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The bending behavior of the laminated shallow shells under static loading has been studied using the R-functions theory

together with the spline-approximation. Formulation is based on the first order shear deformation theory. Due to usage of

the R-functions theory the laminated shallow shells with complex shape and different types of the boundary conditions

can be investigated. Application of the spline-approximation allows getting reliable and validated results for non concave

domains and domains with holes. The proposed method is implemented in the appropriate software in framework of the

mathematical package MAPLE. The analysis of influence of certain factors (curvature, packing of layers, geometrical

parameters, boundary conditions) on a stress-strain state is carried out for shallow shells with cut-outs. The comparison of

obtained results with those already known from literature and results obtained by using ANSYS are also presented.
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1 Introduction

A wide range of applications of laminated shallow shells with an arbitrary shape in a modern industry causes necessity of an

accurate investigation of the stress-strain state of such shells. The mathematical formulation of the problem is reduced to the

solution of boundary value problems for systems of partial differential equations (PDEs). The complexity of the solution

of such problems is caused by high orders of equilibrium equations, number of unknown functions, complex boundary

conditions, suitable choice of fiber orientations, and other reasons.

The analysis of the literature had shown that in general case the investigation of a stress-strain state is carried out by

numerical methods. The most commonly used methods are the finite element method (FEM) and finite difference method

(FDM). The numerous variants of FEM were offered and approved [1–3]. According to this method a mesh of finite

elements is generated over an examined domain to construct the approximating subspaces. For domains with complex

forms the generation of FEM meshes leading to reliable results requires often a lot of time. Therefore, considerable efforts

have been made to develop meshless methods.

R-functions method (RFM) is one of them. The efficiency of this method had been demonstrated on a wide class of

mechanics problems including static and dynamic problems of plates and shallow shells [4–12]. The main idea of the

RFM is the construction of the complete solution structures including indefinite components at any choice of which the

boundary conditions will be satisfied exactly. As it had been shown by V. L. Rvachev [4], these indefinite components can

be approximated by any complete system: power and trigonometric polynomials, splines, up-functions, polynomials of

Chebyshev and Hermite, Legendre, and other systems. However an experience of RFM usage shows that the application of

a polynomial approximation of the indefinite components leads to linear algebra problems with dense matrices. An increase

in power of approximating polynomials and number of indefinite components causes bad conditioned matrices and further

they generate unstable solutions regarding linear algebra problems. When multilayered shallow shells are studied, the

number of unknown functions and hence the number of indefinite components in the solution structure can not be small,

because the equilibrium equations contain three (classic theory) or five (refined theory) unknown functions. In addition,

complex shapes or boundary conditions require increase of the polynomials power in order to control the convergence and

validation of the obtained results. The usage of splines allows to avoid this problem and to get a better convergence of
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the results compared with a polynomial approximation. For the first time the combination of the R-functions theory and

B-splines was used to investigate isotropic plate bending in monograph [4]. It should be emphasized that in the last decade

the so-called Web-method, based on the joint of the FEM and web-splines got an active development. Main results related

to some theoretical backgrounds of this approach and its applications were presented in monograph [13]. The R-functions

theory was used in [13] and some tasks of the isotropic plates bending were solved by means of this method. In the present

work we propose to use spline-approximation together with RFM to investigate a multilayered shallow shells bending.

2 Formulation

A laminated shallow shell with constant thickness, consisting of an arbitrary number of orthotropic layers with constant

thicknesses is considered. It is assumed that the delamination between layers is absent. Due to shallowness of the shell the

curvilinear coordinates commonly employed for shells can be directly replaced by the Cartesian coordinates x and y and the

Lamé coefficients are put as A = B = 1. The investigation of bending of such a shell we will carry out using the first order

refined theory, taking shear deformations in account. It is assumed that the transverse normal stress is negligible and normal

to the reference surface of the shell before deformation remain straight, but not necessarily normal, after deformation (a

relaxed Kirchhoff-Love’s hypothesis).

Equilibrium equations of the shell subjected by the transverse load q(x, y) only are presented in the following way [14]:
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M2,y + M12,x − Q2 = 0,

(1)

where system (1) is combined with corresponding boundary conditions. Internal forces and bending moments according to

the first order refined theory are defined by the following relations:
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Transverse forces are defined as:

Q1 = k2
4C55ε13 + k2

5C45ε23, Q2 = k2
4C45ε13 + k2

5C44ε23,

where k2
4 and k2

5 are shear correction factors.

