1 ns time 

scales when calculated with D = 4 and 0.4 cm2/s. The former decay time is in rough 

agreement with the experimental ΔTdiff/T signals for MAPbI3 with PTAA and 

PEDOT:PSS, whereas the latter is with that with NiOx. The relatively large D confirms 

the good crystalline quality of the perovskite films fabricated on top of the PTAA and 

PEDOT:PSS layers, whereas the smaller D suggests poorer quality for that on NiOx. If 

we take 4 cm2/s as a good estimate of the diffusion constant of the perovskite and the 
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lifetime as ~400 ns from the photoluminescence decay shown in Figure 2.4, the 

calculated diffusion length is ~12.65 µm, which is in good agreement with diffusion 

lengths measured on perovskite films by scanning photocurrent microscopy.19,80,81 

The calculated Ndiff(t) cannot reproduce the overall time evolution of the experimental 

ΔTdiff/Tsignals quantitatively; ΔTdiff/T tends to rise faster and decay more slowly 

than Ndiff(t). The failure suggests that the hole transport in the vicinity of the 

MAPbI3/HTM interface (within the hatched area of the “from HTM side” in Figure 2.1a) 

 

Figure 2.8. (a) Calculated hole distributions NPVK and NHTM as 
a function of distance z from the perovskite/HTM interface for 
excitation on the PVK and HTM sides at different times t. 
Diffusion constant D = 4 cm2/s is used. (b) Calculated 
differential number of holes Ndiff

S as a function of time after 
photoexcitation for different values of D. Copyright 2017 
American Chemical Society. 
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is dominated by faster mechanisms than the diffusion. A previous photoemission 

study82 reported that the stoichiometry of MAPbI3 within a few nm of the interfaces can 

be affected by the substrates, and the interface can have a band bending as a result of the 

dipole formation. A comparative study on the device performance44 also explained the 

insensitivity of Voc to the VBM of the HTMs in terms of ionic accumulation at the 

interface causing steep band bending at the interface and a flat band in the rest of the 

perovskite. Such band bending with narrow width can induce ultrafast drift of the 

photoexcited holes only near the MAPbI3/HTM interface and thereby enable sub-

picosecond hole injection into the HTMs without significantly affecting the diffusion 

dynamics in the rest of the perovskite film. 

2.9. Solar cell efficiency featuring the previously studied HTMs  

  We also fabricate the solar cells containing the same MAPbI3/HTM interfaces and 

measure their EQE and current density–voltage (J–V) characteristics,83 whose results are 

summarized in Figure 2.3b and Table 2.1 as well as in Figure 2.11 and Figure 2.12.  

 

Figure 2.9. (a) Calculated carrier density N in the absence of HTM as 
a function of distance z from the photoexcited surface at different 
times t. Diffusion constant D = 4 cm2/s and recombination time of τ = 
1.6 ns are used. The initial density at t = 0 has an exponential 
distribution corresponding to the absorption length of 42 nm. 
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The solar cells with all of the HTMs exhibit good reproducibility in their device 

performance.65,66,84 On one hand, the EQE at 400 nm hardly depends on the HTM despite 

the absorption by PTAA, suggesting comparable recombination near the MAPbI3/HTM 

interfaces under the short-circuit condition. On the other, the values of Voc do not directly 

correspond to the energy offset in the VBMs but are reduced considerably for the solar 

 

Figure 2.10. (a) Calculated carrier 
distributions NPVK(z,t) and NHTM(z,t) for photoexcitations on 
HTM and PVK sides as a function of distance z from the 
perovskite/HTM interface at different time after 
photoexcitation: in the case of diffusion constant D = 0.1 cm2/s 
(a), 1 cm2/s (b), and 0.1 cm2/s (c). The recombination time of τ 
= 1.6 ns is used in the calculations. 
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cells with PEDOT:PSS and NiOx in comparison with those with PTAA. This is consistent 

with the most efficient hole injection to PTAA revealed in the present time-resolved 

study. Moreover, the solar cell with NiOx shows the highest Rs and the lowest Rsh, 

indicating the poorest transport at the interface and in the perovskite as well as the largest 

power loss due to defects. It is likely that NiOx, a hard inorganic semiconductor, induces 

more disorder and defects in the perovskite film fabricated on top of it due to the 

chemical reaction between the two materials82 than the other two soft organic 

 

Figure 2.11. Current density-voltage curves for the solar  
cells with three different hole transport materials.  
 
 
Table 2.1. Device parameters for solar cells with three different HTMs 

HTM JSC (mA cm-2) VOC (V) FF PCE (%) Rs (Ω cm-2) Rsh (Ω cm-2) 

PTAA 20.99 1.09 0.79 18.0 4.89 >10000 

PEDOT:PSS 19.88 0.96 0.79 15.2 3.37 5701 

NiOx 20.34 1.08 0.69 15.2 5.99 1337 

Parameters: short-circuit current density (JSC), open-circuit voltage (VOC), fill factor 
(FF), power conversion efficiency (PCE), series resistance (Rs), and shunt resistance 
(Rsh). 
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semiconductors and thus results in the relatively poor device performance. Such a 

defective interface would also lead to slower hole injection, as we have seen in our 

transient transmission signals for the MAPbI3/NiOx interface. The correlation between the  

carrier dynamics and the device performance will be further investigated over a wider 

range of HTMs, ETMs, and perovskites by the differential transient transmission 

technique. The physical mechanism behind the correlation will be examined by 

monitoring the carrier dynamics of the actual solar cells under working conditions in the 

transient reflection geometry.  

2.10. Conclusions 

In conclusion, we have directly monitored the hole injection dynamics at the interfaces 

of MAPbI3with three different HTMs. The differential transient transmission signals have 

shown that the hole injection is complete within 1 and 2 ps at the MAPbI3/PTAA and 

MAPbI3/PEDOT:PSS interfaces. By contrast, the hole injection at the 

MAPbI3/NiOx comprises two steps and takes 40 ps to be complete. The obtained carrier 

dynamics are consistent with the poor device performances of the solar cell with the 

HTMs examined. The differential transient transmission measurements thus proved to be 

 

Figure 2.12. Reflectance (a), external quantum efficiency (b), and internal quantum 
efficiency (c) of the solar cells with three different hole transport materials.  
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a powerful tool to investigate the interfacial carrier dynamics using a simple linear optical 

technique, and the knowledge obtained will contribute to explore novel HTM materials 

that enable high photovoltaic performance. 

2.11. Methods and materials 

2.11.1 Materials and preparation 

All chemicals were purchased from commercial suppliers and used as received, unless 

stated otherwise. Perovskite precursors were prepared by dissolving PbI2 [Kanto-

chemical, 98% purity] in anhydrous N, N-dimethylformamide (400 mg mL-1), and by 

dissolving the mixture of methyl ammonium iodide (MAI) and methyl ammonium 

chloride (MACl) [Wako Chemicals, battery grade] in the ratio of 19:1 in ethanol (50 mg 

mL-1). Poly [bis(4-phenyl)(2,4,6-trimethylphenyl) amine] (PTAA) used for the hole 

transport layer (HTL) was dissolved in anhydrous chlorobenzene at 0.5 wt%. PC61BM 

[Sigma Aldrich, 99% purity] used as the electron transport layer (ETL) in the solar cells 

was dissolved in anhydrous chlorobenzene at 2 wt. %. All solutions were filtered through 

0.45 µm syringe filters to avoid the risk of particle formation. Aluminum-doped zinc 

oxide (AZO) nanoparticle ink (Nanograde N-21X) was used to prepare the AZO layer. 

2.11.2 Preparation of hole transport layers 

Samples for spectroscopic measurements and solar cells for device characterizations 

were fabricated on glass substrates (S9111, Matsunami Glass) and on patterned ITO-

coated glass substrates (15 Ω/square), respectively. A thin film of HTL, made of either 

PEDOT:PSS, PTAA or NiOx was first prepared on the substrate. The PEDOT:PSS 

(Clevios, Al4083) film of ~30 nm thickness was formed by spin coating at 3000 rpm and 

subsequently drying at 120°C for 15 minutes on a hot plate in ambient air.66 The PTAA 
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film of the similar thickness was prepared by spin coating the solution at 1000 rpm in a 

glove box filled with nitrogen and subsequently drying at 100°C for 5 min on a hot plate 

in nitrogen ambient.84 The NiOx (2 < x < 3) film of 60-70 nm thickness was prepared 

using an rf magnetron sputtering system (SVC-700 RFIINA, Sanyu Electron, Japan). The 

substrates were treated with ultraviolet-ozone for 20 minutes immediately before being 

loaded into the vacuum chamber (base pressure < 2 x 10-3 Pa). Sputter deposition was 

carried out at room temperature in an argon gas pressure of 0.5 Pa at a radio frequency 

power of 50 W, with sintered 99.9% pure NiO (Kojundo Chemical Laboratory co. Ltd., 

Japan) as the sputter target.64,65 

2.11.3 Perovskite film fabrication 

The rest of the fabrication procedures were performed in a glove box filled with 

nitrogen and with <1.0 ppm O2 and H2O. A PbI2 film was first spin-coated at 3000 rpm 

for 90s and then the mixture of MAI and MACl was spun onto the PbI2 layer at 4000 rpm 

for 90s to promote Cl-mediated interdiffusion.66 The as-grown MAPbI3 perovskite films 

were put into a closed container side by side with MACl powders and heated on hot plate 

at 100°C to promote crystallization.67 The samples for the spectroscopic measurements 

were then coated with polymethyl methacrylate (PMMA) to make the surface inert. 

2.11.4 SEM and XRD analysis 

The scanning electron microscopy images were recorded at 5kV using an FE-SEM at 

80x magnification (Hitachi FE-SEM S-4800). The XRD patterns were collected using an 

X-ray diffractometer (Rigaku SmartLab, Japan) (Cu Kα radiation, λ = 1.54050 Å).  
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2.11.5 Device fabrication 

To fabricate the solar cells for device characterization, an ETL and a metal electrode 

were added on top of the perovskite instead of the PMMA coating. A thin layer of 

PC61BM was spun at 700 rpm for 60s, followed by coating with the AZO layer at 3000 

rpm for 30s, as the ETL. A 100-nm thick Ag film was then deposited as a metal contact 

in an evaporation chamber at a pressure < 10-4 Pa that is connected to the glove box. 

Solar cell devices with area of ~0.26 cm2 were then sealed using UV-curable resins (UV 

RESIN XNR5516Z, Nagase ChemteX, Japan) before the characterization in ambient 

conditions. 

2.11.6 Device performance characterization 

The current density-voltage (J-V) curves of the solar cells, shown in Figure 2.11, were 

measured by a commercial software (SYSTEMHOUSE SUNRISE corp., Japan) using 1 

SUN illumination (AM1.5G) from a solar simulator (Bunkokeiki, Japan). The devices 

with area of 0.19 cm2 were defined by an aperture mask. Short circuit current JSC, open 

circuit voltage VOC, fill factor FF, photoconversion efficiency PCE, series and shunt 

resistances Rs and Rsh were derived from the J-V curves, as summarized in Table 2.1. 

The external quantum efficiencies (EQE) and the reflectance R were measured and 

plotted in Figure 2.12. The internal quantum efficiencies IQE were obtained from the 

relation IQE=EQE/(1-R). 

2.11.7 Photoluminescence decay characterization 

The emission spectra reported in Figure 2.4a were taken using excitation light at 470 

nm using a fluorescence spectrometer (JASCO, FP8500). The fluorescence lifetime decay 

curves in Figure 2.4b were recorded using a picosecond fluorescence lifetime system 
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equipped with a pulse laser at 403 nm for excitation. The emission decays were recorded 

at 760 or 765 nm. 

2.11.8 Transient transmission measurement methods 

Pump-probe transmission measurements on the MAPbI3/HTM samples are performed 

under ambient conditions using a Ti:sapphire regenerative amplifier (RegA-9000, 

Coherent) with 150-fs duration and 100-kHz repetition rate as the light source. The 

second harmonic of the amplifier at 400-nm wavelength is used as the pump, whereas the 

output of an optical parametric amplifier (OPA, Coherent) at 720-nm wavelength serves 

as the probe. The pump and probe beams are focused onto an identical spot on the sample 

surfaces with their spot sizes of 500 and 200 µm in diameter. The pump density is kept at 

~ 0.5 µJ/cm2 (carrier density ~ 2 x 1017 cm-3) to avoid the irreversible photodegradation 

of the sample, unless otherwise noted. The pump beam is modulated at 1.98 kHz for lock-

in detection. The probe lights before and after transmitting the sample are detected by a 

pair of balanced Si PIN photodetectors. Pump-induced changes in the transient 

transmission ΔT=T are recorded as a function of time delay between pump and probe 

pulses t using a conventional slow scan technique. The transient transmission changes 

ΔTHTM=T and ΔTPVK=T are obtained with the pump and probe lights incident on the 

HTM and perovskite (PVK) sides of the MAPbI3/HTM samples, respectively. The 

differential transient transmission ΔTdiff  ∕ T≡ (ΔTPVK − ΔTHTM)  ∕ T is calculated to extract 

the carrier dynamics occurring in the direct vicinity of the HTM interface. 

2.11.9 Diffusion simulations 

We perform numerical simulations to estimate the hole transport dynamics in the 

perovskite film. We consider the diffusion equation for the hole density N(z, t) as a 
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function of the distance z from the perovskite/HTM interface and time t after 

photoexcitation: 𝜕𝑁𝜕𝑡 = 𝐷 𝜕2𝑁𝜕𝑧2 − 𝑁𝜏  

Here D and τ denote the diffusion constant and the hole recombination time. The initial 

condition is given by: 𝑁𝐻𝑇𝑀(𝑧, 𝑡 = 0) = 𝑁0𝑒−𝛼𝑧   for excitation on HTM side 𝑁𝑃𝑉𝐾(𝑧, 𝑡 = 0) = 𝑁0𝑒[−𝛼(𝑑−𝑧)]  for excitation on PVK side 

with α and d being the absorption coefficient of the pump light in the perovskite and the 

perovskite film thickness. The boundary conditions in the absence of the HTM are given 

by: 𝜕𝑁𝜕𝑧 |𝑧=0 = 𝜕𝑁𝜕𝑧 |𝑧=𝑑 = 0. 
In the presence of the HTM layer, the boundary conditions are: 𝑁𝐻𝑇𝑀(𝑧 = 0, 𝑡) = 0 ;    

𝜕𝑁𝐻𝑇𝑀𝜕𝑧 |𝑧=𝑑 = 0 

for excitation on the HTM side and 

𝜕𝑁𝑃𝑉𝐾𝜕𝑧 |𝑧=0 = 0   ;   𝑁𝑃𝑉𝐾(𝑧 = 𝑑, 𝑡) = 0 

for excitation on the PVK side. 

