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�is paper investigates the time series representation methods and similarity measures for sensor data feature extraction and
structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are
studied to compare the e�ectiveness of feature extraction for damage pattern recognition. �e evaluation of feature extraction
methods is performed by examining the separation of feature vectors among di�erent damage patterns and the pattern recognition
success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage
localization are also investigated. �e test data used in this study are from the System Identi�cation to Monitor Civil Engineering
Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic
performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage
test case datasets and damage test data with di�erent damage modalities are used.�e simulation results show that both time series
representation methods and similarity measures have signi�cant impact on the pattern recognition success rate.

1. Introduction

Time series is one of the most commonly used data formats
in real world. It is being generated in a tremendous speed
from almost every application area. Processing raw time
series data is expensive due to its high dimension. Two
key aspects for achieving e�ectiveness and eciency when
managing time series data are representation methods and
similarity measures [1]. In the last decades, a number of
representation methods and similarity measures have been
proposed to extract features from time series data for index-
ing, classi�cation, and clustering. �e objective of feature
extraction is to �nd a representation at a lower dimensionality
that preserves the fundamental characteristics of the original
time-series data [2]. �e time series representation methods
can be classi�ed as shape-based method, structure-based
(or model-based) method, and dimensionality reduction.
For long time series data, model-based and dimensionality
reduction methods are more e�ective.

Model-based time series representation methods extract
global features from time series, create feature vectors, and
use these feature vectors to measure similarity of time series
for classi�cation and clustering. Time series data are usually
�tted into models, such as Box Jenkins model or Markov
Model, and the parameters of the model are used to form
feature vectors. �e dimensionality reduction methods are
typically based on data transformation. Many dimensionality
reduction methods have been reported in the literature, such
as discrete Fourier transformation (DFT) [3, 4], single value
decomposition (SVD) [5], discrete wavelet transformation
(DWT) [6], piecewise approximation [7], and Chebyshev
polynomials (CHEB) [8].

Similarity measure is important for both evaluating fea-
ture extractionmethods and time series classi�cation. Feature
extraction process consists of following steps: establishing
a distance metric, producing a dimensionality reduction
technique that reduces the dimensionality of the data from
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� to � (where � < �), and producing a distance measure
de�ned on the �-dimensional representation of the data.
�ere are over a dozen distance measures that have been
reported in the literature for mining and indexing time
series. �ese similarity measures include Euclidean distance
[4], Mahalanobis distance, Cosine distance, Standardized
Euclidean (Seuclidean) distance, Correlation distance, and
Dynamic Time Warping (DTW) [9, 10].

�is paper examines several time series representation
methods and similarity measures for structural damage
feature extraction and pattern recognition. Smart sensors
have been widely used for structural health monitoring, and
sensor data-based structural damage detection has received
increased attention recently [11–13]. In this paper, pattern-
recognition-based structural damage detection and classi-
�cation are based on the similarity measure of damage
feature vectors with normal feature vectors. �e goal of the
feature extraction is to select features which will result in
the separation of damage feature vectors and normal feature
vectors in the feature space. �is will allow us to distinguish
damage and normal patterns. �e performance of repre-
sentation methods and similarity measures are evaluated
utilizing acceleration data collected from the Z24 Bridge as
part of the System Identi�cation toMonitorCivil Engineering
Structures (SIMCES) project.

�e rest of the paper is organized as follows. Section 2
introduces the Z24 bridge datasets which are used for the
validation. Section 3 presents feature representationmethods
studied in this paper for structural damage feature extraction
from time series sensor data. Section 4 evaluates the e�ects of
multiple similaritymeasures and the length of time series data
on the performance of structural damage pattern recognition.
Section 5 concludes the work.