Deformations ε1, ε2, ε12, ε13, ε23 are defined in the following way:

ε1 = u,x + k1w, ε2 = v,y + k2w, ε1,2 = u,y + v,x,

ε13 = w,x + Ψ1 − k1u, ε23 = w,y + Ψ2 − k2v,

where u and v are displacements of the midsurface, and Ψ1, Ψ2 are normal turning angles to the midsurface. Constants k1,

k2 define midsurface curvatures of a shell. Coefficients Cij , Kij , Dij are defined using characteristics of layers Bl
ij [14]:

Cij =

S
∑

l=1

∫ hl

hl−1

B
(s)
ij dz, (i, j) = {1, 2, 6, 4, 5} ,

Kij =

S
∑

l=1

∫ hl

hl−1

B
(s)
ij zdz, Dij =

S
∑

l=1

∫ hl

hl−1

B
(s)
ij z2dz, (i, j) = {1, 2, 6} ,

where B
(s)
ij are stiffness coefficients of s-th layer, S denotes the number of layers.
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3 The solution method

In order to study the bending of laminated shallow shells by RFM let us first formulate the variational statement of this

problem. It is known that this formulation may be based on minimization of the Lagrange functional:

J = V − A. (2)

Here V is a potential energy of deformation of a shell which is defined as

V =
1

2

∫∫

Ω

(N1ε1 + N2ε2 + N12ε12 + M1Ψ1,x + M2Ψ2,y + M12(Ψ1,y + Ψ2,x))∂Ω

+
1

2

∫∫

Ω

(Q1ε13 + Q2ε23)∂Ω

and A is a work of external forces. Taking only the transverse loading into account it can be presented as follows

A =

∫∫

Ω

q(x, y)w∂Ω,

where q(x, y) is an intensity of the external force and Ω is a domain, identical to the planform of a shell.

To minimize the functional (2) the Ritz method is used, where the basic functions are obtained by the RFM [4–5].

Therefore first it is needed to construct the solution structure of the boundary value problem. An analytical formula U =
B(P1, P2, . . . , Pk, ω, ωi) is called the solution structure, if it strictly satisfies all the given boundary conditions or at least

the kinematical ones at any choice of indefinite functions P1, P2, . . . , Pk (components). Of course, this formula depends

on the given boundary conditions and a shape of the given domain. For example, if the border is clamped then boundary

conditions have the following form: u = v = w = Ψ1 = Ψ2 = 0. The solution structure in this case can be taken as:

u = ωP1, v = ωP2, w = ωP3, Ψ1 = ωP4, Ψ2 = ωP5, (3)

where ω = 0 is the equation of the clamped part of a border and Pl, (l = 1, 5) are undefined components of the solution

structure. It should be noted that the constructed solution structure may be used for domains with different shapes, and the

function ω(x, y) plays the role of a parameter.

It should be noted that if boundary conditions are natural ones, for example, in case of the free edge x = const, when

boundary conditions have the following form: N1 = N12 = M1 = M12 = Q1, then the simplest solution structure can

be taken as: u = P1, v = P2, w = P3, Ψ1 = P4, Ψ2 = P5. But if we have mixed boundary conditions, for example,

combination of the clamped and free edge, then the corresponding solution structure may be taken in the form: u =
ω1P1, v = ω1P2, w = ω1P3, Ψ1 = ω1P4, Ψ2 = ω1P5. Here ω1 = 0 is the equation only of a clamped part of the

border.

Let us approximate the indefinite components Pl, (l = 1, 5) of the solution structure by the Shoenberg spline functions

of the 3-rd order [15]. To do that the investigated domain Ω is put into the rectangle R = {a ≤ x ≤ b, c ≤ y ≤ d}. The rect-

angle is then represented by a regular mesh with number of divisions N along Ox and M along Oy axes. The coordinates

of the mesh nodes are defined as

xi = a + i
b − a

N
, yj = c + j

d − c

M
, (i = −1 . . .N + 1, j = −1 . . .M + 1).

The indefinite components Pl are taken in the form

Pl =
N+1
∑

i=−1

M+1
∑

j=−1

a
(l)
ij Ψij(x, y), (4)

where Ψij(x, y) is a two-dimensional B-spline obtained as a product of the single-dimensional ones with scaling and

transition

Ψij(x, y) = B3

(

N(x − a)

b − a
− i

)

B3

(

M(y − c)

d − c
− j

)

. (5)
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The spline-function B3(t) in (5) is defined as

B3(t) =
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.