Because the diffusion constant D reported in previous studies ranges widely depending 

on the crystalline quality, from 0.01 to 4 cm2/s,51,58,77–79 we calculate the diffusion with 

different values of D. Figure 2.9 plots the calculated hole distribution N(z; t) in the 

absence of the HTM layer in the case of D=4 cm2/s. The distributions in the presence of 

the HTM layer are similarly calculated but in the two measurement geometries, whose 
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examples are shown in Figure 2.10 as well as in Figure 2.8a. We then obtain the 

differential population of the holes in the film: 

𝑁𝑑𝑖𝑓𝑓(𝑡) ≡ 𝑁𝑃𝑉𝐾𝑆 (𝑡) − 𝑁𝐻𝑇𝑀𝑆 (𝑡) = ∫ 𝑁𝑃𝑉𝐾(𝑧, 𝑡)𝑑𝑧𝑑
0 − ∫ 𝑁𝐻𝑇𝑀(𝑧, 𝑡)𝑑𝑧𝑑

0  

whose results are summarized in Figure 2.8b, to compare the simulation results direction 

with the experimental differential transient transmission ΔTdiff  ∕ T. 
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CHAPTER 3 

SUB-BANDGAP RESPONSE OF GRAPHENE/SIC SCHOTTKY EMITTER BIPOLAR 

PHOTOTRANSISTOR EXAMINED BY SCANNING PHOTOCURRENT MICROSCOPY2 

3.1. Introduction 

Ultraviolet (UV) detection is an important detection tool for military, industrial, 

chemical, and biological applications. Typical UV detection includes the use of 

photomultiplier tubes (PMTs) or semiconductor p-n junction photodiodes that collect 

electron-hole pairs generated by UV photons. UV radiation is above the bandgap of 

typical semiconductors based on Si, SiC, GaN, AlGaN, InGaAs, and GaAs, making 

detection easy in principle. However, UV makes up only a small portion of the daylight 

spectrum and visible light absorption can easily overwhelm the typical UV signal. 

Moreover, penetration of UV into such materials is very limited with much absorption 

occurring in heavily-doped near-surface “dead” layers. The inherent visible blindness 

found in wide-bandgap semiconductors is therefore a desirable quality for UV detectors if 

architectures with high detectivity and UV-transparent contacts can be identified.  

Recently, UV detection has been demonstrated in bipolar phototransistors featuring a 

transparent epitaxial graphene (EG) emitter grown on a p-SiC base epilayer on n-type 

SiC substrates. This Schottky-emitter bipolar phototransistor (SEPT) relies on efficient 

minority carrier injection from the carefully prepared p-type Schottky barrier. In 

                                                           

2 Reprinted with permission from Barker, B. G.; Chava, V. S. N.; Daniels, K. M.; Chandrashekhar, M. V. 
S.; Greytak, A. B. 2D Mater. 2018, 5 (1). https://doi.org/10.1088/2053-1583/aa90b1. Copyright 2018 IOP 
Publishing. 
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particular, a maximum common emitter current gain of 113 with minority carrier 

injection efficiency of >99% has been demonstrated.85 However, the visible rejection 

ratio (VRR) and localized photocurrent response were not analyzed in the initial report. 

Due to the high UV responsivity previously reported (7.1 A/W)85, it is important to 

determine whether the visible-rejection ratio has been sacrificed in the attempt to improve 

performance. 

There are several possible origins of sub-bandgap response, including heteropolytype 

junctions, donor-acceptor pair (DAP) absorption, and internal photoemission. The Franz-

Keldysh effect can lead to sub-bandgap absorption but is not expected to play a large role 

here due to the modest electric field and indirect bandgap. SiC exists in several polytypes 

with varying band gaps. In this particular device, 4H-SiC (3.23 eV) is used to absorb UV 

light. Stacking faults in SiC manifest as other polytypes with smaller bandgaps, 

specifically 3C- (2.40 eV), 6H- (3.0 eV), or 8H-SiC (2.86 eV),86 which could lead to a 

spatially dependent visible response within the device area. A more homogenous 

contribution to sub-bandgap photocurrent is expected within the area of the EG contact 

from the other effects mentioned. Due to the large dopant ionization energies in SiC, 

DAP states have been shown to lead to luminescence and photoconductivity in the visible 

region.87,88 Thermal equilibrium between DAPs and band-edge states could give rise to 

carriers with a sufficient effective mobility to explain the transistor action. Internal 

photoemission can be evaluated on the basis of the photon energy dependence. 

 Here, we used scanning photocurrent microscopy (SPCM) with sub-bandgap 

excitation (444 nm) to map the spatial extent of the photocurrent response and examine 

the influence of localized polytypes on the sensitivity to sub-bandgap light. SPCM is a 
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technique that uses a raster-scanned local excitation spot to identify spatial variations in 

photocurrents, which can be used to identify localized defects and examine characteristic 

length scales for carrier transport devices. SPCM has emerged as a valuable tool for 

functional imaging of optoelectronic materials1, such as semiconductor nanowires2–5, 

two-dimensional semiconductor materials14, nanoporous layers of dye-sensitized solar 

cells15,16, and perovskite absorbers19,20. The spatial resolution of SPCM allows for clear 

representation of polytype heterojunctions, should they exist, and allows for us to 

discriminate between localized and homogenous origins of sub-bandgap response. By 

choosing to illuminate at 444 nm, we can resolve SiC polytypes that exist in the visible 

absorption range. Additionally, we directly measured the action spectrum using 

collimated monochromatic light. 

 

Figure 3.1. Schematic of SPCM setup for analysis of EG/SiC SEPT device. Voltage 
is applied through a tungsten probe arm contacted to the graphene surface. A pre-
amplifier and lock-in amplifier are used to isolate the photocurrent signal at the 
frequency of the chopped laser light. The reflected laser signal is also captured and is 
used to map the physical features of the device. Copyright 2018 IOP Publishing. 
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3.2. SPCM experimental setup and device operation 

Figure 3.1 schematically represents the device architecture and contact arrangement. A 

p-SiC base epilayer with acceptor concentration ~3×1014 cm−3 and thickness ~30 μm is 

grown by CVD on commercially available (0001) 4° off-axis Si-face n+-SiC wafers. The 

EG is grown by thermal sublimation of the p-SiC epilayer surface in vacuum at 1350°C. 

The fabrication of this device and spectroscopic investigation of similar EG film samples 

are described elsewhere.85,89,90 The EG is a continuous film 2-3 monolayers thick and 

oxygen plasma reactive ion etching is used to define 275 µm diameter circular emitter 

contacts. The etching process removes EG outside of the contact area but does not 

penetrate the p-SiC base epilayer. The sample was then placed in an Aixtron horizontal 

hot-wall reactor where the sample was ramped to 1400°C, in 60 slm of Ar flow at 

200 mbar to prevent additional growth of EG and promote the desorption of water and 

other molecules possibly on the EG surface after being exposed to air. The sample was 

cooled to 1050°C, and gas switched to H2 flowing at 80 slm at 900 mbar for 60 minutes. 

This causes hydrogen passivation of the Si dangling bonds on the SiC epilayer, 

eliminating the covalent bonding between the epilayer and the first carbon layer, 6√3 

buffer layer, which is promoted to an additional monolayer of EG and forms quasi-

freestanding EG. The polarization field from the hexagonal epilayer gives rise to a p-type 

charge density of ~1×1013 cm−2 in the quasi-freestanding EG, from ~5x1012cm−2 n-type 

observed prior to intercalation.91  

Under operation, the graphene film is contacted directly through the use of a tungsten 

probe. The voltage between the substrate (contacted through the bottom side) and probe 

is controlled to bias the device. A potential barrier of ~0.5eV is reported for EG/n-SiC 
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and a high barrier of ~2.7eV for p-SiC on the SiC substrate (0001) surface.90,92 Figure 

3.2 shows a band diagram for the SEPT device in three different operating modes. Figure 

3.2a shows the device at zero bias. When the substrate is brought to positive voltage with 

respect to the probe, such that the graphene acts as the emitter and the substrate as the 

collector, this defines “graphene emitter” mode, with VCE > 0 (Figure 3.2b). If the 

graphene is instead brought to positive voltage with respect to the substrate, so that the 

EG/SiC contact acts as the collector, this defines “graphene collector” mode (Figure 

3.2c). To avoid confusion, we will use negative values of VCE to denote measurements in 

graphene collector mode.  

To form SPCM images, a mechanically chopped, focused laser spot is scanned over the 

sample. Dual lock-in amplifiers allow for simultaneous recording and mapping of the 

resulting photocurrent and the specularly reflected laser beam, enabling good registry of 

SPCM maps with structural features. The photocurrent measured through the lock-in 

 

Figure 3.2. (a) SEPT device at VCE=0. (b) SEPT device in graphene emitter mode 
(VCE>0). Electron-hole pairs are generated by light absorption. Holes are reflected 
from the graphene by the large Schottky barrier, and in response, electrons are 
injected from the graphene emitter into the base region and move to the collector 
region, contributing gain. (c) SEPT device in graphene collector mode (VCE<0). 
Copyright 2018 IOP Publishing. 
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amplifier represents only the photocurrent that occurs at the same frequency as the 

scanned laser beam. 

3.3 SPCM results under normal device operation 

Figure 3.3 presents an SPCM image, as well as spot current-voltage (I-VCE) curves, 

recorded for a representative device under 444 nm excitation. In this particular device, 

the circular EG electrode has been scribed to form two separate semi-circular devices, as 

can be seen in the specular reflection map (Figure 3.3a). The SEPT devices generally 

display a large dark current at positive VCE (graphene emitter mode), likely because the 

SiC p-n junction, which is at reverse bias in this condition, is poorly rectifying because it 

is not mesa isolated. In contrast, very little dark current (≪ 1 nA) is observed at VCE < 0 

 

Figure 3.3. (a,b) Simultaneously recorded reflected light and AC photocurrent maps of 
a SEPT device in graphene collector mode under 444nm (sub-bandgap) excitation 
(VCE=−10 V, 2.24 mW, chopped at 284 Hz). The circular graphene electrode has been 
scribed to form two separate devices; photocurrent is only detected from the device 
contacted by the tungsten probe arm (dark shape at the top of images). Scale bars, 50 
μm. (c,d) Signal profiles of the reflected light and photocurrent images along the lines 
indicated in (a,b). Signals are averaged in the orthogonal direction within the width 
indicated by the red boxes. Blue trace in d shows the near-exponential decay of the 
falling edge signal in the photocurrent profile. (e) Current-voltage characteristics of the 
device from VCE=−10V (graphene collector) to VCE=60V (graphene emitter). A large 
dark current results from the base-collector junction at positive voltages due to poor 
isolation of the junction. (f) DC photocurrent of the device in graphene collector mode 
(VCE < 0). (g) DC photocurrent of the device in graphene emitter mode (VCE > 0). 
Copyright 2018 IOP Publishing. 



47 

(graphene collector mode), suggesting a high degree of rectification at the EG/p-SiC 

Schottky junction.  

Notably, a non-zero photocurrent is detected under 444 nm illumination in both modes, 

indicating that this radiation is capable of exciting a base current. However, the 

maximum responsivity is much smaller, by a factor of ~103, than that recorded under UV. 

The photocurrent in graphene emitter mode is more than 100 times larger than for 

graphene collector, a contrast that is also observed under UV illumination of this and 

similar devices, suggesting a common carrier transport process for photocurrent 

appearing under visible and UV excitation.  

Figure 3.3b shows a representative SPCM map of this device at VCE = −10V (graphene 

collector). The response is clearly seen to be strongly localized to the graphene electrode 

that is directly contacted by the probe arm. The fact that photocurrent is only collected 

from one of two devices in close proximity confirms the role of EG as a transparent and 

conductive emitter (or collector) contact in the device architecture. The high in-plane 

conductivity of the EG layer is illustrated by a flat response within the contiguous region. 

 

Figure 3.4. (a) SPCM map of a SEPT device in graphene emitter mode (VCE = 20V) 
on the opposite side of the same device in Figure 3.3. (b) SPCM map of a SEPT 
device in graphene emitter mode (VCE = 20V) on the same device as Figure 3.7 
showing a localized stacking fault. Scale bar = 50 μm. 
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A similar pattern is observed in graphene emitter mode (Figure 3.4a); however, the very 

low dark current and low gain in graphene collector mode results in detailed functional 

SPCM images. The edge of the EG region results in a sharp cutoff in the reflected signal 

of the device as seen in the profile plotted in Figure 3.3c. In contrast, the edge of the 

corresponding photocurrent signal (Figure 3.3d) shows a measurable roll-off with 

distance with an approximately exponential profile. The logarithmic slope suggests a 

decay constant of about 10 µm. 

 

 

 

Figure 3.5. (a) Current-voltage characteristics of the device from VCE=-10V 
(graphene collector) to VCE=60V (graphene emitter) in the dark and under UV (365 
nm) illumination. (b) Photocurrent of the device in graphene collector mode (VCE < 
0). (c) Photocurrent of the device in graphene emitter mode (VCE > 0).  
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3.4.  Responsivity, absorption, gain, and visible-rejection ratio in graphene-

emitter mode 

The large UV responsivity observed for the SEPT device is a direct consequence of the 

large photocurrent gain hFE that is achieved in graphene-emitter mode. In the previous 

report, hFE was calculated on the basis of the observed photocurrent, and an estimate of 

the maximum base current that could be generated by light absorption within the entire 

base width WB from the known absorption coefficient αabs of 4H-SiC (80 cm−1 at 

365 nm).93 An absorbing layer of thickness W that has absorption coefficient αabs at 

photon energy Eλ can be expected to generate a maximum “base responsivity” Rb, 

corresponding to transit of one electron per photon absorbed, given by: 𝑅𝑏 = 1−𝑒−𝛼abs∙𝑊𝐸𝜆 , 

where Rb is in A/W and Eλ is given in eV. This can be compared to the measured total 

responsivity responsivity R = I/P. For a bipolar phototransistor, Rb represents the base 

current, and R is related to it by the optical gain hFE: 𝑅 = 𝐼𝑃 = (1 + ℎ𝐹𝐸) ∙ 𝐼𝐵𝑃 = (1 +ℎ𝐹𝐸) 𝑅𝑏. For SiC under 365 nm illumination, the absorption coefficient is 80 cm−1. 

