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Abstract: Smokers are at a higher risk of laryngeal cancer, which is a type of head and neck cancer in
which cancer cells proliferate and can metastasize to other tissues after a tumor has formed. Cigarette
smoke greatly reduces the inhaled air quality and can also lead to laryngeal cancer. In this study,
the upper airway of a 70-year-old smoker with laryngeal cancer was reconstructed by taking a CT scan
using Mimics software. To solve the governing equations, computational fluid dynamics (CFD) with a
pressure base approach was used with the help of Ansys 2021 R1 software. As a result, the maximum
turbulence intensity occurred in the larynx. At 13 L/min, 55 L/min, and 100 L/min, the maximum
turbulence intensity was 1.1, 3.5, and 6.1, respectively. The turbulence intensity in the respiratory
system is crucial because it demonstrates the ability to transfer energy. The maximum wall shear
stress (WSS) also occurred in the larynx. At 13 L/min, 55 L/min, and 100 L/min, the maximum WSS
was 0.62 Pa, 5.4 Pa, and 12.4 Pa, respectively. The WSS index cannot be calculated in vivo and should
be calculated in vitro. Excessive WSS in the epiglottis is inappropriate and can lead to an airway
obstruction. Furthermore, real mathematical modeling outcomes provide an approach for future
prevention, treatment, and management planning by forecasting the zones prone to an acceleration
of disease progression. In this regard, accurate computational modeling leads to pre-visualization in
surgical planning to define the best reformative techniques to determine the most probable patient
condition consequences.

Keywords: laryngeal cancer; tumor; inhaled air quality; physical activity level; CFD

1. Introduction

Laryngeal cancer is a type of cancer that affects the larynx. The larynx contains the
vocal cords, which vibrate to produce sound when air is directed at them. When laryngeal
cancer begins, malignant cells grow in the larynx. It is a type of head and neck cancer in
which cancer cells grow rapidly and can migrate or metastasize to other tissues in the throat
after a tumor has formed. Many studies have been undertaken on the respiratory system
of a healthy person. Amongst the studies that have simulated the respiratory system of a
healthy person is the numerical investigation of Ball et al. [1]. They simulated the human
respiratory system at different flow rates. Henan et al. [2] numerically and experimentally
studied the flow through the respiratory system. They examined the flow movement in
several human bodies and collected general results, which provided a complete model
for simulating this system. Kleinstreuer and Zhang [3] examined the change in laminar
to turbulent flow in the airway. In other numerical studies, comparisons have been made
between the passage of micro- and nano-sized particles through the airway and their
deposition at the top of the airway [4,5]. Matida et al. [6] achieved acceptable results in
2004 by examining the deposition of various substances in the throat. Stapleton et al. [7]
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proposed a study of the respiratory system using a large eddy simulation model. Despite
many studies of the respiratory system of a healthy person, limited numerical studies have
been performed on the human respiratory system with laryngeal cancer.

In 2015, Taylan et al. [8] simulated respiratory tract cancer. They found that the upper
part of the larynx, where the pressure reaches its lowest point, was the most susceptible
point for laryngeal cancer. By simulating the respiratory system in a state of a sudden
cross-sectional change, Kaushik et al. [9] found that a significant change in flow behavior
occurred due to opening and expansion. Lin et al. [10] investigated the effect of roughness
characteristics of the laryngeal cross-section on the passage flow through this part of the
respiratory system. By modeling the pharyngeal part and the pressure passing through
it for adults, Kumar et al. [11] concluded that the flow behavior changed in this part.
By considering the muscles and tissues of the pharynx, Carrigy et al. [12] studied its
behavior when particles and air passed through this part. Hiramatsu et al. [13] simulated
three-dimensional laryngeal behavior before and after vocal cord failure. In their simulation,
all parts related to the vocal cords were examined and a complete view of their behavior
was displayed. Vampola et al. [14] analyzed the human larynx and the effects of waves on
it using the finite element method. Chen et al. [15] in 2012 were able to improve laryngeal
tissues by reconstructing them on a micro scale.