Basic functions are obtained by substituting (4) into a solution structure. For example for the clamped boundary (3) the

basic functions have the following view:

uij = vij = wij = ψ1ij = ψ2ij = ωΨij(x, y).

The undefined coefficients a
(l)
ij in the decomposition (4) are obtained from the condition of the functional (2) minimum by

the Ritz method. Thus the problem is reduced to the solution of an appropriate linear system of algebraic equations:

∂J

∂a
(l)
k

= 0, (6)

where k ∈ [1; (M + 3) · (N + 3)].
Obviously the obtained Ritz matrix will be sparse. The numerical realization of the proposed methods is carried out using

analytical advantages of the mathematical package MAPLE and a number of developed programs written in C++, dealing

with numerical methods of integration and solution of systems of linear algebraic equations. The numerical integration over

an arbitrary domain is based on the Gauss quadrature. The Gauss formula is used for both B-splines in the interior of the

domain and B-splines which are located near the boundary. The solution of systems of linear algebraic equations (6) is

based on a bi-gradient iterative algorithm for sparse systems (BiCGStab) [16].

4 Numerical results

Example 1

As the first illustration of the RFM’s application to the considered problems we will investigate a five-layers square plate (the

length of a side equals to 2a), with a symmetric structure. Suppose that the plate is subjected by a uniformly distributed load

and is clamped over the border. Assume that all layers have the same thickness equal to h/5, provided that h/(2a) = 0.1.

The mechanical properties of the layers are taken as follows: E1/E2 = 25; G12/E2 = G13/E2 = 0.5; G23/E2 =
0.2; v12 = 0.25. The lamina scheme is taken as the angle-ply (θ◦,−θ◦, θ◦,−θ◦, θ◦), and θ will be put: 30◦, 45◦, 60◦.

Let us investigate the convergence of the obtained results while increasing a mesh density. The obtained results we

will compare with similar results, computed by the ANSYS package, based on FEM. First two types of layered elements

utilizing the first-order refined theory are used: SHELL181 (linear element), SHELL281 (quadratic element).

The non-dimensional values of maximum deflections w = wh3E2103/q0(2a)4 and stresses (σx, σy) =
(σx, σy)/(q0(2a)2) on external surfaces of shells are presented in Table 1 for different types of lamination scheme. As

follows from the convergence of the presented results (see for example results for θ = 30◦, 60◦) the linear element

(SHELL181) gives poor predictions (compared with RFM and SHELL281) for stresses and needs higher levels of area

decomposition; thus, for further investigations quadratic element (SHELL281) is used. For quadratic element the results

obtained by FEM are slightly higher than appropriate results obtained by RFM. But the agreement of the results is enough

good. The difference between them is from 1% up to 5.5%. The analysis of results presented in Table 1 shows that the

maximum deflection is reached for the angle-ply lamination scheme with θ◦ = 45◦, whilst the minimum ones are obtained

for angles θ◦ = 30◦, 60◦.

Example 2

Five layered symmetrically laminated plates and shallow spherical shells with the cut-out (Fig. 1) subjected to a uniformly

distributed load are investigated.

The geometrical parameters are: a/b = 1; a1/b1 = 1; a1/a = 0.3; h/(2a) = 0.1. Mechanical parameters are taken

the same as in Example 1. Two types of boundary conditions are considered: I-type (CC) – a shell clamped over all
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Table 1 Maximum deflections w and stresses σx, σy of the clamped five layered (θ◦,−θ◦, θ◦,−θ◦, θ◦) laminated square plate.

Method wmax σ+
x (0; α)|σ−

x (0; α) σ+
x (0; α)|σ+

x (0; α) σ+
y (0; α)|σ−

y (0; α) σ+
y (0; α)|σ−

y (0; α)