Accordingly, the maximum base responsivity at this wavelength considering absorption 

along the entire base layer width (W = WB = 30um) is: 𝑅𝑏 = 1−𝑒−𝛼∙𝑊𝐵𝐸365 = 0.0627 A/W. 

 In spot measurements under 365 nm excitation, the photocurrent responsivity was 

found to increase slowly with increasing VCE and was maximized at low incident power 

(Figure 3.5 and Table 3.1). The maximum observed responsivity was 3.7 A/W, 

comparable to the 7.1 A/W reported previously, and indicating current gain of at least hFE 

= 58 for the present device. For sub-bandgap excitation at 444 nm, the maximum 

responsivity was 3.3×10−3 A/W, corresponding to a visible-rejection ratio >103 between 
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365 and 444 nm. The 4H- polytype is nominally transparent at 444 nm (bandgap ca. 3.2 

eV or 387 nm), but comparison of the observed responsivities can be used to assign a 

minimum absorption coefficient αabs ≈ 0.052 cm−1 at 444 nm if hFE is considered to be 

independent of the photon energy: that is, that the transport process following visible 

excitation is fundamentally the same as following UV excitation. As discussed below, a 

plausible explanation for this absorbance is DAP excitation in the base epilayer that 

results in base current through thermal or field-assisted ionization into band-edge states. 

3.5.  Responsivity, absorption, gain, and visible-rejection ratio in graphene-

collector mode 

In graphene-collector mode, a much smaller photocurrent is detected than for graphene-

emitter, both under UV excitation and at 444 nm. This value indicates minimal gain 

corresponding to base transport factor αT ≪ 1. A possible reason for this is a large surface 

recombination velocity at the EG/SiC interface. The absence of bipolar gain in this mode 

offers another opportunity to examine the absorption coefficient below the SiC bandgap. 

For a photodiode at reverse bias, photocurrent should scale with depletion width WD as it 

Table 3.1. Responsivity of a SEPT device at VCE = 60 (graphene emitter). 

Laser 
Power at 
444 nm 
(μW) 

Photocurrent 
(nA) 

Responsivity 
(A/W) 

Incident 
Power at 
365 nm 
(μW) 

Photocurrent 
(μA) 

Responsivity 
(A/W) 

100 333 3.31 x 10-3 0.337 1.25 3.70 
185 367 1.98 x 10-3 0.625 1.91 3.05 
272 533 1.96 x 10-3 1.037 2.68 2.58 
360 533 1.48 x 10-3 1.598 3.55 2.22 
445 567 1.27 x 10-3 2.72 3.90 1.43 
533 567 1.06 x 10-3 4.03 3.99 0.99 
610 633 1.04 x 10-3 5.36 3.57 0.67 
688 667 9.69 x 10-4 6.72 3.65 0.54 
769 667 8.67 x 10-4    
845 633 7.50 x 10-4    
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is in this region that carriers can be most effectively separated. If so, the photocurrent 

should increase approximately as the square root of the applied voltage, and such an 

increase is indeed observed up to VCE ≈ −10 V. Larger biases led to noisy signals and 

were thus avoided in the present studies. The expression for the base-collector depletion 

width, WD, under applied bias is as follows: 𝑊D = √2𝜀(𝑉𝑏𝑖−𝑉)𝑞𝑁a , where ε is the dielectric 

permittivity of the semiconductor (ε = εrε0 with εr = 10 for SiC), Vbi is the built-in voltage 

(taken as 2.7 V), V is the applied bias (= -VCE), q is the elementary charge, and Na 

represents the net ionized acceptor density. 

Given the low gain in graphene-collector mode, we can model the dependence of the 

photocurrent on voltage by considering photocurrent generation to be limited to the 

depletion zone (W = WD), with the absorption length L = αabs
-1 entering as a parameter: 𝐼 ∝ 𝑃(𝜆)𝐸𝜆 = 𝑃0(𝜆)𝐸𝜆 (1 − 𝑒−𝑊D/𝐿), where P0(λ) is the incident laser power at a given 

wavelength and Eλ is the photon energy in electron volts. Figure 3.8 shows the predicted 

I vs –VCE curve overlaid on the experimental data at several optical powers assuming one 

 

Figure 3.6. Estimation of the absorption length of donor-acceptor 
pair absorption in a SEPT device measured at VCE < 0V (graphene 
collector) under 444 nm illumination. 
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electron per absorbed photon, and a value of L ≈ 50 cm as indicated. This corresponds to 

αabs ≈ 0.02 cm-1 at 444 nm, which represents a lower bound for the absorption coefficient, 

as the actual quantum yield may be less than unity. Overlaying calculated photocurrent 

vs. voltage curves on the data from Figure 3.3f (Figure 3.6) allows the assignment of a 

minimum αabs ≈ 0.02 cm−1, which is on the same order as αabs estimated in graphene-

emitter mode.  

3.6. Localized photocurrent signals – including an 8H- stacking fault 

Notably, the photocurrent signal profile (Figure 3.3g) shows that photocurrent 

generation is localized to the portion of the device connected to the probe arm, 

confirming the role of the EG/p-SiC junction in the function of the SEPT device. 

However, the large difference in responsivity between graphene collector and graphene 

emitter modes suggests that carrier transport may be strongly limited by recombination at 

the EG/p-SiC interface. In a bipolar phototransistor, the majority of base current 

generation occurs at the base-collector interface, as this region is depleted and possesses 

the largest electric field. Consequently, surface recombination is expected to much more 

strongly influence the gain in graphene-collector mode. Surface recombination will also 

tend to limit lateral transport of electrons in the base over distances larger than the 

depletion width WD (in graphene-collector mode) or base width WB (in graphene-emitter 

mode). Consistent with this picture, the photocurrent response is more strongly localized 

in graphene-collector than in graphene-emitter mode.  

SPCM also reveals localized features in these SEPTs that increase visible 

photoresponse. In the SPCM micrograph in Figure 3.7a, recorded for a different device 

on the same chip as the device in Figure 3.3, the circular shape of the graphene electrode 
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is overlaid by a prominent feature with the shape of a slender right triangle that displays 

an elevated response under 444 nm excitation. This feature is prominent in graphene 

collector and graphene emitter mode SPCM images and is not associated with any 

surface features visible in the reflected light image. The shape and orientation of these 

responses provide insight as to the type and origin of the defect. In 4H-SiC epitaxial 

structures, basal plane dislocations have been shown to nucleate stacking faults (SF) of 

smaller bandgap 3C- and 8H- polytypes94,95 that absorb blue light.96 The shape and 

orientation of this defect are hallmarks of a triple or quadruple Shockley stacking fault 

(3SSF or 4SSF) in the 4H-SiC base epilayer.97,98 The length of the defect, which extends 

to the projected length of the epilayer thickness, indicates an in-grown stacking fault 

propagating from the substrate interface. With the 4° miscut and 30 µm p-SiC epilayer 

used here, the resulting stacking faults should extend 30𝜇𝑚 tan 4°⁄ ≈ 400𝜇𝑚 before 

intercepting the surface, as is observed here. Such defects most commonly appear as the 

4SSF type.98 The 4SSF can equivalently be described as the inclusion of a complete layer 

of 8H-SiC, with thickness ~2 nm, within the 4H-SiC crystal. The localized character of 

this feature and the low and flat background response make it prominent in SPCM 

images.  

Figure 3.7c and Figure 3.7d show the photocurrent resulting from the absorption of 

444 nm light centered on the apparent stacking fault in graphene collector and graphene 

emitter mode, respectively. In graphene collector mode, as the bias is increased, the 

photocurrent reaches a constant value that varies linearly with light intensity (Figure 3.7c 

and Figure 3.8a), possibly indicating an activated process for base current generation 

following initial excitation of states specific to the SF. In graphene-emitter mode, the 
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impact of the SF is most prominent at low voltage (<10 V) and light intensity, as the 

response with respect to power and voltage appears to saturate at modest values. When 

operated at VCE=60 V, a responsivity of 4.60×10−3 A/W was measured on the feature at 

under 100 µW of 444 nm illumination, which is only slightly larger than the 3.31×10−3 

A/W reported for the device in Figure 3.3 and is also much lower than the responsivity 

under UV excitation. This indicates that this SEPT architecture may be resilient to the 

influence of common SiC defects under normal operation.  

3.7. Band-edge response and investigation of the origins of sub-bandgap 

photocurrent 

 To characterize the band edge response and possible origins of sub-bandgap 

photocurrent generation in the SEPT devices, we recorded the action spectrum 

(responsivity versus wavelength) of the devices shown in Figure 3.3 and Figure 3.7, in 

Figure 3.7. (a) AC photocurrent map of a separate SEPT device in graphene 
collector mode showing the presence of a localized region of enhanced sub-bandgap 
response, using same measurement condition as in Figure 3.3. Scale bar, 50 μm. (b) 
Photocurrent profile along the line indicated in a. Inset: Magnified view and log 
scale trace of falling edge of graphene contact. (c,d) Photocurrent-voltage 
characteristics of the device when illumination is centered on the bright feature in 
graphene collector and graphene emitter mode, respectively. Copyright 2018 IOP 
Publishing. 
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graphene emitter and graphene collector modes. Figure 3.9 shows results recorded under 

collimated, wide-area excitation light emerging from a monochromator paired with a 

xenon lamp. The photon flux was measured with a calibrated Si diode and was multiplied 

 

Figure 3.8. (a) Photocurrent versus laser power for a device without stacking faults 
(blue) and with a localized stacking fault (orange) at VCE = -10V (graphene collector) 
under 444 nm illumination. (b) Photocurrent versus laser power for a device without 
stacking faults (blue) and with a localized stacking fault (red) at VCE = 60V 
(graphene emitter) under 444 nm illumination. While the total photocurrents of these 
devices are different, the shape of the signals are similar in graphene emitter mode, 
but the stacking fault introduces a significantly increased linearly dependent 
photocurrent in collector mode. 

 

Figure 3.9. Action spectrum (relative responsivity versus wavelength) for SEPT 
devices under collimated illumination at 287 Hz. (a) Log-scale action spectra at 
VCE=+20V and VCE=−10V for each of the devices shown in Figures 3.3 and 3.4. 
Incident optical power is obtained by measured photon flux by EG mesa area. The 
detection limit marked by correspondingly colored fine dotted lines. The two devices 
have slightly different detection limts based on their active areas. (b) Action spectra 
of device without SF in graphene emitter and graphene collector modes, plotted on a 
linear scale. The action spectrum in graphene collector (VCE=−10V) has been 
multiplied to give the same value at 330 nm to facilitate comparison. Copyright 2018 
IOP Publishing. 
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by the active SEPT device area to obtain the incident optical power, by which 

responsivity was calculated from the measured photocurrent.  

The spectral shape between the two samples in each mode is similar, with the 

photocurrent rising steeply at wavelengths shorter than the SiC band edge. This indicates 

that a majority of the photocurrent signal in response to UV radiation at 365 nm, as 

previously reported, results from excitation of carriers across the SiC bandgap. At lower 

photon energies (longer wavelengths), the log-scale plot reveals a weak sub-bandgap 

response extending out to ~520 nm for both devices tested in graphene emitter mode. 

This response is not seen in graphene collector mode but may lie beneath the detection 

limit of ~10−6 A/W. Notably, the presence of the 4SSF does not appear to strongly 

perturb the action spectrum in graphene emitter mode, despite its prominence in SPCM 

images. We emphasize that spot illumination was used in SPCM while wide-area 

illumination at much lower power density is used to measure the action spectrum. The 

differing relative contribution of the SF under the two conditions could be related to 

differing saturation rates of responsivity vs. power between the SF and surrounding 

active region. In graphene collector mode, a slightly elevated above-bandgap responsivity 

is seen in the action spectrum of the device with SF. The sub-bandgap responsivity could 

not be compared as it falls below the detection limit for both devices due to the absence 

of significant bipolar gain in this mode.  

From the action spectrum, it is possible to extract additional information on the band-

edge characteristics in the active layer of the device. In an indirect bandgap 

semiconductor, the absorption coefficient varies approximately linearly with the square 

of the photon energy above the band edge: 𝛼abs = 𝑘(𝐸𝜆 − 𝐸𝑔)2, where k is a constant. 
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Accordingly a plot of αabs
½ vs. Eλ should give a straight line.93 This property can be used 

to estimate the band edge energy from the measured responsivity 𝑅 by taking into 

account the amount of light absorbed by a layer of thickness W, and a gain g that is taken 

to be independent of photon energy: 𝑅 = 𝑔 𝑅𝑏 = 𝑔 (1−𝑒−𝛼abs𝑊)𝐸𝜆 . This equation can be re-

arranged to find: 𝛼abs𝑊 = −ln (1 − 𝑅 𝐸𝜆𝑔 ), so that [− ln (1 − 𝑅 𝐸𝜆𝑔 )]1/2 = ( 𝑘𝑊)1/2  (𝐸𝜆 −
𝐸𝑔). 

A plot of the left-hand side vs. Eλ is expected to yield a straight line that should allow 

the band gap to be read off by extrapolating the data to the x intercept. A challenge is that 

the true gain g is not necessarily known independently, and it may be diminished from its 

 

Figure 3.10. (a,b) Photocurrent absorption function (F1/2) vs. optical bandgap (Eg) at 
VCE=−10V for a device without and with the presence of a stacking fault, 
respectively. (c,d) F1/2 vs. optical bandgap at VCE=+20V for a device without and 
with the presence of a stacking fault, respectively. Dashed lines indicate linear fits, 
where the energy-intercept indicates the effective indirect bandgap of the absorbing 
material within the device. Copyright 2018 IOP Publishing. 
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DC value in an AC lock-in measurement. Accordingly, a nominal gain g′ can be 

introduced to define a value F based on the observed responsivity: 𝐹 = − ln (1 − 𝑅𝐸𝜆𝑔′ ). 

Nonetheless, we see that in the limit of low light absorption near the band edge, (αabsW ≪ 

1), linear approximations for αabsW and F are valid and they will differ by constant factor: 𝛼abs𝑊 = − ln (1 − 𝑅 𝐸𝜆𝑔 ) ≈ 𝑅𝐸𝜆𝑔 ≈ 𝐹 𝑔′𝑔 . As a result, a plot of F½ vs. Eλ should 

approximate a straight line even if an inaccurate value of g′ is selected. In our analysis of 

the effective optical bandgap (Figure 3.10), we have used g′ = 1. 