By numerically simulating the upper part of the respiratory tract and the dynamic
movement of the vocal cords in three dimensions as well as the final passage of the current
through the larynx, Zheng et al. [16] concluded that fluctuations in the passage of the flow
increased the movement of the vocal cords. In 2012, Švec et al. [17] processed an image
of the larynx and were able to detect the vibrations generated in the larynx at different
times with a high accuracy. Zhang et al. [18] also studied the vibrational modes of vocal
cords from an aerodynamic and acoustic perspective. Murray et al. [19] compared the
vibrational responses of the respiratory system in different states. These simulations were
performed from a biomechanical point of view based on the oscillations of the vocal cords.
Yang et al. [20] numerically investigated the aeroelasticity of compressible fluid and its
effect on the vibrations of the vocal cords. They performed their simulations using the
finite element method and solved compressible Navier–Stokes equations. Gemci et al. [21]
examined the computational model of air passing through a lung with 17 branches. Pollard
et al. [22] studied the dynamics of blood flow and air passing through the surface of the
respiratory system from both mechanical and pharmacological perspectives and found that
bubbles may be placed between blood particles during heart surgery. In another study,
the passage of air and medicine through the human respiratory tract was discussed. In this
study, perturbation models to perform the simulations on patients with laryngeal cancer
and the flow was passed through the tumors at different velocities.

In the present study, we simulated the upper airway of a seventy-year-old male smoker
with a laryngeal tumor in the domain between the nostril entrances up to the lung entrance
(carina zone). The pathway included the nasal cavity, nasopharynx, oropharynx, larynx,
and trachea. The main purpose of the current study was to determine the variations
in airflow characteristics inside all upper airway segments in inhalation associated with
various activity levels, especially in the larynx zone of a pre-surgery condition.

2. Materials and Methods

The governing equations for the incompressible airflow in the human upper respiratory
system are the equations of continuity (Equation (1)) and momentum (Equation (2)).

Continuity equation:
∂Ui
∂xi

= 0 (1)

Navier–Stokes equation:
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In this study, the upper airway of a 70-year-old smoker with laryngeal cancer was
reconstructed by taking a CT scan using Mimics software. This geometry consisted of
several main segments of the nasal cavity, nasopharynx, oropharynx, larynx, and trachea,
which were separately examined in the simulations. The image of this geometry can be
seen in Figure 1. Figure 1A shows the anatomical segmentation of the present respiratory
system. Figure 1C shows the grid generation image created of the current model by Ansys
2021 R1. In addition to covering the boundary layer, the mesh was selected in such a way
that finer mesh was used in the critical zones, including the laryngeal narrowing zone,
due to the presence of a tumor.
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Figure 1. The upper airway of a 70-year-old smoker with laryngeal cancer. (A) The anatomical
segmentation of the present respiratory system. (B) Finer mesh was used in the laryngeal narrowing
zone due to the presence of a tumor. (C) The grid generation image.

The input from the nostril was considered at three different airflow rates and the
pressure output occurred from the carina zone. The three flow rates were 13 L/min for
a light activity (such as walking at 2 mph), 55 L/min for a heavy activity (such as rock
climbing), and 100 L/min for a severe activity (such as long-distance running) [23]. The non-
slip boundary condition was also applied to the walls. In the present study, to solve the
governing equations, the finite volume method with a pressure base approach was used
with the help of Fluent 2021 R1 software (ANSYS, Inc., Canonsburg, PA, USA). The SIMPLE
algorithm was used to couple the pressure and velocity and the second-order upwind
method was used for the discrete momentum equation. The RNG k–ε turbulence model
was also used to solve the turbulent flow. The convergence criterion of the results was
equal to 10−4.

As can be seen in Table 1, the number of elements of this computational mesh after
a grid independency analysis was 3,502,459 with an average orthogonal quality = 0.7,
skewness = 0.2, and aspect ratio = 4.4. The maximum y + adjacent to the geometry wall
was five, which led to high accurate computations adjacent to the wall. The thickness of
the first sub-layer of the boundary layer in the internal areas of the respiratory system was
0.028 mm and the total number of layers was 20 layers at a growth rate of 1.1. The thickness
of the entire boundary layer was considered to be 1.6 mm for the numerical solution.
By considering a line (center line) in a fixed location or various planes of different sizes
(top plane and front plane), the diagram of changes for a specific parameter (such as
velocity for different sizes of an element) could be calculated and the results compared
to achieve the grid independence analysis. The top plane, front plane, and center line
were defined as shown in Figure 2A. Table 1 shows the results of the grid independence
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study for the element size variations. Figure 2B also verifies the present research with the
study of Ball et al. [1] for the trachea velocity profile entrance. As can be seen from this
validation, the trend of alterations was almost the same. However, due to the difference in
geometry, especially in the larynx, the trend of the velocity variation in the current study
was relatively severe. According to Ball et al. [1], the process of changing the profile of the
tracheal entry velocity of a healthy person is relatively gradual and more uniform.