θ◦ = 30◦, 60◦

Present4 4.763 −6.783+|6.783− −9.348+|9.348− −22.81+|22.81− −8.755+|8.755−

Present10 4.706 −7.861+|7.861− −10.65+|10.65− −26.04+|26.04− −12.79+|12.79−

Present20 4.702 −7.795+|7.795− −10.59+|10.59− −25.81+|25.81− −12.86+|12.86−

Present40 4.701 −7.795+|7.795− −10.59+|10.59− −25.80+|25.80− −12.87+|12.87−

ANSYS1814 4.989 −1.424+|1.424− −2.234+|2.234− −7.500+|7.500− −0.583+|0.583−

ANSYS18110 4.819 −5.433+|5.433− −6.425+|6.425− −18.56+|18.56− −7.537+|7.437−

ANSYS18120 4.796 −6.901+|6.901− −8.627+|8.627− −22.87+|22.87− −11.01+|11.01−

ANSYS18140 4.791 −7.647+|7.647− −9.877+|9.877− −25.06+|25.06− −12.91+|12.91−

ANSYS2814 4.777 −7.908+|7.908− −9.602+|9.602− −25.94+|25.94− −12.59+|12.59−

ANSYS28110 4.788 −8.386+|8.386− −10.98+|10.98− −27.24+|27.24− −14.69+|14.69−

ANSYS28120 4.789 −8.397+|8.397− −11.16+|11.16− −27.26+|27.26− −14.85+|14.85−

ANSYS28140 4.789 −8.396+|8.396− −11.20+|11.20− −27.26+|27.26− −14.87+|14.87−

θ◦ = 45◦

Present4 4.854 −10.56+|10.56− −14.67+|14.67− −14.67+|14.67− −10.56+|10.56−

Present10 4.777 −11.79+|11.79− −15.89+|15.89− −15.89+|15.89− −11.79+|11.79−

Present20 4.767 −11.75+|11.75− −15.79+|15.79− −15.79+|15.79− −11.75+|11.75−

Present40 4.764 −11.75+|11.75− −15.79+|15.79− −15.79+|15.79− −11.75+|11.75−

ANSYS2814 4.728 −11.63+|11.63− −15.11+|15.11− −15.11+|15.11− −11.63+|11.63−

ANSYS28110 4.744 −12.92+|12.92− −16.62+|16.62− −16.62+|16.62− −12.92+|12.92−

ANSYS28120 4.746 −13.01+|13.01− −16.74+|16.74− −16.74+|16.74− −13.01+|13.01−

ANSYS28140 4.746 −13.02+|13.02− −16.76+|16.76− −16.76+|16.76− −13.02+|13.02−

Fig. 1 A form of a shallow shell.

border and II-type (FC) – a shell clamped only on the internal contour and free on the external border. The solution

structure for the first type of boundary condition is taken according to (3), where the function ω takes the following form:

ω = (f1∧0 f2)∧0 (f3∨0 f4). In the second case the boundary conditions are natural, thus, due to usage of the Ritz method,

it’s possible to apply basic functions satisfying only the kinematical conditions. In this case the following solution structure

can be applied:

u = ω1P1, v = ω1P2, w = ω1P3, Ψ1 = ω1P4, Ψ2 = ω1P5,

where ω1 = (f3 ∨0 f4). Here functions fi, i = 1..4 are defined as follows:

f1 =
1

2a
(b2 − y2) ≥ 0, f2 =

1

2a
(a2 − x2) ≥ 0, f3 =

1

b1
(y2 − b2

1) ≥ 0,

f4 =
1

2a1
(x2 − a2

1) ≥ 0.

The signs ∧0 and ∨0 denote R-conjunction and R-disjunction [4], respectively.
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The appropriate quantity of basic functions corresponding to the used meshes and the number of linear algebraic equa-

tions in (6) for both RFM and FEM are presented in Table 2 (dimensions for shells are marked in the italics).

Table 2 Meshes and corresponding dimensions of a problem.

Used meshes Dimension of a problem

Present 20 × 20 2645/2645

40 × 40 9245/9245

60 × 60 19845/19845

ANSYS281 20 5928/7338

40 24960/27210

60 57096/60144

It should be noted that results obtained by RFM combined with both the polynomial and the spline approximation are

almost the same for plates with a square planform. But if we deal with concave domains or domains with cut-outs the

spline-approximation allows getting more stable results convergence. The values of the maximum deflections and stresses

for plates with boundary condition of the I-type (CC) are presented in Table 3.

Table 3 Maximum deflections w and stresses σx, σy of the clamped (CC) laminated (θ◦,−θ◦, θ◦,−θ◦, θ◦) plates (Fig. 1).