Figure 3.10 displays F½ vs. photon energy for each device in graphene emitter and 

graphene collector modes. Notably, linear fits to the above-bandgap portions of the 

graphene collector mode plots reveal intercepts close to 3.2 eV for both devices, 

representative of the band gap of 4H-SiC. However, fits to the graphene emitter mode 

responses show a slightly smaller effective bandgap, just over 3.0 eV (410 nm). To 

explain this discrepancy, we first note that the two measurements are most sensitive to 

light absorption at different depths within the device. In graphene collector mode, we 

expect photocurrent generation near the surface. In graphene emitter mode, base current 

generation is expected to be localized to the collector p-n junction between the epilayer 

and substrate. Since illumination is provided from the top (graphene side), the light that 

reaches the base-collector junction in this mode has been filtered by absorption in the 

near-surface portion of the epilayer. This could result in an ultraviolet response that rises 

less rapidly with energy and could create the appearance of a smaller band gap. However, 

such internal filtering is expected to attenuate the incident light by only 21% at 365 nm 

based on the published absorption coefficient for 4H-SiC,93 suggesting that additional 

factors may play a role. 
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The sub-bandgap tail visible in the graphene emitter mode signals can be considered in 

the context of photoluminescence results on similar 4H-SiC epilayers (without graphene), 

which showed emission at ~515 nm attributed to DAP recombination.87,88 This indicates 

that photons at 444 nm have sufficient energy to excite localized DAP states. The action 

spectrum and SPCM results are consistent with excitation of DAPs, followed by thermal 

and/or field-assisted dissociation to yield free carriers, as the source of the sub-bandgap 

response and the limiting factor in the VRR in the devices studied to date. In contrast, we 

note that the observed behavior is inconsistent with internal photoemission at the EG/p-

SiC junction. Firstly, based on the band alignment, internal photoemission would be 

expected to cut in at 2.7 eV or ~460 nm, the energy required to transfer a hole from 

graphene to the SiC valence band. Secondly, the gain is small in graphene-collector 

mode, indicating that holes excited across the EG/SiC junction are not efficient in 

providing a base current. In the PL results, DAP emission was found to scale with boron 

content.87,88 This offers a potential route to improvement in the VRR. In particular, in 

site-competition epitaxy,  boron, the characteristic acceptor impurity, is crowded out by 

growing SiC at a low C/Si ratio, leading to low-B epilayers that may show better VRR.99 

Another approach is through the use of TaC coated reactor furniture, where the free Ta in 

the coatings acts as a getter for boron.100  

3.8. Carrier transport characteristics of EG/SiC device from SPCM and the 

origins of photocurrent enhancement from an 8H- stacking fault 

The scanning photocurrent images can be used to examine carrier transport length 

scales in the SEPT devices. In particular, if we interpret the ~10 μm decay length of 

photocurrent with distance outside the edge of the graphene electrode (Figure 3.3d) as 
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the characteristic distance Ln for lateral electron diffusion near the EG/p-SiC interface, a 

lifetime τn ≈ 50 ns is obtained based on the reported electron mobility ~900 cm2/V-s for 

4H-SiC at 300 K.101 Considering recombination to be dominated by a single interface 

indicates a surface recombination velocity S up to WB/τn ~ 105 cm/s. Such recombination 

velocities have been reported for SiC p/n+ epilayers102, though the larger gain and slower 

roll-off in graphene emitter mode indicates a dominant role of the EG/p-SiC interface in 

the present case. We note that surface state densities at the EG/SiC interface can be 

modulated through chemical treatments, such as H-intercalation.90,103–106 

We now briefly consider the mechanism by which an 8H- stacking fault might lead to 

local enhancement of the sub-bandgap photocurrent. The reported bandgap for 8H-SiC is 

2.86 eV (435 nm),107 with most of the offset with 4H- predicted to fall in the conduction 

band.86 However, reports on 3SSF and 4SSF defects have found PL emission at 2.58 eV 

and 2.70 eV respectively.97 As such, in either case the 444 nm excitation light used in 

SPCM falls close to the band edge and could lead to significantly enhanced excitation on 

the defect compared to elsewhere. A simple estimate of the photocurrent that might be 

expected from such a defect, obtained by considering 2.70 eV to be the 4SSF band gap 

energy and using the same takeoff of αabs with respect to energy that is found for 4H-SiC, 

predicts αabs ≈ 20 cm−1 at 444 nm (2.80 eV),93 giving base responsivity Rb ≈ αabsW/Eph ≈ 

1.4×10−6 A/W for W=2 nm. This value is small compared to the 5.6×10−5 A/W we 

detected for DAP absorption in the absence of the SF and is exceeded by the DC spot 

photocurrent measurements recorded on the defect in graphene collector mode, 

suggesting that an improved model of light absorption and/or elevated bipolar gain in the 

presence of such defects is necessary. Indeed, the maximum graphene-collector mode 
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photocurrent on the SF (≈10−4 A/W, Figure 3.8) exceeds Rb for DAP absorption in the 

full base width as established in emitter-mode measurements on the SF-free device. 

Figure 3.11 shows the band diagram and sub-bandgap excitation processes that we 

have identified in the SEPT devices studied here. A small and diffuse contribution arises 

from DAPs that occur throughout the base region but are most effective in generating 

band-edge carriers in depletion regions. In contrast, in considering the SF contribution, 

we note that the depth of the SF varies with position in the device studied in Figure 3.3 

according to the 4° miscut, and yet a photocurrent signal is observed along its length in 

both operating modes, indicating some photocurrent generation occurs from the defect 

even when it does not locally lie within the base-collector depletion region. The low gain 

in graphene collector mode was attributed to a high surface recombination velocity, S, but 

 

Figure 3.11. Band structure of the device in graphene emitter mode 
showing visible (dotted blue arrows) and UV (solid violet arrow) 
absorption mechanisms. Visible light can be absorbed by stacking 
faults (SF) that shrink the bandgap, allowing longer wavelengths of 
light to be absorbed. Donor-acceptor pairs (DAP) create sub-bandgap 
states (dotted black lines) that  also absorb visible light. UV absorption 
can also occur at SFs or DAP states, alongside bandgap absorption. 
Copyright 2018 IOP Publishing. 
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the SF will introduce excitation deeper within the structure that yields base current and 

enables gain. Indeed, an elevated total photocurrent with voltage dependence 

characteristic of bipolar gain is seen for excitation on the defect in graphene collector 

mode as shown in Figure 3.7c. Overall, SEPT device operation on the basis of electron 

injection at the EG/p-Si Schottky emitter contact is confirmed, to the exclusion of simple 

photoconductive gain, from the strongly asymmetric photocurrent response with respect 

to bias direction.  

3.9. Summary and future work 

As has been demonstrated here, the presence of DAP absorption and stacking faults, 

discovered by SPCM, can alter the visible rejection ratio. The pairing of 4H- and 8H- SiC 

polytypes results in a quasi-type-II heteropolytype junction (Figure 3.11). We note that 

by changing the polytypes forming such junctions, the conduction band offset can be 

controlled, leading to controllable quantum well depths.86 These types of heterostructures 

have been shown to trap two-dimensional electron gases (2DEG) and two-dimensional 

hole gases (2DHG) in 3C-/4H- and 3C-/6H-SiC heterojunctions on the carbon and silicon 

faces, respectively.108–110 Similar heterostructures based on III-V materials, such as 

GaN/AlGaN, exhibit suitable performance for high frequency and high power 

applications through the use of polarization doped high-electron mobility transistors 

(HEMTs).111,112 Additionally, polytype heterojunctions that result in reproducible 

quantum wells could potentially be used as quantum well infrared photodetectors 

(QWIPs). By tuning the intersubband transition energy, the detection wavelength can be 

changed. This has been well documented, studied, and commercialized using III-V 

semiconductors.113 SiC has been shown to have very minimal thermal expansion of the 
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lattice in the growth of different polytypes.114 This small lattice difference opens an 

avenue for heteropolytype structures formed by a sudden, unstrained change in crystal 

structure or stacking, instead of the traditional method of abrupt compositional change, as 

used in GaAs/AlGaAs. 

In summary, scanning photocurrent microscopy is a valuable tool in detection of 

polytypes in SiC-based transistors. Further inspection of I-V characteristics and the 

device action spectrum indicates the visible rejection ratio of this UV phototransistor is 

estimated to be on the order of 103. Control of quantum wells produced through polytype 

heterojuctions could lead to new applications for SiC, including quantum well 

photodetectors. This shows promise that the evolution of polytypes in SEPTs do not 

compromise its role as a UV photodetector and open these structures up to new 

applications. Additionally, control of these defects will remain an important and 

interesting metric in the performance of SiC-based power devices. The spatially-resolved 

polytype heterojuction revealed by sub-bandgap SPCM confirms the value of this 

approach in analyzing the electronic properties of such junctions. 

3.10. Methods and materials 

3.10.1 SPCM and current-voltage characteristics.  

A home-built microscope with a motion-controlled stage was used for simultaneous 

reflection imaging and photocurrent mapping. A diode laser (λ = 444 nm) is mechanically 

chopped (~287 Hz) and focused to a diffraction-limited spot through a 20x objective lens 

(NA = 0.42, Mitutoyo Corporation). At each point the reflected signal was recorded for 

imaging by a lock-in amplifier (Ametek 7230), and the photocurrent was recorded by a 

pre-amplifier (DL Instruments 1211) and lock-in amplifier combination (SRS SR830). A 
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Keithley 2636A sourcemeter was used to apply voltage, as well as measure spot current-

voltage characteristics. Reflected and photocurrent maps were plotted and analyzed using 

MATLAB. All images were measured at a 2 μm step size. 

3.10.2 Action spectrum.  

Collimated, wide area illumination was produced from a monochromator paired with a 

xenon lamp at 10 nm wavelength intervals. The excitation light was then mechanically 

chopped at ~287 Hz and directed onto the SEPT device to induce a photocurrent. The 

photocurrent was then measured using a lock-in amplifier (SRS SR830). The photon flux 

was measured with a calibrated Si diode and was multiplied by the active SEPT device 

area to obtain the incident optical power, by which responsivity was calculated from the 

measured photocurrent. 

  



65 

CHAPTER 4 

ULTRAVIOLET AND PHASE-SENSITIVE PHOTOCURRENT MAPPING REVEALS 

LARGE VISIBLE REJECTION RATIO AND NON-LOCAL CURRENT GENERATION IN 

EPITAXIAL GRAPHENE/SIC BIPOLAR PHOTOTRANSISTORS*† 

4.1. Introduction 

Recently, there has been interest in the epitaxial graphene(EG)/SiC material system due 

to the tunable native Schottky junction92 and potential for SiC integrated circuit 

manufacturing on 6-in. wafers. UV detection has been demonstrated in bipolar 

phototransistors featuring a transparent EG emitter grown on a p-SiC base epilayer on n-

type SiC substrates. EG is a UV transparent material, which enables large area windows 

for high responsivity UV-detection. EG/SiC based UV detectors with improved 

responsivities were demonstrated by reducing the reflection/absorption losses at the 

detector surface.115 The Schottky-emitter bipolar phototransistor (SEPT) structure 

reported in Chapter 3 showed a high responsivity of up to 7 A/W and bipolar gain of 113 

at 365 nm in Schottky emitter mode due to efficient minority carrier injection from EG 

into the carefully prepared p-type SiC Schottky barrier.85,116 Minority carrier injection, 

normally a minimal contribution in Schottky junctions, is efficient at EG/p-SiC junction 

because of high electron mobility, large barrier for holes, and very large recombination 

velocity at the SiC p-n junction leading to large diffusion current for electrons through 

                                                           

* Reprinted with permission from Chava, V. S. N.; Barker, B. G.; Balachandran, A.; Khan, A.; Simin, G.; 
Greytak, A. B.; Chandrashekhar, M. V. S. Appl. Phys. Lett. 2017, 111 (24), 243504. 
https://doi.org/10.1063/1.5009003 with permission of AIP Publishing. 
†
 (in preparation) Barker, B. G.; Chava, V. S. N.; Balachandran, A.; Khan, A.; Simin, G.; Chandrashekhar, 

M. V. S; Greytak, A. B. 2018 

https://doi.org/10.1063/1.5009003
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the base. However, this device suffered from a large dark current due to lack of 

base/collector junction mesa isolation and poor visible rejection <102 at 400 nm (~103 at 

444 nm) in Schottky emitter mode. Moreover, this device did not show appreciable gain 

in Schottky collector mode.116 For detection applications, these issues must be resolved. 

Here, I used scanning photocurrent microscopy (SPCM) with sub-bandgap excitation 

(444 nm) and above-bandgap (370 nm) illumination to map the spatial extent of the 

photocurrent response and to examine the working principles of the device under both 

types of illumination. By interpreting the spatial photocurrent response, we have 

proposed a working model of the excited carriers in this device, in both Schottky emitter 

and Schottky collector modes, under 444 nm and 370 nm light. 

4.2. Device properties 

In this work, we study a bipolar junction transistor (BJT) device similar to the 

previously reported device in Chapter 385,116 having an EG/p-SiC/n+-SiC structure with a 

thinner base (12.8 µm) to improve the base transit factor and hence collection of the 

minority carriers injected by bipolar action.85 EG was grown on SiC using a 

homoepitaxy-compatible SiF4 gas precursor.117 This EG growth method allows for 

accelerated growth of EG due to being more thermodynamically favorable, allowing for a 

wider range of EG thicknesses and quicker device preparation.117 Figures 4.1a and 4.1b 

schematically represents the device architecture of the previous device and the device 

discussed here.  

For phototransistor device fabrication, the 12.8 µm thick p-SiC base epilayer is grown 

on an 8°offcut n+-4H-SiC (0001) substrate by a CVD reactor. The resultant doping of the 

epilayer, due to site-competition epitaxy,99 was found to be p-type 3.7×1014 cm−3 by the 
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Hg-probe capacitance-voltage (C-V) measurement. This thickness was based on previous 

work, where a diffusion length of ~10 µm was measured in the 30 µm base.85,116
 Thus, to 

improve the base transit factor and hence the current gain, a thinner layer was used, 

although this always comes at the expense of lower light absorption for long wavelengths 

(~30 µm for λ = 365 nm85,116). To achieve reasonable absorption in the range of 250–400 

nm,118 while maintaining adequate current gain, the 10 µm base thickness range was 

chosen, with the resultant 12.8 µm base obtained for our standard 30 min growth. The 

thickness of the EG is estimated to be ~15 monolayers. Circular graphene regions of 

diameter ~250 µm are defined for the device, using photolithography followed by O2 

plasma reactive-ion etching (RIE).  