2. Validation Structural Data:
Z24 Bridge Datasets

To investigate the e�ectiveness of time series representa-
tion methods and similarity measures applied to structural
damage pattern recognition, the Z24 Bridge test datasets are
used as validation data in this paper [14]. �e Z24 Bridge
datasets are especially appealing because the progressive
damage scenarios include scenarios of the same type of
damage but varying levels (support settlement) as well as
radically distinct damage modalities (support settlement
versus concrete spalling versus damage to pretension ele-
ments). �ese features of the damage scenarios allow us to
di�erentiate between damage patterns that di�er based on
damagemodality versus damage patterns that di�er based on
damage severity.

Sensors collecting global level vibrational data (e.g.,
displacements or accelerations in frequency ranges consistent
with global modes of the structure) are capable of capturing
dynamic e�ects that can give an indication of the overall
health of the structure. �e Z24 Bridge datasets are global
level vibrational data that are well known within the civil
structural health monitoring community and that have been
made widely available for other health monitoring studies.

Table 1: Description of progressive damage tests.

Test Description

Pattern 1 No damage (missing/corrupted data)

Pattern 2 No damage, pier hinge added (baseline)

Pattern 3 Pier 3 settlement: 20mm

Pattern 4 Pier 3 settlement: 40mm

Pattern 5 Pier 3 settlement: 80mm

Pattern 6 Pier 3 settlement: 95mm

Pattern 7 Pier 3 foundation tilt

Pattern 8 No damage, pier 3 restored

Pattern 9 Concrete spalling: 12m2

Pattern 10 Concrete spalling: 24m2

Pattern 11 Landslide at abutment

Pattern 12 Concrete hinge failure

Pattern 13 Anchor head failure (2)
Pattern 14 Anchor head failure (4)
Pattern 15 Tendon wire failure (54/2)

Pattern 16 Tendon wire failure (100/4)

�e SIMCES project began in 1997 with a goal to collect
real-world data from an operational bridge under realistic
damage scenarios. �e Z24 Bridge, crossing Bern to Zurich
highway and located between Koppigen and Utzenstorf,
Switzerland, was heavily instrumented and tested under a
systematic program of progressive damage scenarios before
it was demolished to make way for a new railway line
[14]. Extensive acceleration measurements were made both
from the undamaged bridge (correlated with environmental
e�ects) and during the progressive damage scenarios. Data
from this project has been used in a number of published
studies on the properties of the structure [15–20] as well as
damage detection strategies [20–25].

�e bridge itself was a three-span, medium-span pre-
stressed concrete, two-cell, closed box-girder bridge with
concrete columns. Global level acceleration data were
recorded in both ambient vibration test (AVT) and forced
vibration test (FVT). Two vertical shakers were used to
excite the bridge for the forced tests. �e distribution of
bridge surface accelerometers is shown in Figure 1. A series
of progressive damage cases were applied beginning with
the most reversible cases (including multiple levels of sup-
port settlement) and progressing to irreversible cases (e.g.,
concrete spalling, damage to prestressing tendons, anchor
heads, etc.). Table 1 provides a list of damage scenarios. In
the presented study, the data collected from these damage
scenarios are divided into training and test subsets. �e
training subset was used to generate representative feature
vectors for damage patterns, and the test subset was used to
�nd the success rate of the pattern recognition.

3. Feature Representation of
Time Series Sensor Data

Many high-level representations of time series data have been
proposed for similarity search and data mining as shown in
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Figure 1: Measurement setup for vibration test on Z24 bridge [26].
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Figure 2: Time series representations [27].

Figure 2, including single value decomposition (SVD) [5],
discrete Fourier transformation [3, 4], discrete wavelet trans-
formation [6], adaptive piecewise constant approximation
[7], discrete cosine transformation [5], Chebyshev polynomi-
als [8], piecewise aggregate approximation [29], and symbolic
aggregate approximation [30]. In this paper, autoregressive
(AR) model-based and dimensionality reduction (DFT and
DWT) feature extraction methods are investigated.