Method wmax σ+
x (α1; 0)|σ−

x (α1; 0) σ+
x (α; 0)|σ+

x (α; 0) σ+
y (α1; 0)|σ−

y (α1; 0) σ+
y (α; 0)|σ−

y (α; 0)

θ0 = 30◦, 60◦

Present20 0.916 −5.154+|5.154− −5.070+|5.070− −6.438+|6.438− −6.407+|6.407−

Present40 0.919 −5.222+|5.222− −5.079+|5.079− −6.494+|6.494− −6.420+|6.420−

Present60 0.920 −5.231+|5.231− −5.081+|5.081− −6.506+|6.506− −6.423+|6.423−

ANSYS28120 0.944 −5.418+|5.418− −5.432+|5.432− −7.564+|7.564− −7.823+|7.823−

ANSYS28140 0.948 −5.509+|5.509− −5.498+|5.498− −7.655+|7.655− −7.901+|7.901−

ANSYS28160 0.948 −5.528+|5.528− −5.511+|5.511− −7.674+|7.674− −7.916+|7.916−

θ◦ = 45◦

Present20 0.779 −5.201+|5.201− −5.511+|5.511− −3.828+|3.828− −4.117+|4.117−

Present40 0.780 −5.109+|5.109− −5.518+|5.518− −3.755+|3.755− −4.123+|4.123−

Present60 0.781 −5.123+|5.123− −5.520+|5.520− −3.765+|3.765− −4.125+|4.125−

ANSYS28120 0.831 −5.459+|5.459− −6.218+|6.218− −4.233+|4.233− −4.945+|4.945−

ANSYS28140 0.836 −5.545+|5.545− −6.276+|6.276− −4.291+|4.291− −4.988+|4.988−

ANSYS28160 0.838 −5.561+|5.561− −6.288+|6.288− −4.302+|4.302− −4.996+|4.996−

The comparison of the presented results with appropriate results, computed by ANSYS FEM package is also carried out.

The analysis of the comparison confirms the verification of the presented results. But it should be noted that the convergence

of results for stresses obtained by the RFM is better than the convergence of similar results obtained by FEM.

In Table 4 the comparison of the obtained results with similar ones obtained by FEM (ANSYS) for plates with boundary

condition of the II-type (FC) is presented.

The results for shallow spherical shells with different types of boundary conditions and lamina schemes are presented

in Tables 5 and 6. Let us put the dimensionless value of the shells curvature equal to 0.2, that is R
2a

or k = 0.2/(2a). The

convergence of obtained results with an increase in number of partitions of the source region had been studied for both

approaches. It should be noted that the convergence of the FEM for shallow shells is worse than for plates. It is observed

in the second significant digit for deflections (I and II type of the boundary conditions) and stresses (only I type of the

boundary conditions). The convergence of the stresses for the second type of the boundary conditions (FC) is observed

only in the first significant digit. One can also observe, that the deflections obtained with the FEM for θ = 30◦ and θ = 60◦

are different in spite of the symmetry.

The presented convergence for shallow shells shows high levels of disagreement, especially for II-type (FC) of the boundary

condition (Table 6). The reason for that in our opinion is the combined effect of curvature and boundary conditions. It should

be noted that the dimension of a problem using ANSYS281 for shallow shells is up to 3 times higher than one using RFM

(Table 2), which leads to higher levels of CPU time and memory requirements.
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Table 4 Maximum deflections w and stresses σx, σy of the laminated (θ◦,−θ◦, θ◦,−θ◦, θ◦) plates with boundary conditions of the

second type (FC).

Method wmax σ+
x (α1; 0)|σ−

x (α1; 0) σ+
x (α; 0)|σ+

x (α; 0) σ+
y (α1; 0)|σ−

y (α1; 0) σ+
y (α; 0)|σ−

y (α; 0)

θ◦ = 30◦, 60◦

Present60 27.21 −59.94+|59.94− 0.363+| − 0.363− −83.79+|83.79− −3.055+|3.055−

ANSYS28160 27.63 −61.22+|61.22− 0.400+| − 0.400− −88.72+|88.72− −3.116+|3.116−

θ◦ = 45◦

Present60 19.44 −51.42+|51.42− 0.918+| − 0.918− −39.25+|39.25− −5.365+|5.365−

ANSYS28160 19.85 −53.20+|53.20− 0.950+| − 0.950− −41.27+|41.27− −5.333+|5.333−

Table 5 Maximum deflections w and stresses σx, σy of the clamped (CC) laminated (θ◦,−θ◦, θ◦,−θ◦, θ◦) spherical shells shown in

Fig. 1.