Table 1. Numerical values related to changes in the average velocity value according to mesh size.

Grid Parameters Average Velocity (m/s)
Element
Size (m) Nodes Elements Top Plane Front Plane Center Line

0.004 51,652 197,214 0.21077 0.90562 2.40075
0.003 62,219 243,683 0.21978 0.85532 2.58929
0.002 225,436 659,933 0.21905 0.74990 2.72969
0.001 1,111,962 3,502,459 0.19995 0.68605 2.79816
0.0009 1,416,506 4,557,811 0.20061 0.68600 2.79471
0.0007 2,672,912 8,853,902 0.20332 0.65686 2.80306
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Figure 2. Upper respiratory tract view and validation. (A) The top plane (red), front plane (yellow),
and center line are defined in the 3D model. (B) Verification of the present research with the study of
Ball et al. [1] for the trachea velocity profile entrance.

3. Results

In the present work, we investigated the airflow behavior inside the respiratory system
from the nasal entrance to the lung entrance. As previously mentioned, the air was directed
into the nasal cavity at three different flow rates of 13 L/min, 55 L/min, and 100 L/min.
The first value was the lowest state of air entering the body through the nose, the second
was the intermediate state, and the last was the most severe state of air entering this
respiratory system. Figure 3 shows the filled pressure contours of the respiratory system
at the three flow rates of 13 L/min, 55 L/min, and 100 L/min. As can be seen from this
figure, the pressure in the nasal cavity and nasopharynx region increased sharply due to
the narrowing of the airway in the larynx. As can be seen in the figure, for the flow rates
of 13 L/min, 55 L/min, and 100 L/min, the maximum pressure was 16.0 Pa, 205.9 Pa,
and 588.2 Pa, respectively. In other words, with an increase in the flow rate, the maximum
pressure growth rate was sharply curved. On the other hand, the lowest pressure occurred
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in the larynx and trachea. Therefore, we expected the air velocity to increase in these
two areas, along with a vortical disturbed flow.

Atmosphere 2022, 13, x FOR PEER REVIEW 5 of 13 
 

 

L/min. The first value was the lowest state of air entering the body through the nose, the 
second was the intermediate state, and the last was the most severe state of air entering 
this respiratory system. Figure 3 shows the filled pressure contours of the respiratory 
system at the three flow rates of 13 L/min, 55 L/min, and 100 L/min. As can be seen from 
this figure, the pressure in the nasal cavity and nasopharynx region increased sharply due 
to the narrowing of the airway in the larynx. As can be seen in the figure, for the flow rates 
of 13 L/min, 55 L/min, and 100 L/min, the maximum pressure was 16.0 Pa, 205.9 Pa, and 
588.2 Pa, respectively. In other words, with an increase in the flow rate, the maximum 
pressure growth rate was sharply curved. On the other hand, the lowest pressure occurred 
in the larynx and trachea. Therefore, we expected the air velocity to increase in these two 
areas, along with a vortical disturbed flow. 

   
(C) (B) (A) 

Figure 3. Filled pressure contour of the respiratory system at three flow rates of 13 L/min, 55 L/min, 
and 100 L/min. (A) 13 L/min. (B) 55 L/min. (C) 100 L/min. 

Figure 4 shows the airflow streamlines at the three flow rates of 13 L/min, 55 L/min, and 
100 L/min. The maximum velocity occurred in the lower part of the larynx. As can be seen 
in the figure, at 13 L/min, 55 L/min, and 100 L/min, the maximum velocity was 5.3 m/s, 
21.8 m/s, and 39.3 m/s, respectively. After this part, the oropharynx showed a significantly 
higher velocity than the other parts. As can be seen in the figure, at 13 L/min, 55 L/min, 
and 100 L/min, the maximum velocity was 2.6 m/s, 10.9 m/s, and 19.6 m/s, respectively.  