 

Figure 4.1. a) Previous SEPT device as described in Chapter 3, featuring a 30 µm 

base epilayer and 2-3 ML of EG. b) Device under study in this work, featuring a 12.8 

µm base epilayer and ~15 ML of EG. c) Band structure of the device at short-circuit. 

d) Band structure of the device in Schottky emitter mode (VCE > 0). e) Band structure 

of the device in Schottky collector mode (VCE > 0). 
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Under operation, the graphene film is contacted directly by a tungsten probe. The 

voltage between the substrate (contacted through the bottom side) and probe is controlled 

to bias the device. A potential barrier of ~0.8 eV is reported for EG/n-SiC119 (higher than 

the 0.5 eV barrier height reported for thermally grown EG/SiC junctions90,92) and a high 

barrier of ~2.7 eV for p-SiC on the SiC substrate (0001) surface. The device is operated 

in two different modes according the bias supplied, which are shown in Figures 4.1c, 

4.1d, and 4.1e. When the EG/p-SiC junction is forward biased and the p-SiC/n+-SiC 

junction is reversed biased, the graphene acts as the emitter and the substrate as the 

collector − this defines “Schottky emitter” mode (SE), with VCE > 0. When the p-SiC/n+-

SiC junction is forward biased and the EG/p-SiC junction is reversed biased, the 

graphene acts as the collector and the substrate as the emitter − this defines “Schottky 

collector” mode (SC), with VCE < 0. To avoid confusion, we will use negative values of 

VCE to denote measurements in SC mode. 

4.3. Initial investigation of the device 

4.3.1 Current-voltage characteristics 

Initially, the current-voltage characteristics of the device are measured in the dark and 

under light in both SC (Figure 4.2a) and SE (Figure 4.2b) modes using a 

monochromatic light source (10 nm bandpass), from which the action spectra are 

reconstructed. Dark currents of 230 pA and 670 nA are observed in SC and SE modes at 

20 V. The significantly larger dark current in the SE mode is due to the lack of mesa 

isolation at the 10 µm deep backside SiC p-n junction, which is 1 cm2, compared to the 

~4.9 × 10-4 cm2 area of the graphene/SiC Schottky top junction, leading to a 

corresponding increase in the leakage area. However, the dark current in the SE-mode 
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devices, 670 nA, was still 3 orders of magnitude lower than 100 µA observed in our 

previous devices.85 We attribute this decrease to the significant optimization of our SiC 

epitaxy which has led to defect reduction in our epilayers.119–121 Mesa-isolation of the 

base-collector SiC p-n junction should significantly reduce the dark current in SE mode 

to values comparable to SiC p-n diodes, which are among the lowest of any wide 

bandgap UV detectors.122 

 

Figure 4.2. Experimentally measured dark and light current-voltage characteristics in 

SE (a) and SC (b) modes. c) A plot for the comparison of spectral responsivity of the 

phototransistor device in SE and SC modes of operation at VCE = 20 V from 250 to 

450 nm. Copyright AIP Publishing. 
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In SE mode, the current increases starting at VCE = 2 V, in agreement with the 2.4 eV p 

EG/SiC Schottky barrier estimated in Figure 4.1d. A small hump is seen near ~0.7 V, 

which we attribute to the presence of a Schottky barrier height from the edge, in addition 

to the larger one from the bulk. As the emitter-base junction turns on, the influence of the 

parasitic smaller barrier is eventually overwhelmed by the bulk owing to the much larger 

area associated with the higher barrier. This could be due to independent contributions 

from bulk and periphery of the graphene contact. 

In SC mode, bipolar behavior is seen until VCE ~ -10 V, beyond which the photocurrent 

increases sharply due to avalanche effects from the electric field concentration at the 

reverse-biased EG/SiC Schottky barrier periphery.123 In  SE mode, there is no periphery 

due to the lack of mesa-isolation, so avalanche breakdown at the device periphery is not 

expected. 

4.3.2. Responsivity and gain 

 Figure 4.2c shows the responsivity (R) of the device versus wavelength. R(λ) is 

defined as the ratio of the observed photocurrent (difference of current under illumination 

and in the dark) to the optical power incident on the device. The dependence of R on 

wavelength (λ) was measured under wide area illumination by comparison to a calibrated 

Si photodiode. To account for the difference in the collection area discussed above, the 

absolute responsivity, R, was calibrated to measurements performed at 365 nm with 

illumination through a microscope focused to an area < the device area. The R(λ) values 

are higher than expected from 100% quantum efficiency (dashed line in Figure 4.2c) for 

above bandgap (~390 nm for SiC) light illumination, indicating current gain in both SE 

and SC modes. A peak R (250 nm) = 25 A/W is observed in  SE mode which corresponds 
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to current gain g > 120, as given by124: 𝑅(𝜆) = (𝜆𝜂 ℎ𝑐⁄ ) 𝑞𝑔 = (𝜆(𝑛𝑚) 1.24 × 103⁄ ) 𝑔, 

where R is the measured responsivity (in A/W), λ is the incident light wavelength, h is 

Planck’s constant, c is the speed of light, and q is the electron charge, where we assume a 

quantum efficiency, η = 1, to estimate a lower bound on g in the final expression.  

In SC mode, a peak R (270 nm) = 17 A/W is measured, corresponding to g > 78 

although as discussed above, this is due to a combination of bipolar gain and avalanche 

gain from the device periphery at VCE = -20 V. At VCE > -10 V, avalanche gain from the 

periphery is effectively suppressed, and R is also reduced, leading to bipolar current gain, 

g ~10. In SC mode, the short absorption lengths in SiC (~1 µm at 270 nm) for short 

wavelength photons result in lower R due to the recombination of the photogenerated 

carriers at the EG/SiC Schottky collector junction.  

4.3.3. Recombination velocity 

In a long-base bipolar device, where we assume a minority carrier injection efficiency 

of ~1 and that g is limited by base transit, we estimate the recombination time, τrec, 

from125 𝑔 ≈ 2𝐷𝑛𝜏𝑟𝑒𝑐 𝑊𝑄𝑁𝑅2⁄ , where WQNR is the quasi-neutral region width at a given voltage 

from the difference in the base-width and the depletion region at the collector side, and 

Dn = 23 cm2/Vs is the diffusivity of electrons in SiC.126 This leads to τrec ~20 ns in both 

modes. In SC mode, the recombination velocity, S, at the EG/SiC interface is estimated 

from WQNR/τrec ~ 105 cm/s at VCE = -10 V, which is in excellent agreement with that 

estimated for sub-bandgap illumination previously.116 
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4.3.4 Visible rejection 

The UV-visible rejection ratio (VRR), R (270 nm)/R (400 nm), is better in SC mode 

~5600 compared to ~12.3 in SE mode. We attribute the poor visible rejection in  SE 

mode to absorption of sub-bandgap light by donor acceptor pairs (DAP)116 present in the 

highly doped n+-SiC substrate but not in the low-doped p-SiC, since the collection region 

in this mode spans the n+-substrate unlike in SC mode. Our R(λ) and visible rejection 

values compared well with those of other wide bandgap photodetectors.122,127–131 We also 

note that our high responsivity is achieved at a relatively low bias voltage of 20V 

compared to > 100V for the avalanche photodiodes.130 

4.3.5 Wide-area illumination versus small-area illumination 

The results described above were determined under wide-area illumination using a 

monochromatic light source. The avalanche behavior seen in SC mode, should be a 

localized effect at the device edge, where the electric field is strongest. Additionally, 

localized measurements of the SEPT device using small-area illumination has been 

valuable in determining the sources and mechanisms of sub-bandgap response 

previously.116 To compare with the wide-area illumination characteristics and to 

determine the effect of the new device design on sub- and above-bandgap excitation 

processes, SPCM images in both SE and SC modes are imaged and small-area excitation 

current-voltage measurements were performed. 

4.4. Scanning photocurrent images in Schottky emitter mode 

SPCM images in SE mode (VCE = 20 V) are shown in Figures 4.3a and 4.3b, under 444 

nm and 370 nm light, respectively. In both images, there are present a small, but non-

zero, photocurrent in the center of the graphene mesa, an enhanced photocurrent located 
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at the edge of the graphene mesa, a photocurrent signal (resembling a “halo”) that decays 

as the excitation spot moves away from the graphene mesa, and the outline of the 

tungsten probe in the top right of each image. The enhanced photocurrent signal present 

directly underneath the tungsten probe in Figure 4.3a is due to absorption of scattering 

photons off the surface of the probe. The striking similarities between the photocurrent 

generation above- and sub-bandgap suggest that generated carriers experience similar 

band transport. The conduction at the edge of the mesa is thought to be enhanced 

photocurrent due to scattering at the graphene mesa edge, as well as possible increased 

 

Figure 4.3. a) SPCM map of a device in SE mode (VCE = 20 V) under 1.120 mW of 

444 nm light. b) SPCM map of the same device in SE mode (VCE = 20 V) under 32 nW 

of 370 nm light. c) Profile intensities of the device shown in a) measured along the 

indicated dotted line. d), e) SPCM maps of a SEPT device in SE mode at varying 

voltages, VCE under 177 µW of 444 nm light. All resultant signals decrease in intensity 

versus voltage. All SPCM maps are recorded at an excitation frequency of 287 Hz. All 

scale bars are 50 µm. 
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current due to avalanche effects.132,133 To achieve a photocurrent signal, generated 

electrons must be collected through the n+-SiC substrate. To achieve bipolar gain, 

electrons must emit from the graphene emitter into the base p-SiC epilayer and then be 

collected. The presence of holes at the emitter-base junction promotes emission of 

electrons. Therefore, the decaying photocurrent away from the edge is indicative of a 

characteristic roll-off length for majority carriers (holes) generated in the p-SiC base. 

Within this length, they may travel to the emitter-base junction to lower the barrier for 

minority carrier injection. Figure 4.3c shows a photocurrent profile of the dotted line 

shown in Figure 4.3a. The exponential decay away from the edge suggests length of 

~150 µm.  

A direct comparison of two SE SPCM maps of a different device on the same chip are 

shown in Figure 4.3d and Figure 4.3e at VCE = 15 V and VCE = 20 V, respectively. As the 

voltage increases, so does the photocurrent enhancement around the edge (suggesting 

possible avalanche gain) and the photocurrent signal from the resulting “halo” 

surrounding the graphene mesa.  The angle of the tungsten probe used to contact the 

device is sharp and the photocurrent signal from scattering light into the p-SiC base is 

relatively large as light is scattered over a large area of the “halo”. 

4.5. Scanning photocurrent images in Schottky collector mode 

SPCM images in SC mode (VCE = -20 V) are shown in Figures 4.4a under 444 nm 

excitation and in Figure 4.4c for 370 nm light. In all both images, a photocurrent is 

observed in the center of the graphene mesa that quickly decays to zero as the excitation 

spot moves off the graphene mesa. A dark shadow of the tungsten probe is present in the 

top right of each image. Similar to SE mode, photocurrent generation above- and sub- 
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bandgap are extremely similar, suggesting that generated carriers experience similar band 

transport. The sharp decaying photocurrent away from the edge is indicative of a 

diffusion length for minority carriers (electrons) generated in the p-SiC base that are 

collected at the graphene contact. To be collected at the graphene mesa, electrons must be 

generated near the graphene mesa or they are likely to recombine with the abundant 

number of holes in the p-SiC base. Figure 4.4c shows a photocurrent profile of the dotted 

line shown in Figure 4.4a. The exponential decay away from the edge suggests a 

 

Figure 4.4. a) SPCM map of a device in SC mode (VCE = -20 V) under 1.120 mW of 

444 nm light. b) SPCM map of the same device in SC mode (VCE = -20 V) under 32 

nW of 370 nm light. c) Profile intensities of the device shown in a) measured along 

the indicated dotted line and integrated over a profile width indicated by the red box. 

d), e) SPCM maps of a SEPT device in SC mode at varying voltages, VCE under 177 

µW of 444 nm light. All resultant signals decrease in intensity versus voltage. As the 

magnitude of the voltage is reduced, the photocurrent spots outside of the device due 

to avalanche disappear. All SPCM maps are recorded at an excitation frequency of 

287 Hz. All scale bars are 50 µm. 
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minority carrier diffusion length of <7µm, which approaches the resolution of the 

microscope (inferred from the reflected signal profile).  

Figures 4.4d, 4.4e, and 4.4f show SC SPCM maps at VCE = -5 V, VCE = -10 V, and VCE 

= -20 V. As previously seen in the current-voltage response for SC mode in Figure 4.2, 

avalanche gain is observed at VCE < -10 V. The sharp spots of large photocurrent 

generation slightly off the edge of the graphene mesa are the result of avalanche effects 

that are sometimes present in SC mode. These spots are clearly voltage dependent as 

large number of them appear at VCE = -20 V compared to VCE ≥ -10 V. The spots are 

similar to previously reported photocurrent signals generated from edge breakdown in 

SiC avalanche photodiodes.132,133 

4.6. Small area excitation current-voltage characteristics 

4.6.1 Current-voltage characteristics 

The previous responsivity values were measured with wide-area illumination. To better 

compare the response of the device with the observed SPCM maps, current-voltage 

curves were taken with a small-area excitation spot located on the graphene mesa using 

the same illumination setup as the SPCM experiments.  

Current-voltage characteristics under 444 nm and 370 nm light in SE mode are shown 

in Figure 4.5a. As seen previously, the SEPT device displays a large dark current at 

positive VCE (SE mode) due to lack of mesa isolation. The photocurrent-voltage curves 

are shown in Figure 4.5b. The photocurrent increases with increasing sub-bandgap 

illumination power, demonstrating a maximum responsivity of 6.47 × 10-4 A/W under 

0.300 mW of 444 nm light. The responsivity decays sharply with increased laser power, 

similar to our previous devices.85,116 In comparison, 32 nW of 370 nm above-bandgap 
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excitation leads to a responsivity of 3.88 A/W. While the illumination powers are not 

similar, the photocurrent generated is similar in magnitude and leads to a VRR of ~5990 

in SE mode (370:444 nm). This value is much larger than the reported ~12.3 (270:400 

nm) above for wide area illumination. This may be due to the large collection area of 

current for sub-bandgap illumination, which has been shown in the AC SPCM 

measurement to exist on the order of hundreds of µm away from the graphene mesa. By 

comparing the responsivities of the current from the SPCM maps under 444 nm and 370 

nm light (Figures 4.3a and 4.3b), a VRR of 6278 is calculated in SE mode – in 

agreement with the current-voltage measurements. 