Method wmax σ+
x (α1; 0)|σ−

x (α1; 0) σ+
x (α; 0)|σ+

x (α; 0) σ+
y (α1; 0)|σ−

y (α1; 0) σ+
y (α; 0)|σ−

y (α; 0)

θ◦ = 60◦

Present20 0.863 −4.150+|5.586− −4.054+|5.523− −4.755+|7.411− −4.702+|7.407−

Present40 0.865 −4.207+|5.656− −4.061+|5.532− −4.795+|7.474− −4.713+|7.420−

Present60 0.866 −4.213+|5.665− −4.063+|5.534− −4.803+|7.489− −4.715+|7.424−

ANSYS28120 0.952 −6.407+|8.089− −5.361+|6.934− −4.619+|6.099− −7.076+|9.403−

ANSYS28140 0.966 −5.455+|6.396− −5.503+|6.913− −4.217+|5.309− −7.451+|9.490−

ANSYS28160 0.972 −6.509+|7.971− −5.150+|6.323− −6.023+|7.876− −7.880+|9.794−

θ◦ = 45◦

Present20 0.751 −3.784+|6.118− −3.902+|6.583− −2.638+|4.652− −2.761+|5.071−

Present40 0.752 −3.723+|6.003− −3.905+|6.590− −2.590+|4.558− −2.764+|5.077−

Present60 0.753 −3.733+|6.020− −3.907+|6.592− −2.597+|4.570− −2.765+|5.079−

ANSYS28120 0.767 −5.693+|8.982− −5.459+|7.957− −1.867+|3.005− −3.691+|5.459−

ANSYS28140 0.779 −4.799+|7.310− −5.122+|7.736− −2.382+|3.777− −3.515+|5.424−

ANSYS28160 0.774 −5.292+|8.241− −4.857+|7.110− −2.675+|4.308− −3.853+|5.751−

θ◦ = 30◦

Present20 0.864 −4.099+|6.979− −4.309+|7.751− −1.188+|2.107− −1.266+|2.365−

Present40 0.866 −3.483+|6.119− −4.346+|7.811− −0.998+|1.839− −1.277+|2.385−

Present60 0.866 −3.605+|6.285− −4.353+|7.825− −1.035+|1.891− −1.280+|2.389−

ANSYS28120 0.708 −8.236+|8.839− −5.101+|8.275− −0.766+|0.799− −1.269+|2.085−

ANSYS28140 0.726 −3.892+|9.308− −6.293+|8.016− −0.657+|1.686− −1.625+|2.080−

ANSYS28160 0.723 −4.443+|7.437− −5.515+|7.575− −0.771+|1.321− −1.698+|2.353−

The behavior of deflections w and stresses σx, σy in the section y = 0 for different values θ = 30◦, θ = 45◦, θ = 60◦

is presented in Fig. 2.

Let us analyze the effects of geometrical factors and lamina scheme on the stress-strain state. The effect of curvature

is observed, when we compare results in Tables 1, 3–6 for plates and shells. The maximum deflections for all types of

boundary conditions and lamina schemes decrease at increasing curvature. Nevertheless, it is more obvious for the case

of CC shells. For FC shells the change of curvature in the examined range k ∈ [0; 0.2/(2a)] does not make essential

influence on deflections. The increase in the curvature decreases values of stresses on a clamped border only for CC

shells, but slightly increases for FC shells. The maximum values of deflections of the shells are observed for angle-ply

(30◦,−30◦, 30◦,−30◦, 30◦) and (60◦,−60◦, 60◦,−60◦, 60◦) for different boundary conditions.

The extreme values of stresses in the section y = 0 are reached on the clamped border and have biggest values for θ = 60◦.

The smallest values are reached for θ = 30◦. For example at the point x/(2a) = 0.15, y = 0 the absolute value of σ+
y for

θ = 60◦ is 8 times higher than for θ = 30◦. Thus, one can choose the angle stacking layers using the proposed calculations.
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Table 6 Maximum deflections w and stresses σx, σy of the laminated (θ◦,−θ◦, θ◦,−θ◦, θ◦) spherical shells with boundary conditions

of the second type (FC), see Fig. 1.