Figure 3. Filled pressure contour of the respiratory system at three flow rates of 13 L/min, 55 L/min,
and 100 L/min. (A) 13 L/min. (B) 55 L/min. (C) 100 L/min.

Figure 4 shows the airflow streamlines at the three flow rates of 13 L/min, 55 L/min,
and 100 L/min. The maximum velocity occurred in the lower part of the larynx. As can
be seen in the figure, at 13 L/min, 55 L/min, and 100 L/min, the maximum velocity
was 5.3 m/s, 21.8 m/s, and 39.3 m/s, respectively. After this part, the oropharynx
showed a significantly higher velocity than the other parts. As can be seen in the fig-
ure, at 13 L/min, 55 L/min, and 100 L/min, the maximum velocity was 2.6 m/s, 10.9 m/s,
and 19.6 m/s, respectively.
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In medical evaluations, several parts of the respiratory system are more important than
other parts in terms of sensitivity. The upper part of the nasopharynx is essential because it
is the beginning of the entrance to the entire respiratory system [24]. Any disturbance in
this part significantly impacts on other parts. The shape of this part is similar to half an
ellipse. It may change due to external factors such as colds or allergies. Disorders in this
region can cause cracking of the tongue and lips or excessive redness in these areas. In this
part, the air had a high velocity than in a healthy person [25], so it may have been damaged
due to this phenomenon.

Figure 5 shows the turbulence intensity contours. The maximum turbulence intensity
occurred in the larynx. As can be seen at 13 L/min, 55 L/min, and 100 L/min, the maximum
turbulence intensity was 1.1, 3.5, and 6.1, respectively. After this part, the oropharynx had
a higher turbulence intensity than the other parts. At 13 L/min, 55 L/min, and 100 L/min,
the maximum turbulence intensity was 0.9, 2.5, and 3.4, respectively. After these two
segments, the amount of turbulence intensity in the trachea was also significant. The turbu-
lence intensity was another parameter that could help us to better understand the airflow
behavior in the respiratory system. The turbulence intensity in the respiratory system is
crucial because it demonstrates the ability to transfer energy. If the turbulence intensity
in the respiratory segment starts to vary or gradually increases, it can cause problems in
that segment.
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Figure 6 shows the WSS changes at flow rates of 13 L/min, 55 L/min, and 100 L/min.
The maximum WSS occurred in the larynx. As can be seen at 13 L/min, 55 L/min,
and 100 L/min, the maximum WSS was 0.62 Pa, 5.4 Pa, and 12.4 Pa, respectively. After this
part, the oropharynx had a higher WSS than the other parts. At 13 L/min, 55 L/min,
and 100 L/min, the maximum WSS was 0.22 Pa, 1.9 Pa, and 4.4 Pa, respectively. One of
the most important indexes in a respiratory system study is wall shear stress (WSS). This
parameter cannot be calculated in vivo and should be calculated in vitro. Excessive WSS in
the epiglottis is inappropriate and can also lead to an airway obstruction.



Atmosphere 2022, 13, 717 7 of 10

Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 13 
 

 

 

   
(C) (B) (A) 

Figure 6. The WSS changes at flow rates of 13 L/min, 55 L/min, and 100 L/min. (I) 13 L/min. (B) 55 
L/min. (BI) 100 L/min. 

4. Discussion 
In the present study, as shown in Figure 1, a three-dimensional schema of a 

respiratory system of a person with laryngeal cancer was investigated. The input 
boundary condition for respiration was set based on the airflow rate. Thus, the selected 
values of airflow rates were considered to be three values: 13 L/min (minimum air 
inhalation), 55 L/min (approximately average air inhalation), and 100 L/min (maximum 
air inhalation) [23]. The available forms of laryngeal cancer indicate that the most common 
site of cancer in the airway is usually in the larynx. As seen in Figure 4, it could be seen 
that with laryngeal cancer, the air velocity in the larynx was more intense. This velocity 
concentration was simulated to be due to the formation of a laryngeal tumor and the 
eventual narrowing of the airway in the larynx. As shown in Figure 7, with the 
continuation of the anomaly due to the narrowing of the airway, the round sections of the 
respiratory system, which are the main and direct route of air movement, had problems.  