 

Figure 4.5. a) Current-voltage (I-VCE) characteristics in the dark and under various 

444 nm light intensities and 32 nW of 370 nm light in SC mode. b) Photocurrent-

voltage (I-VCE) characteristics under various 444 nm light intensities and 32 nW of 

370 nm light in SC mode. c) Current-voltage (I-VCE) characteristics in the dark and 

under various 444 nm light intensities and 32 nW of 370 nm light in SE mode. d) 

Photocurrent-voltage (I-VCE) characteristics under various 444 nm light intensities and 

32 nW of 370 nm light in SE mode. 
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The SEPT device displays little to no dark current in SC mode (Figure 4.5c). 

Photocurrent-voltage curves (Figure 4.5d) show an increasing photocurrent with 

increasing sub-bandgap illumination power, demonstrating a maximum responsivity of 

4.49 × 10-7 A/W at 2.17 mW of 444 nm light. The photocurrent remains linear until VCE = 

-10 V and show exponential behavior reminiscent of avalanche gain at VCE ≤ -10 V. The 

increase in photocurrent responsivity is related to the avalanche gain. At VCE = -10 V, the 

responsivity does not vary much with increasing laser power. In comparison, 32 nW of 

370 nm above-bandgap excitation leads to a responsivity of 7.76 × 10-4 A/W, leading to a 

visible rejection ratio of ~1850 in SC mode (370:444 nm). By comparing the 

responsivities of the current from the SPCM maps under 444 nm and 370 nm light 

(Figures 4.4a and 4.4b), a VRR of 1682 is calculated in SC mode – in agreement with 

the current-voltage measurements. This is smaller than the reported value of 5600 

reported for 270:400 nm initially. This may be due to different comparison wavelengths, 

as well as possible wavelength dependence and area dependence of the avalanche gain 

present in these devices. 

4.6.2 Calculation of gain 

The large UV responsivity observed for the device is a direct consequence of the large 

bipolar gain g that is achieved in SE mode. Previously, g has been calculated on the basis 

of the observed photocurrent, and an estimate of the maximum base responsivity, Rb, that 

could be generated by light absorption within the entire base width WB from the known 

absorption coefficient αabs of 4H-SiC (80 cm−1 at 370 nm93) and the energy of 370 nm 

light in eV, E370.85,116 In the present device, such an analysis predicts a maximum base 

current responsivity, 𝑅𝑏 = (1 − 𝑒−𝛼∙𝑊𝐵) 𝐸370⁄ , of 0.0291 A/W. The observed 
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responsivity at 370 nm in SE mode was 3.88 A/W, indicating current gain of at least g = 

132 for the present device in SE mode. This is comparable to the previously reported gain 

of > 120 for wide area illumination. For sub-bandgap excitation at 444 nm, the maximum 

responsivity in SE mode was 6.47 × 10−4 A/W. The 4H- polytype is nominally 

transparent at 444 nm (bandgap ~3.2 eV or 387 nm) and absorption at this wavelength is 

attributed to donor-acceptor pairs in the base epilayer that thermalize to the band edge.116 

Comparison of the observed responsivities can be used to assign a minimum absorption 

coefficient αabs at 444 nm if g is considered to be independent of the photon energy: that 

is, that the transport process following visible excitation is fundamentally the same as 

following UV excitation. This notion is supported by the similarity of the SPCM images 

between UV and visible excitation (Figures 4.3 and 4.4). 𝛼abs ≈ (𝑅𝑏𝐸444) 𝑊⁄  and 𝑅𝑏 =𝑅 (𝑔 + 1)⁄ . The attributed absorption coefficient, αabs ≈ 0.0106 cm−1, is much smaller 

than our previous estimate for a 30 µm 4H-SiC epilayer (~0.052 cm-1).116 

Using the same value of Rb compared to the responsivity of 444 nm light, the gain can 

be calculated for SC mode, 𝑔 = 𝑅 𝑅𝐵⁄ − 1. Using the maximum responsivity of 4.49 × 

10-7 A/W, no gain is calculated in SC mode. Using the responsivity and base responsivity 

values for 370 nm illumination also leads to the calculation of no gain. The attribution of 

gain from the wide area responsivity measurements must have been due to enhanced 

avalanche effects, only present at smaller wavelengths, or due to other effects only 

present under wide area illumination. 

4.7. Photocurrent mapping of neighboring floating devices 

In SPCM maps of the graphene mesa in both SC and SE modes, a large enhancement 

of the photocurrent is seen at the edge of the device. Two possible reasons are due to 
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scattering of light at the edge of the mesa or avalanche breakdown at the edge of the 

mesa. If we map a neighboring unconnected device, we expect to only see a signal from 

the edge of that device if there is strong enough scattering to reflect the excitation light 

into the p-SiC base epilayer, which will generate electron-hole pairs close enough to the 

connected device to result in a photocurrent. 

Figure 4.6a shows a reflected signal micrograph of half of a graphene mesa contacted 

with a tungsten probe and half of a neighboring graphene mesa, which is electrically 

floating. Figures 4.6b and 4.6c show the resulting SPCM maps of the same area in SE 

mode (VCE = 20 V) and SC mode (VCE = -20 V), respectively. In SE mode, the connected 

device has the same photocurrent characteristics as before: a dark (non-zero) 

photocurrent in the center of the mesa, an enhanced signal due to scattering off the 

connected prove, an enhancement at the edge of the mesa, and a “halo” that decays in 

signal with distance. However, the neighboring unconnected device not only shows an 

 

Figure 4.6. a) Reflected optical signal of two graphene mesas with a tungsten probe 

making electrical contact to the top device. b) SPCM image of the same area defined 

in a) where the top device is in SE mode (VCE = 20 V) and the bottom device is left 

floating. The floating device has a large photocurrent signal that is similar to 

connected devices in SC mode. c) SPCM image of the same area defined in a) where 

the top device is in SC mode (VCE = 20 V) and the bottom device is left floating. The 

floating device provides no localized photocurrent signal. All scale bars are 50 µm. 
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enhanced signal at the edge of the graphene mesa, but a uniform photocurrent signal 

inside the device area. The floating device looks nearly identical to the SPCM maps of a 

connected graphene mesa in SC mode. However, when the connected device is in SC 

mode, the neighboring device shows no signal. 

One possibility for this phenomenon is that the remote signal is due to surface 

conduction along the device. In this case, the remote device is essentially operating 

independently, but is linked to the connected emitter contact by some large resistance 

associated with surface conduction. Because of this, the expectation is that the remote 

signal would be biased in the same direction as the local device and would be in phase 

with the local signal. We note that the remote device does not seem to be biased in the 

same direction, as it seems to exhibit the same characteristics as SPCM maps in SC 

mode. Additionally, Figure 4.7a shows another photocurrent map of the same two 

 

Figure 4.7. a) SPCM image of two graphene mesas with a tungsten probe making 

electrical contact to the top device. The top device is in SE mode (VCE = 20 V) and the 

bottom device is left floating. The floating device has a large photocurrent signal that 

is similar to connected devices in SC mode. b) Phase map of the same area as the 

SPCM map in a). The phase is zeroed at the center of the top connected graphene 

mesa. All scale bars are 50 µm. 
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devices in SE mode, alongside the phase map (Figure 4.7b) of the lock-in signal, which 

has been zeroed inside the connected graphene device. The phase changes quite 

drastically, increasing by 40-50° at the edge of the connected device, and then inverting 

the phase to ~-15° on the unconnected, floating graphene mesa.  

Another possibility is the devices are interacting capacitively. The remote device could 

act as a capacitance, permitting AC base current generation due to photovoltaic behavior 

at the unbiased EG/SiC Schottky junction. Resistance of the base and capacitance to the 

remote EG device and the collector (substrate) could lead to a phase shift at higher 

frequency with a roll-off at low frequency. This may explain why the remote SPCM 

signal has some characteristics of SC mode, as well as the roll-off of 150 µm measured 

before as an RC delay in SE mode. Additional work needs to be done to properly 

investigate and model this behavior. 

4.8. AC versus DC characteristics 

If separate devices on the same chip are interacting capacitively, there should be 

distinct differences between current measurements of AC and DC. To examine the roll-

off in SE mode, which was previously measured to be ~150 µm at VCE = 20 V and 287 

Hz, the sub-bandgap photocurrent was measured as a function of distance away from the 

edge of a connected graphene mesa. Figure 4.8a shows photocurrent-voltage curves 

stepped by 50 µm starting from distance zero, which is centered directly on the edge of a 

graphene mesa. The photocurrent initially decreases, as expected, due to the enhanced 

signal at the graphene edge as seen from the SPCM maps. The photocurrent at 50, 100, 

and 150 µm is extremely similar. This is the same characteristic distance measured for 

roll-off in the SPCM maps (AC). At 250 µm and greater, the photocurrent decreases in a 
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linear fashion all the way to the last gathered data point at 700 µm away from the edge of 

the connected device. DC measurements show ~39% of the original photocurrent exists 

700 µm away from the edge and after 250 µm the photocurrent decreases linearly at a 

rate of ~178 pA/µm. This suggests that photocurrent may still exist up to 1 mm away 

from the edge of a connected graphene mesa. 

4.9. Working hypothesis of device operation 

Based on the SPCM images and spot current-voltage curves mentioned above, we 

propose a working model of carrier transport in a SEPT device. In SE mode (Figure 

4.9a), bipolar gain depends on holes lowering the barrier at the emitter-base junction. In 

the case of an electron-hole pair being generated under the EG in the epilayer, the 

electrons traverse towards the n+-SiC substrate. Holes must migrate to the emitter-base 

junction and lower the barrier for electrons to emit from the graphene into the epilayer, 

which may then travel to the substrate to be collected, creating gain. When an electron-

hole pair is generated far from the EG/p-SiC interface, the holes must travel towards the 

 

Figure 4.8. a) Photocurrent-voltage characteristics of a SEPT device in SE mode (VCE 

> 0 V) with respect to distance under 0.300 mW of 444 nm light. b) Photocurrent at 

several voltages with respect to illumination at increasing distances away from the 

connected graphene mesa edge. The photocurrent initially decreases as the excitation 

spot is moved away from edge, stays roughly the same until 200 µm, and at distances 

greater than 250 µm the photocurrent decreases in a linear fashion. 
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emitter-base junction to lower the barrier. This is estimated to be ~150 μm from the 

fitting of the photocurrent decay in Figure 4.3c but may be as long as 1 mm as 

determined by DC current-voltage characteristics. The frequency dependence and varying 

phase with distance in AC measurements suggests that the AC signal could be attenuated 

by an RC (resistance-capacitance) delay due to series resistance in the base, at long 

distances. Avalanche breakdown may be possible at the edge of the device if the electric 

field is strong enough, although we do not expect it. This may be the possible explanation 

of the large photocurrent signal at the edge of the device, but this may also be due to 

scattering. In each of these processes, electrons and holes can also recombine (noted by a 

star), which in turn limits the bipolar gain. The probability of this process depends on 

distance of the generated light away from the interface, as well as the epilayer thickness. 

We expect most electrons and holes to recombine when generated at distances of several 

hundreds of µm away from the EG/p-SiC interface, as well as some increase 

recombination near the interface. 

In SC mode (Figure 4.9b), bipolar gain depends on the electrons’ ability to travel from 

the emitter-base junction (n+-SiC/p-SiC) to the base-collector junction (EG/p-SiC). In the 

case of an electron-hole pair being generated under the EG in the epilayer, electrons will 

inject into the graphene, while holes will remain in the epilayer. Excess holes create a 

charge imbalance, which can lead to emission of electrons from the n+-SiC, which can 

then travel to the graphene to be collected, creating gain. When an electron-hole pair is 

generated far from the EG/p-SiC interface, the electrons must diffuse towards the EG/p-

SiC junction to be collected. The distance at which this still creates gain is the diffusion 

length for electrons in the p-SiC epilayer. This is estimated to be <7μm from the fitting of 
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the photocurrent decay in Figure 4.4c. Large photocurrents are enhanced at the edge and 

sometimes extremely large photocurrent signals are seen just outside of the graphene 

mesa edge (Figure 4.4f), indicative of avalanche gain.132,133  In each of these processes, 

electrons and holes can also recombine (noted by a star), which in turn limits the bipolar 

gain. Electrons traveling through the epilayer are likely to encounter many excess holes, 

increasing the probability of recombination. This limits the diffusion length and the 

bipolar gain and makes it unlikely that electron-hole pairs generated far away from the 

EG/p-SiC junction will be collected. 

 

Figure 4.9. Working hypothesis of a SEPT device in SE mode, a), and 

SC mode, b), with respect to carrier generation at various locations on 

the device. Electrons are indicated by black circles, holes are indicated 

by white circles and recombination is indicated by yellow stars. 
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4.10. Summary and future work 

In summary, a working hypothesis of device operation under different localized 

excitation has been achieved. In SE mode, the device exhibits bipolar gain of ~132, a 

visible rejection ratio of ~5990 (370:444 nm), and generated charges can be collected 

over a large area of the device. In SC mode, the device does not exhibit bipolar gain, a 

visible rejection ratio of ~1850 (370:444 nm), shows an extreme localization of 

photocurrent detection to the area of the graphene mesa, and at larger voltages exhibits 

avalanche gain. 

In the future, the SiF4 growth of different graphene layer thicknesses to fabricate SEPT 

devices should be investigated. Additional modeling to determine the signals present on 

unconnected devices, to compare device performance in AC and DC modes, and to 

determine the mysterious darker signal of the graphene mesa in the in SE SPCM maps is 

needed. Bipolar gain has still yet to be realized in SC mode consistently. Field-plate 

techniques can be used to suppress avalanche gain123 or they can be exploited as in 

avalanche photodiodes.134 The EG/Schottky barrier could be used in conjunction with 

deposited quantum dot layers to form photosensors in which charge transfer modulates 

conductivity or the barrier height of the EG layer.135–138 

4.11. Methods and materials 

4.10.1 Device fabrication 

For the phototransistor device fabrication, the 12.8 µm thick p-SiC base epilayer is 

grown on an 8°offcut n+-4H-SiC (0001) substrate by a CVD reactor using dichlorosilane 

(DCS) and propane in hydrogen ambient at 300 Torr and 1600°C at a C/Si ratio of 1.9,139 

giving a growth rate of ~26 µm/h for 30 minutes to produce the 12.8 µm thick film 
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determined by Fourier transform infrared reflectance (FTIR). The resultant doping of the 

epilayer, due to site-competition epitaxy,99 was found to be p-type 3.7×1014 cm−3 by the 

Hg-probe capacitance-voltage (C-V) measurement. This thickness was based on previous 

work, where a diffusion length of ~10 µm was measured in the 30 µm base.85,116
 Thus, to 

improve the base transit factor and hence the current gain, a thinner layer was used, 

although this always comes at the expense of lower light absorption for long wavelengths 

(~30 µm for λ = 365 nm85,116). To achieve reasonable absorption in the range of 250–400 

nm,118 while maintaining adequate current gain, the 10 µm base thickness range was 

chosen, with the resultant 12.8 µm base obtained for our standard 30 min growth. 