Method wmax σ+
x (α1; 0)|σ−

x (α1; 0) σ+
x (α; 0)|σ+

x (α; 0) σ+
y (α1; 0)|σ−

y (α1; 0) σ+
y (α; 0)|σ−

y (α; 0)

θ◦ = 60◦

Present20 26.21 −60.76+|54.50− 0.166+| − 0.545− −86.52+|75.78− 0.598+|7.102−

Present40 26.39 −61.36+|55.03− 0.182+| − 0.561− −86.67+|75.85− 0.774+|6.972−

Present60 26.43 −61.61+|55.26− 0.175+| − 0.555− −87.11+|76.27− 0.808+|6.949−

ANSYS28120 16.12 −69.26+|63.18− 1.079+| − 1.394− −52.51+|49.18− 3.654+|15.02−

ANSYS28140 16.00 −49.77+|43.87− 1.023+| − 1.449− −37.59+|32.88− 4.059+|16.59−

ANSYS28160 16.46 −64.62+|58.14− 1.156+| − 1.803− −61.62+|55.65− 5.593+|19.25−

θ◦ = 45◦

Present20 19.02 −52.45+|49.59− 0.716+| − 1.121− −40.19+|37.79− −2.613+|7.864−

Present40 19.08 −51.84+|49.05− 0.704+| − 1.104− −39.67+|37.34− −2.638+|7.908−

Present60 19.09 −51.98+|49.19− 0.703+| − 1.103− −39.78+|37.45− −2.641+|7.914−

ANSYS28120 15.06 −87.20+|84.12− 0.877+| − 1.352− −29.16+|28.16− −1.930+|7.230−

ANSYS28140 15.45 −64.99+|60.96− 0.739+| − 1.209− −32.26+|29.99− −1.882+|8.151−

ANSYS28160 15.41 −80.73+|76.14− 0.774+| − 1.183− −41.93+|39.43− −2.863+|8.283−

θ◦ = 30◦

Present20 26.22 −45.63+|46.99− 0.814+| − 1.167− −13.75+|14.19− −6.443+|14.29−

Present40 26.39 −33.36+|34.20− 0.792+| − 1.138− −9.878+|10.15− −6.545+|14.48−

Present60 26.43 −35.67+|36.58− 0.787+| − 1.133− −10.61+|10.90− −6.563+|14.52−

ANSYS28120 18.37 −52.29+|50.43− 1.230+| − 1.543− −4.452+|4.269− −1.402+|6.535−

ANSYS28140 20.39 −120.3+|115.6− 0.479+| − 0.986− −22.04+|21.09− −2.653+|8.581−

ANSYS28160 20.38 −85.53+|79.96− 0.442+| − 0.669− −15.46+|14.43− −3.005+|8.440−

Fig. 2 (online colour at: www.zamm-journal.org) Values of deflections w and stresses σx, σy of a five-layers (θ◦,−θ◦, θ◦,−θ◦, θ◦)

shallow spherical shell (k = 0.2a) in the section y = 0.

Results presented in Table 7 are the plots of deflections and stresses of the clamped (FC) five layered (θ◦, −θ◦, θ◦, −θ◦,

θ◦) shallow spherical shell (k = 0.2a) with different angles of lamination.

The concentration of stresses is observed on a clamped part of a border, which confirm our initial choice of the examined

points in the Tables 3–6.

5 Conclusions

In the present work an effective numerically-analytical method of investigation of the stress-strain state of shallow lam-

inated shells and plates with noncanonical shape and different boundary conditions is proposed. This approach is based

on combined application of the varionational Ritz method, R-functions theory, and spline-approximation. Influence of me-

chanical and geometrical parameters on a static response of shallow laminated shells and plates with square hole is studied.

A comparison of the present results with appropriate results, obtained by FEM, including the convergence study for each
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Table 7 (online colour at: www.zamm-journal.org) Deflections and stresses of a five layered (θ◦,−θ◦, θ◦,−θ◦, θ◦)

shallow spherical shell, clamped on the internal contour and free on the external boundary (k = 0.2a) with different

angles of lamination.

θ 30◦ 45◦

w

σ
+
x

σ
+
y

method (FEM and RFM) is presented. It is observed that for shallow shells the convergence of FEM results is unstable,

while RFM provides stable results for both plates and shells. The investigation of dynamic behavior of laminated shallow

shells with complex shape is to be examined further.

References

[1] I. Kreja, R. Schmidt, and J. N. Reddy, Finite elements based on a first-order shear deformation moderate rotation theory with

applications to the analysis of composite structures, Int. J. Non-Linear Mech. 32, 1123–1142 (1997).

[2] H. Altenbach, Theories for laminated and sandwich plates (a review), Mech. Compos. Mater. 34(3), 243–252 (1998).

[3] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals (Butterworth-Heinemann,

Amsterdam, 2005) p. 752.