  

Figure 6. The WSS changes at flow rates of 13 L/min, 55 L/min, and 100 L/min. (A) 13 L/min.
(B) 55 L/min. (C) 100 L/min.

4. Discussion

In the present study, as shown in Figure 1, a three-dimensional schema of a respiratory
system of a person with laryngeal cancer was investigated. The input boundary condition
for respiration was set based on the airflow rate. Thus, the selected values of airflow
rates were considered to be three values: 13 L/min (minimum air inhalation), 55 L/min
(approximately average air inhalation), and 100 L/min (maximum air inhalation) [23].
The available forms of laryngeal cancer indicate that the most common site of cancer in the
airway is usually in the larynx. As seen in Figure 4, it could be seen that with laryngeal
cancer, the air velocity in the larynx was more intense. This velocity concentration was
simulated to be due to the formation of a laryngeal tumor and the eventual narrowing of
the airway in the larynx. As shown in Figure 7, with the continuation of the anomaly due
to the narrowing of the airway, the round sections of the respiratory system, which are the
main and direct route of air movement, had problems.
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A person will suffer from respiratory disorders due to changing the angle of movement
of the air when it reaches the larynx; there should be a standard distance between this
curvature and the main driveway to avoid such a problem. As shown in Figures 5 and 6
above, the concentration of turbulence intensity and WSS in this area could lead to an
airway obstruction. The end of the present airway model was the trachea. This is the
beginning of the entrance tract airway into the lungs. The trachea is responsible for
transporting air into the lungs. As shown in Figure 7, the maximum velocity values passed
through the back of the trachea. According to Figure 8, the amount of pressure in the part
that is the front part of the respiratory system had a balanced value. The noteworthy point
in this section is that although the velocity varied across the tracheal cross-sections for all
three airflow rates, as the flow passed through a common cross-section, an almost uniform
behavior for the pressure was observed.
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In addition to the parameter mentioned above, other indexes containing the patient
mandible location, head situation, and weight alteration should be considered to influence
airway tract changes. A limitation of this research was that these parameters were not
included in the simulation. Although the variations in the airway form relative to gravity
were considered using CT images taken in the supine position, there was a slight difference
in the head situation. This was because the head location affects the airway form. In
general, a CFD analysis is an efficient and powerful tool for modeling and investigating
other domains in different critical locations [26–29], but has a few limitations [30]. Essen-
tial indexes of the respiratory system such as age [31,32], aerosol transport [33,34], lung
cancer [35], drug delivery [36], air pollution emissions [37], stenosis airways [38], and in
realistic lung airways [39] have been studied. However, this study is meaningful because
the CFD analysis was applied to patients with laryngeal cancer. Thus, the attitude of airway
changes seen after surgery in patients with laryngeal cancer and the situations where an
airway obstruction could occur were recognized. This study is also meaningful because it
provides basic data for future research. It also provides a basis for developing the means,
such as respiratory rehabilitation, for improving the quality of life of patients with laryngeal
cancer based on knowledge from follow-up studies with expanded groups of patients.

5. Conclusions

Laryngeal cancer is a widespread illness and a tumor leads to the narrowing of the
airway in the larynx. Older people are more likely to get this type of cancer. The present
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study method could also be applied to younger patients. In this research, an upper airway
cancer model was constructed based on a real human body. Air was directed into the nasal
cavity at three different inhalation flow rates of 13 L/min, 55 L/min, and 100 13 L/min.
The key findings of the present study are listed below:

• The pressure in the nasal cavity and nasopharynx region increased sharply due to the
narrowing of the airway in the larynx;

• The maximum velocity occurred in the lower part of the larynx. After this part,
the oropharynx showed a significantly higher velocity than the other parts;

• The maximum turbulence intensity occurred in the larynx. At 13 L/min, 55 L/min,
and 100 L/min, the maximum turbulence intensity was 1.1, 3.5, and 6.1, respectively;

• The maximum WSS occurred in the larynx. At 13 L/min, 55 L/min, and 100 L/min,
the maximum WSS was 0.62 Pa, 5.4 Pa, and 12.4 Pa, respectively.
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