The EG top electrode layer is then grown on the SiC base at 1600 °C and 300 Torr, in 

the same reactor, using the SiF4 precursor in Argon for 10 min using a chemically 

accelerated Si-removal process developed at our lab.117 From FTIR and X-ray 

photoelectron spectroscopy,140 the thickness of the EG is estimated to be ~15 monolayers 

for these growth conditions. Circular graphene regions of diameter ~250 µm are defined 

for the device, using photolithography followed by O2 plasma reactive-ion etching (RIE). 

4.10.2 SPCM and current-voltage characteristics  

A home-built microscope with a motion-controlled stage was used for simultaneous 

reflection imaging and photocurrent mapping. A diode laser (λ = 444 nm) is mechanically 

chopped (~287 Hz) and focused to a diffraction-limited spot through a 20x objective lens 

(NA = 0.42, Mitutoyo Corporation). At each point the reflected signal was recorded for 

imaging by a lock-in amplifier (Ametek 7230), and the photocurrent was recorded by a 

pre-amplifier (DL Instruments 1211) and lock-in amplifier combination (SRS SR830). A 

Keithley 2636A sourcemeter was used to apply voltage, as well as measure spot current-
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voltage characteristics. Reflected and photocurrent maps were plotted and analyzed using 

MATLAB. All images were measured at a 2 μm step size. 
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CHAPTER 5 

PHOTOCURRENT STUDY OF CADMIUM SULFIDE NANOWIRES AND LEAD 

SULFIDE QUANTUM DOTS 

5.1. Introduction 

Semiconductor nanostructures are promising candidates for active components of 

optoelectronic nanoscale devices. Over the past few decades, several fabrication routes 

for multiple types of nanowires (NWs) and quantum dots (QDs) have been developed, 

allowing for controlled morphologies and optical properties. The breadth of composition, 

size, and structure allow semiconductor nanostructure-based devices to cover a large 

spectral range and flexible modification to suit specific needs in optoelectronic devices. 

5.1.2 Nanowires 

Semiconductor nanowires have been widely studied due to their unique properties such 

as high aspect ratio, high carrier mobility, and high surface-to-volume ratio. These 

properties make them suitable in many electronic devices, such as nanosensors, 

photovoltaics and photodetectors. Due to their large surface-to-volume ratio the surface 

plays an extremely important role in the optical and electronic properties of the nanowire. 

Surface traps and defects can lead to mid-gap trap states, decreasing the efficiency of 

charge separation. 

Nanowires possess potential for photoconductive applications due to their tunable 

geometric effects, high carrier mobility compared to thin films, and inexpensive low- 
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temperature processing. Other advantages include decreased net reflectance, increased 

junction area, and reduced material use.37  

5.1.3 Quantum Dots 

Colloidal quantum dots (QDs) are semiconductor nanoparticles in solution phase that 

can be deposited to create films by low-cost, facile processing methods. Due to their 

strong quantum confinement, they exhibit unique optical properties such as increased 

optical absorption and emission with size tunable bandgaps.141 This makes them a strong 

candidate for optoelectronic devices, such as photodetectors.135 

Lead sulfide (PbS) quantum dots are the most well studied quantum dot material for 

photodetection.142 Bulk PbS possesses a bandgap of ~0.4 eV (3100 nm), but the quantum 

confinement of nanocrystals allows for a tunable band gap from bulk PbS to 2.50 eV (496 

nm) bandgap PbS QDs by reducing the size or changing the shape of the nanocrystal.143 

This extremely large spectral range makes them an optimal material for photodetection 

over many wavelengths, and opens the potential for gradient devices with several QD 

sizes to capture specific spectral ranges. 

For good quality conductive QD films, monodisperse quantum dots are needed. The 

native insulating ligands on the as-synthesized quantum dots are not suitable for making 

conductive films. These ligands are dielectric insulators and must be replaced with 

shorter ligands to reduce interparticle distance. Due to their confinement in size in all 

three dimensions, the surface-to-volume ratio is extremely high. Therefore, QDs are even 

more sensitive to surface conditions and surface effects than other semiconductors with 

reduce dimensionality. Good quality quantum dot thin films are obtained if QDs are 

closely packed.144 This is favored when the size distribution is narrow and the QDs are 
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spherical.145 Many different ligand configurations and passivation techniques have been 

studied to ensure close-packed conductive QD films.38 

5.2. Nanowire growth 

Various synthetic procedures have been used to synthesize nanowires including, vapor-

liquid-solid (VLS) growth, solution-liquid-solid (SLS) growth, direct deposition methods, 

template-directed methods, and oriented-attachment methods.30 The most widely studied 

methods have been VLS and SLS growth. SLS growth is a low-temperature (<~350 °C)30 

solution-based method adopted to grow colloidal semiconductor nanowires. Some 

advantages of SLS growth include systematic control of nanowire diameters as low as the 

quantum confinement regime, control of surface passivation, nanowire solubility, and 

large-scale production.30 VLS growth was discovered in 1964 by Wagner and Ellis146 and 

offers high flexibility. VLS growth is a high-temperature (~350-1000 °C)30 growth 

method that offers a large range of nanowire sizes and highly crystalline wires. The 

higher temperature of VLS growth helps to anneal out crystal defects such as stacking 

faults. 

The VLS growth mechanism has been widely studied and consists of three stages: 

alloying, nucleation, and growth.30,34,147 The process involves metal nanoclusters as 

catalysts. These catalysts are heated above the eutectic temperature in the presence of a 

vapor-phase source of the semiconductor material. This results in a liquid droplet of an 

alloy of the metal/semiconductor. As the semiconductor source is continually supplied, 

the droplet will supersaturate, leading to nucleation of a solid semiconductor material. 

Additional supply of the semiconductor leads to more precipitation of a solid nanowire 
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through the solid-liquid interface until the temperature is reduced, yielding an end to the 

process and leaving a metal tip at the end of the nanowire.34,147  

5.3. Nanowire device preparation 

VLS grown CdS and CdSe nanowires have been synthesized using CdS or CdSe 

powder as the precursor and Si wafer (100) as a substrate. Either CdS or CdSe powder is 

used as the precursor with argon gas (or a mixture of argon/hydrogen for CdSe) as a 

carrier gas. An SEM image of CdS and CdSe grown nanowires show a dense formation 

of nanowires with diameters on the size range of the gold catalyst used and presence of a 

gold tip at the end of the nanowire, verifying VLS growth (Figures 5.1a and 5.1e).  

Figure 5.1b shows a transmission electron microscopy (TEM) image of a CdS nanowire 

 

Figure 5.1. a) SEM image of as grown CdS NWs. NW diameter is ~100nm. Scale bar 
is 20 µm. b) TEM image of CdS NWs. Scale bar is 20nm. c) High resolution TEM 
image of CdS NWs showing little to no defects. Scale bar is 5 nm. d) Electron 
diffraction of CdS NWs showing zinc blende structure. The zone axis is [-220] with 
growth in the [110] direction. Scale bar is 5 nm-1. e) SEM image of as grown CdSe 
NWs. NW diameter is on the order of 200-400nm. Scale bar is 10 µm. f) SEM image 
of transferred nanowires onto silicon substrate. Scale bar is 20 nm. g) High resolution 
TEM image of CdSe NWs showing little to no defects. Scale bar is 10 nm. h) Electron 
diffraction of CdSs NWs. Scale bar is 5 nm-1. 
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possessing smooth edges. High resolution TEM, shown in Figure 5.1c, shows mostly 

monocrystalline low defect nanowires. Electron diffraction of the same nanowire, shown 

in Figure 5.1d, suggests wurtzite crystal structure with nanowire growth in the [110] 

direction with a zone axis of [-220]. SEM of as-grown CdSe nanowires is shown in 

Figure 5.1e. TEM of a CdSe nanowire is shown in Figure 5.1f, alongside a higher 

resolution TEM image in Figure 5.1g revealing smooth edges and high quality of the 

nanowire structure. The resulting electron diffraction pattern for the CdSe NW is shown 

in Figure 5.1h. 

 To study charge transport across semiconductors nanowires, CdS nanowires are 

transferred onto oxidized silicon wafers to make field-effect transistors (FETs). Figure 

5.2a shows an SEM image of transferred CdS nanowires via physical contact. Metal 

contact areas are defined by a photolithography process. After rinsing the transferred 

nanowires, the substrate is pre-baked at 180°C for 5 minutes. Then, 0.4 µm of liftoff 

resist LOR3A and 1.25 µm of AZ5214 are deposited one after another. After another 

 

Figure 5.2. a) SEM image of CdS NWs transferred onto a fresh substrate. 
Scale bar is 5 µm. b) Photolithography process showing bare NW device all 
the way to a metal contacted NW device (top to bottom). 
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bake, the substrate is aligned with a mask aligner and exposed to UV light for 8-12 

seconds. After exposure, the substrates are developed using a 1:4 solution of AZ400 

developer solution and DI water. Development time can vary from 25 to 90 seconds, until 

a rich golden color of the contact pattern is achieved.  

Metal contacts are deposited using an electron beam physical vapor deposition system. 

To create low-barrier, ohmic contacts 30 nm of titanium follows by 70 nm of gold are 

deposited one after another. After deposition, the substrates are dipped in Remover PG 

solution for an hour and sonicated to remove excess photoresist and leave define metal 

contacts. This entire process from transfer to metal deposition is illustrated in Figure 

5.2b.  

Based on the work function of titanium (4.33 eV148), an estimated work function of 

CdS (4.7 eV149), the electron affinity of CdS (3.6 eV), and the band gap of CdS (2.41 

eV), an accumulation region is expected to develop between the metal-semiconductor 

interface. However, the electron affinity of CdS can change depending on the actual 

surface potential of the nanowire. Therefore, while an ohmic contact is expected, a 

Schottky barrier could be present, which can be controlled by surface modification or the 

doping level of the nanowire.  

5.4. Nanowire photocurrent measurements 

Following device fabrication, suitable devices with nanowires spanning electrodes are 

found using an optical microscope. Figure 5.3a shows a resulting device with several 

electrodes. Figure 5.3b shows a nanowire in a device channel spanning two electrodes. 

After location of a suitable device, the substrate is moved onto a stage consisting of 



95 

copper tape to connect the back of the device. Two tungsten probes are used to make 

contact to the top source and drain electrodes.  

Initially, current is measured in the absence of light (dark current). A voltage bias is 

applied across the drain and source electrodes and the drain current is measured. CdS 

nanowires that are not intentionally doped demonstrate low conductivity and typically 

higher noise levels. This is due to low intrinsic carrier concentrations or non-ohmic 

behavior of the metal-semiconductor junction. Figure 5.4a shows a representative dark 

current measured in both forward and reverse directions. An unnatural larger current is 

seen at the beginning of the sweep, but nearly all the current lies in the sub 10 pA range, 

indicating little conductivity in the dark. The dark resistance of the channel is calculated 

at 10V to be 980.4 GΩ. 

Under illumination the current increases significantly (resistance decreases). Figure 

5.4b shows current-voltage curves of the same nanowire under several different laser 

powers of 444 nm laser illumination. The current increases with increasing illumination 

power and looks fairly linear under higher powers, indicating ohmic conduction. 

Responsivity of the device to 444 nm light decreases from 0.0607 A/W to 0.0230 A/W 

 

Figure 5.3. a) SEM image of an example device pattern for NW photocurrent 
measurements. Scale bar is 100 µm. b) SEM image of a NW spanning several 
Ti/Au contacts, creating a conductive channel. Scale bar is 5 µm. 
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from the lowest to highest illumination powers. In addition, the on/off ratio between light 

and dark currents increases from 1.39 x 106 to 2.47 x 106 from the lowest to highest 

powers. 

To further compare the difference in conduction modes with and without illumination 

and to describe the rise and fall times of the device, a chopper measurement was 

performed using mechanically chopped laser light at 5 Hz (Figure 5.4c). The top currents 

represent a similar light current to the previous measurement, but the dark current clearly 

does not return to pA level currents. This reduces the working on/off ratio at this 

timescale. The current features are square on the light current side of the response, but 

 

Figure 5.4. a) Dark current of the CdS nanowire device in forward and reverse voltage 
directions. b) Current-voltage characteristics of the device in the dark and under various 
444 nm light intensities. c) Current-voltage characteristics of the device under various 
444 nm light intensities that are mechanically chopped at 5 Hz. 
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clearly showing an exponential decay towards the dark current. A possible reason for this 

outcome is the presence of persistent photocurrent. 

Persistent photocurrent represents a photocurrent that exists for up to seconds or hours 

after the illumination source is terminated. This has been commonly seen in nanowire 

devices.150–152 Defect states in the nanowire may be a cause of persistent 

photoconductivity. Defect states can trap the charge carriers, potentially for a long time, 

and the interactions to release charges from these states may be extremely slow. For ZnO 

nanowires, this phenomena was explained by oxygen vacancy states.151 In our case, we 

have seen persistent photocurrent that lasts up to several minutes. Figure 5.5 shows an 

example of persistent photocurrent from a different CdS nanowire at 5 volts. The 

photocurrent signal is still showing greater than 100 nA after 575 seconds. This result is 

similar to decay studies in CdS nanorod thin films, where decay depended on a fast decay 

of a few seconds followed by a slow decay of about 100 seconds.153 In this case, the 

 

Figure 5.5. Current of a CdS nanowire held at a potential 
of 5 volts after exposure to light. Illumination is stopped at 
time 0. After 9.5 minutes, the persistent photocurrent is still 
more than 20% of the original photocurrent. 
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photocurrent decays over a period of 100s and then decays slowly over several hundred 

seconds.  