[4] V. L. Rvachev and L. V. Kurpa, R-Functions in Problems of the Theory of Plates, in Russian (Naukova Dumka, Kiev, 1987).

[5] L. V. Kurpa, R-functions Method for Linear Bending and Vibration of Shallow Shells Problems Solution, in Russian (National

Technical University of Ukraine Kharkov, Polytechnic Institute, Kharkov, 2009).

[6] L. V. Kurpa, K. I. Lyubitska, and A. V. Shmatko, Solution of vibration problems for shallow shells of arbitrary form by the R-

function method, J. Sound Vib. 279, 1071–1084 (2005).

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org



ZAMM · Z. Angew. Math. Mech. 91, No. 6 (2011) / www.zamm-journal.org 467

[7] L. V. Kurpa and A. A. Osetrov, Study of free vibrations of shallow shells using R-functions method and spline-approximation, in

Russian, Math. Methods Physicomechanical Fields (UAN) 50, 83–93 (2007).

[8] L. V. Kurpa, G. Pilgun, and M. Amabili, Nonlinear vibrations of shallow shells with complex boundary: R-functions method and

experiments, J. Sound Vib. 306, 580–600 (2007).

[9] L. V. Kurpa, T. V. Shmatko, and O. G. Onufrienko, Research of nonlinear vibrations of orthotropic plates with a complex form,

Math. Probl. Eng. 2006, 125–138 (2005).

[10] V. L. Rvachev and T. I. Sheiko, R-functions in boundary value problems in mechanics, Appl. Mech. Rev. 48, 155–185 (1995).

[11] J. Awrejcewicz, L. V. Kurpa, and O. S. Mazur, Proceedings of the 9th Conference on Dynamical Systems – Theory and Appli-

cations, Lodz, Poland, Stability investigation of nonlinear vibrations of plates by R-functions method, edited by J. Awrejcewicz,

P. Olejnik, and J. Mrozowski Lodz, 2007, pp. 961–970.

[12] J. Awrejcewicz, L. V. Kurpa, and O. S. Mazur, Research of Stability and Nonlinear Vibrations by R-functions Method, in: Model-

ing, Simulation and Control of Nonlinear Engineering Dynamical System. State-of-the-Art, Perspectives and Applications, edited

by J. Awrejcewicz (Springer, Berlin, Heidelberg, 2009) pp. 179–190.

[13] K. Hollig, U. Reif, and J. Wipper, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal. 39,

442–462 (2001).

[14] S. A. Ambartsumian, General Theory of Anisotropic Shells (Nauka, Moscow, 1974).

[15] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The Theory of Splines and Their Applications (Academic Press, New York, 1967).

[16] Y. Saad, Iterative Methods for Sparse Linear Systems (Society for Industrial and Applied Mathematics, Philadelphia, 2002).

Book Review

J. Chakrabarty, Applied Plasticity, 2nd Ed. – Mechanical
Engineering Series (Ed. by Frederick F. Ling) Springer, New
York, Dordrecht, Heidelberg, London 2010, 776 pp., 225
figs, 3 tabs., Hardcover, EUR 79.95 (net price), CHF 115.00,
USD 99.00, GBP 71.99, ISBN 978-0-387-77673-6

Several years ago (1987) the author published his famous
Theory of Plasticity – in that time one of the best textbooks
for people which are more interested in applications. Many
simple examples, discussions concerning problems coming
from the practice, etc. were included and the textbook be-
comes very popular.

The new Springer textbook is named Applied Plasticity.
In this sense it is an excellent continuation of the previous
books of the author. It must be underlined that new theoret-
ical developments are not highlighted since they are often
far from the needs of practice. On the other hand the book
reflects the basic knowledge of an Advanced Course in the
transition of BSc to MSc programs.

The book is split into 9 chapters

– Fundamental Principles
– Problems in Plane Stress

– Axisymmetric and Related Problems
– Plastic Bending of Plates
– Plastic Analysis of Shells
– Plastic Anisotropy
– Plastic Buckling
– Dynamic Plasticity
– The Finite Element Method

Each chapter is added by problems – but there are no so-
lutions. The last one is a disadvantage since for students the
“self-education” is necessary and complete solutions can be
very helpful.

For further developments (new editions, etc.) is will be
nice to include as a minimum a literature survey contain-
ing more information on new developments in the theory of
plasticity, especially within theoretical frameworks (Contin-
uum Plasticity, Crystal Plasticity, Multi-Scale Approaches
among others).
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