5.5. Quantum dot device preparation 

Oleate-capped PbS quantum dots were synthesized via a previously reported synthetic 

route.154 The quantum dots are then precipitated and redispersed (PR) under nitrogen 

atmosphere using anhydrous octane and methyl acetate, respectively. 250 nmol of PbS 

QDs are further purified by use of gel permeation chromatography (GPC) to remove 

impurities and to allow for stable, repeatable quantum dot starting materials after 

purification (which can be problematic by using only PR methods).155 The QD solution is 

then passed through a 0.2 µm filter, concentrated to 30 mg/mL by removing excess 

solvent, and filtered again. The resultant PbS QDs have an absorption peak centered at 

941 nm as shown in Figure 5.6, calculated to yield 2.73 nm diameter quantum dots 

possessing a bandgap of 1.32 eV. 

To create conductive quantum dot films, the oleate ligands are replaced by 1,2-

ethanedithiol (EDT) in a layer-by-layer spin coating process to passivate QD surface 

traps and reduce the interparticle distance – increasing the coupling strength of the 

quantum dots. PbS-EDT films have been shown to increase the mobility of QD films and 

have been used in FET and solar cell configurations.156,157 25 µL of the PbS solution is 

deposited onto a silicon oxide substrate patterned with pre-deposited Au contacts (15 nm 

Ti / 35 nm Au) fabricated by the same photolithography process illustrated for the 

semiconductor nanowire devices shown in Figure 5.2b. The QD solution is spun at 3000 

rpm for 30s. 3 drops of 2% by volume EDT in acetonitrile is added and spun for 3000 

rpm for an additional 30s. Finally, 2 drops of acetonitrile is added and spun at 3000 rpm 
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for 30s to wash off excess EDT and 2 drops of toluene is spun at 3000 rpm for 30s to 

wash off excess oleic acid. The film is then annealed for 15 minutes at 60°C. Following 1 

minute of cooling, this entire process is repeated three times to create a three-layer PbS-

EDT film. To reduce deterioration of the film to oxygen, a layer of poly(methyl 

methacrylate) (PMMA) is added to the top of the film. 2 drops of 4% PMMA by weight 

in toluene is added and spun at 3000 rpm for 60s. This entire process is done under 

nitrogen atmosphere in a glove box.  

SEM images of the quantum dot films are shown in Figure 5.7. PbS-EDT films show a 

mostly smooth, homogenous film but does possess some small range cracking. These 

cracks can be as large as several tens of nm. This is an improvement over other earlier 

reported PbS-EDT films, which have shown large cracks on the order of several hundred 

nanometers to even possibly 1µm.158  Three-layer PbS-EDT films have a thickness of 

~120 nm determined by cross-sectional SEM shown in Figure 5.7c. The PMMA capping 

layer has been determined to be about 300 nm by profilometry. 

 

Figure 5.6. Absorption spectrum of PbS quantum dots 
after purification. 
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5.6. Quantum dot photocurrent measurements 

After film deposition, the substrate is moved onto a stage consisting of copper tape to 

connect the back of the device. Two tungsten probes are used to make contract to the top 

source and drain electrodes. Figure 5.7d shows the contact pattern used for testing QD 

devices. The device pattern consists of several rectangular Au contacts consisting of 

channels of various lengths and widths. The device to be described below was measured 

through a channel length of 20 µm and a width of 50 µm. 

Initially, current is measured in the absence of light (dark current). A voltage bias is 

applied across the drain and source electrodes and the drain current is measured. Figure 

5.8a shows a representative dark current measured from -10 to 10 volts. The dark current 

shows extremely linear and symmetrical behavior, indicating good ohmic contacts 

 

Figure 5.7. a) SEM image of a PbS-EDT film. b) Higher magnification SEM 
image of a PbS-EDT film showing small cracks of several nanometers. c) Cross-
sectional SEM image of the QD film on Si, showing film thickness ~120 nm. d) 
Optical microscope image of QD test patterns. 
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between PbS-EDT and Au. This is expected as the QD film is expected to be p-type and 

form ohmic contacts with Au.142,159 The dark resistance of the channel is calculated at 

10V to be 10.8 GΩ and the dark current density is calculated to be 18.5 µA/cm2 at 10V. 

Conductivity suggests the successful removal of insulating oleate ligands for conductive 

EDT ligands. 

Under 444 nm illumination the current increases significantly. Figure 5.8b shows 

current-voltage curves of the same QD device under several different laser powers of 444 

nm laser illumination. The current increases (resistance decreases) with increasing 

illumination power and looks continues its linear response, indicating ohmic conduction. 

Responsivity of the device to 444 nm light decreases from 79.8 µA/W to 39.0 µA/W 

 

Figure 5.8. a) Dark current of the PbS-EDT device. b) Current-voltage 
characteristics of the device in the dark and under various 444 nm light intensities. 
c) Current-voltage characteristics of the device under 1.062 mW of 444 nm light 
that is mechanically chopped at 5 Hz. 
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from the lowest to highest illumination powers as shown in Figure 5.8b. In addition, the 

on/off ratio between light and dark currents increases from 64.30 to 75.72 from the 

lowest to highest powers. 

To further compare the difference in conduction modes with and without illumination, 

and to describe the rise and fall times of the device, a chopper measurement was 

performed using mechanically chopped laser light at 5 Hz (Figure 5.8c). The device 

shows similar on/off ratios as the standalone measurements, as the device returns to its 

natural dark currents over the 0.2s chopping time. The edges of the rise and fall profiles 

indicate fast response of the device. 

 

Figure 5.9. a) Reflected signal of a PbS-EDT device covered in PMMA over Au 
contacts with a channel width of 20 µm. b) Scanning photocurrent image of the 
same PbS-EDT device, showing a symmetrical photocurrent signal with a peak in 
the center of the conductive channel. c) and d) Reflected signal profile and 
photocurrent profile along the dotted line indicated in a) and b). Colored 
background indicates the position of the Au contacts. Scale bars are 20 µm. 
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5.7. SPCM of quantum dot device 

Scanning photocurrent maps can also give details about the contact behavior in lateral 

quantum dot films. Figure 5.9a shows a reflected signal image of a quantum dot film 

covered in PMMA on top of Au contacts – indicated by the large rectangles in the center 

of the image. Figure 5.9b shows a photocurrent image at 10 volts over the same device 

area shown in Figure 5.9a. A peak photocurrent exists directly between the two contacts 

and then decreases exponentially with distance. A similar photocurrent image has been 

seen previously in PbS quantum dot devices to indicate ohmic contacts.17 In the case of 

Schottky barriers at the contacts, the photocurrent signal would be localized to the reverse 

biased contact. The profiles of each image along the dotted line is shown in Figures 5.9c 

and 5.9d. The shaded boxes indicate the position of the Au contacts with a 20 µm 

channel between the two contacts.  

5.8. Summary and future work 

In summary, CdS nanowires and PbS quantum dots have been prepared and fabricated 

into optoelectronic devices. Their photocurrents have been measured leading to an on/off 

ratio of ~106 and ~70 and a responsivity of ~10-2 A/W and 10-6 A/W for devices made 

with CdS NWs and PBS-EDT QDs, respectively. Persistent photocurrent exists for up to 

10 minutes in CdS NW devices. The linear nature of the current-voltage curves indicates 

ohmic transport in both NW and QD devices. This is further demonstrated by the SPCM 

map of a QD film showing a symmetrical photocurrent signal with a peak centered 

between the two contacts. 
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The results of this work have adequately prepared our lab up for future investigation of 

nanoscale electronics. Specific projects based on ligand and surface chemistry of both 

NWs and QDs, where the surface states and surface potentials can alter their optical and 

electronic properties will be investigated. Electronic characterization of photodoped 

NWs, as well as, SLS NWs and doped SLS NWs will also be studied in the future. 

Additionally, QD surface chemistry will be monitored electronically by FET 

measurements. Further current-voltage studies and SPCM on QD and NW FETs will be 

studied to measure device mobility and diffusion length. Suitable QDs may additionally 

be deposited on graphene to make infrared photodetectors. 

5.9. Methods and materials 

5.9.1 Synthesis of VLS CdS (CdSe) NWs 

1.5 cm by 1 cm silicon substrates (100) were cleaned by sonication in acetone, rinsed 

with DI water, and blown dry with nitrogen gas. poly-L-Lysine (Ted Pella Inc.) was 

pipeted onto the substrate to cover the surface. After 5 minutes, the substrate was rinsed 

with DI water and blown dry with nitrogen gas. Small droplets of 40, 80, or 100 nm 

diameter Au colloids (BBI International) were deposited onto the silicon substrate to 

designate catalytic growth areas. After 5 minutes, the substrate was rinsed with DI water 

and blown dry with nitrogen gas. The substrates are then transferred into a small quartz 

tube, which is placed into a 55 cm long quartz tube alongside 0.05g of CdS precursor in a 

boat. The tube was moved into a tube furnace assembly (Lindberg Blue M, Thermo 

Scientific). The system was evacuated on one end to 10-4 torr, while the pressure in the 

tube is held at 300 torr. Argon was passed as a carrier gas at a rate of 100 standard cubic 

centimeters per minute (sccm) and the reactor is heated to 780°C. The precursor boat was 
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moved inside the assembly to heat the CdS powder (99.999%, Alfa Aesar) to the furnace 

temperature. The growth substrate was located further downstream at the temperature of 

~550°C. After 30 minutes of growth, the furnace was returned to room temperature, the 

vacuum was removed, and the nanowire substrate was removed from the system. 

The process is similar for CdSe nanowire growth with a few modifications. The growth 

catalyst was a 3-10 nm Au film, CdSe precursor powder was used, and the carrier gas 

was a mixture of 25 sccm of Ar and 55 sccm of H2 gases. The precursor powder was 

heated to 900°C and the growth substrate is downstream at ~400°C. The nanowires are 

then grown for 60 minutes. 

5.9.2 Synthesis of PbS QDs 

0.225g of PbO (99.9 %, Alfa Aesar), 1g of oleic acid (OA) (99%, BeanTown 

Chemical), 5g of 1-octadecene (ODE) (90%, Acros Organics) are loaded into a 50 mL 

three-neck round bottom flask fitted with a condenser and adapter. The mixture was then 

degassed on a schlenk line for 30 minutes at room temperature and then the temperature 

is raised to 110°C for 60 minutes to obtain a clear solution of lead oleate under vacuum. 

105 µL of bis(trimethylsilyl) sulfide ((TMS)2S) (95%, Acros Organics) was mixed with 

2.5 mL of ODE inside a nitrogen-filled glove box to create the sulfur precursor. (TMS)2S 

was quickly injected into the reaction mixture at 95.0°C. Upon QD nucleation, the 

reaction was rapidly quenched to 25°C by removing the heating mantle. Absorption of 

the stock crude was taken by dissolving 25 µL of the crude sample in 2.5 mL of 

anhydrous octane (Cary 5000 UV-Vis-NIR).  
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5.9.3 Purification of PbS QDs 

The crude reaction mixture was transferred into a septa-capped centrifuge tube under 

nitrogen. 30 mL of methyl acetate (dried over molecular sieves) was added to the crude 

solution to precipitate the quantum dots. The resulting mixture was centrifuged at 7000 

rpm for 10 minutes. After centrifugation, the clear supernatant was extracted and the QDs 

were pumped dry by vacuum. The dry sample was transferred into a nitrogen-filled glove 

box and redispersed in 5 mL anhydrous toluene. Absorption following precipitation and 

redissolution was taken by a Cary 5000 UV-Vis-NIR.  

The PbS QDs were subsequently purified by gel permeation chromatography (GPC). 

To pack the column, 4g of Bio-Beads were swollen in toluene overnight. Clean solvent 

was placed into a glass column (1 cm diameter) with a 0.2 µm pore size filter, glass wool, 

and a Teflon valve. All of the swollen beads were transferred to the column, resulting in a 

height of ~30 cm. A small amount of sand was carefully placed at the top of the column 

and pure solvent was used to rinse the column until no free polystyrene was present in the 

eluent (confirmed by UV-Vis absorption). 250 nmol of QDs were injected by a syringe 

into the top of the GPC column. After passing through the column, the QDs were 

collected and concentrated up to 30 mg/mL. Absorption post-GPC was taken by a Cary 

5000 UV-Vis-NIR. 

5.9.4 Device Fabrication 

200nm SiO2 thin film silicon wafers were cleaned by sonication in acetone, rinsed with 

isopropanol and water, and then dried by nitrogen gas. The substrate was then heated at 

180°C for 5 minutes. The chip was covered with LOR3A liftoff resist and spin coated at 

2000 rpm for 30s to deposit a 0.4 µm film. The resulting photolithographic film was soft 
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baked at 180°C for 5 minutes. A positive photoresist, AZ5214, was deposited onto the 

chip and spun at 5000 rpm for 60s to create a 1.25 µm film. The substrate was soft baked 

at 110°C for 1 minute. The photoresist layers were then exposed to UV light under a 

specific photomask pattern for 8-12s. Following exposure, the photolithographic patterns 

are developed in 1:4 AZ400K:H2O until a golden color of the SiO2 layer was seen at the 

UV-exposed regions of the substrate. The chip is then dried by nitrogen and moved to a 

metal deposition chamber. 

The substrate is loaded in a metal deposition chamber, which was then evacuated to 1.3 

x 10-6 torr. High voltage was applied (5 kV) and Ti and Au were deposited by raising the 

emission current to promote physical vapor deposition. Following deposition, the 

chamber is brought to atmospheric pressure and the substrate is submerged in Remover 

PG solution to remove excess photoresist, leaving patterned metal contacts on the 

substrate. 

5.9.5 Photocurrent Setup 

All current-voltage curves were measured using tungsten probes (Micromanipulator 

7B) to contact the gold contact surfaces. Voltage and current were applied and measured 

by a Keithley 2636A sourcemeter. 

5.9.6 SPCM Setup 

A home-built microscope with a motion-controlled stage was used for simultaneous 

reflection imaging and photocurrent mapping. A diode laser (λ = 444 nm) is mechanically 

chopped (~287 Hz) and focused to a diffraction-limited spot through a 20x objective lens 

(NA = 0.42, Mitutoyo Corporation). At each point the reflected signal was recorded for 

imaging by a lock-in amplifier (Ametek 7230), and the photocurrent was recorded by a 
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pre-amplifier (DL Instruments 1211) and lock-in amplifier combination (SRS SR830). A 

Keithley 2636A sourcemeter was used to apply voltage. Reflected and photocurrent maps 

were plotted and analyzed using MATLAB. All images were measured at a 2 μm step 

size. 
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