3.1. Model-Based Feature Extraction Methods. In this paper,
autoregressive model is used to model a time series sensor
data.�eARmodel-based feature extractionmethod�ts time
series into an AR model and uses the coecients of the AR
model as members of the feature vector. For a time series
sensor data �, it can be �tted into an AR model of order �
as shown by

�� =
�∑
�=1

����−� + ��, 	 = � + 1, . . . , �, (1)

Where ��, 
 = 1, 2, . . ., and � are the coecients of the AR
model.�e order of ARmodel is 20 in this paper.�e feature

vector of the time series sensor data �, �(�), is formed by the
coecients of the AR model as shown by

� (�) = (�1, �2, . . . , ��)�. (2)

To reduce noise e�ects, the measurement sensor data �
are standardized by

�� = �� − ���� , 
 = 1, 2, . . . , �, (3)

where �� and �� are the mean and standard deviation of the
time series �.
3.2. Dimensionality Reduction Methods

3.2.1. Discrete Fourier Transform. �e Discrete Fourier
Transform (DFT) is one type of discrete transforms which
transforms a function in the time domain into another in the
frequency domain. Given a time series � with the length of�, the DFT of � is de�ned to be � consisting of � complex
numbers��, 	 = 1, 2, . . . � as shown by

�� = �∑
�=1

���−�(2	/�)(�−1)(�−1), 	 = 1, 2, . . . �. (4)
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Figure 3: Feature extraction from DWT coecients [28].

To perform the dimensionality reduction of the time
series � into a reduced feature space of dimensionality �,
two feature selectionmethods are compared.�e�rstmethod
uses the �rst � number of DFT coecients to form an �-
dimensional feature vector to represent the time series �
in the �-dimensional feature space [4]. �e second method
uses �rst 8 model frequencies and corresponding signal
amplitudes to form feature vectors. Model frequencies of the
bridge presented in [31] are used as references in the search
of real modal frequencies and signal amplitudes in sensor
time series. Assume that the �rst 8 model frequencies and
amplitudes of a time series signal are �1, �2, �3, �4, �5, �6, �7,
and �8 and �1, �2, �3, �4, �5, �6, �7, and �8, the feature vector
of the time series is de�ned as

� (�) = (�1, 	 × �1, �2, 	 × �2, �3, 	 × �3, �4, 	 × �4,
�5, 	 × �5, �6, 	 × �6, �7, 	 × �7, �8, 	 × �8) , (5)

where 	 is the weight factor of the amplitudes.

3.2.2. Discrete Wavelet Transform. Discrete wavelet trans-
form decomposes a signal into layers of coecients. �ese
coecients contain both frequency and time domain infor-
mation. Discrete wavelet transform has been applied for
feature extraction in di�erent �elds [32–34]. Given a time
series � with the length of �, the discrete wavelet transform
(DWT) of � is calculated by passing the time series signal
through a series of low pass and high pass �lters as shown
by

�
 [�] = � [�] ∗ � [�] = ∞∑
�=−∞

� [	] � [� − 	] ,
�ℎ [�] = � [�] ∗ ℎ [�] = ∞∑

�=−∞
� [	] ℎ [� − 	] ,

(6)

where �[�] and ℎ[�] are low pass �lter and high pass �lter,
respectively. �e outputs of the high pass �lter are detail
coecients, while the outputs of the low pass �lter are
approximation coecients. �e approximation coecients
are further decomposed in the next iteration while the detail
coecients are kept as the current level wavelet coecients.

To form feature vectors from wavelet coecients, feature
extractionmethod proposed in [28] is employed.�is feature
extraction method consists of two steps: cluster determina-
tion and feature extraction.�e cluster determination process
divides the wavelet coecients into a number of clusters�1, �2, . . . ��, and the feature extraction process calculates the
feature vector for a time series of sensor data. �e elements
of a feature vector are Euclidean norms of each cluster � =(‖�1‖2, ‖�2‖2, . . . ‖��‖2).�e clusters �1, �2, . . . �� are determined
as row vectors such that each cluster contains a signi�cant
wavelet coecient near the midpoint of each cluster.

Figure 3 shows the process of cluster determination and
feature extraction from the sensor data of multiple data pat-
terns. First, the DWT coecient matrices of sensor data from
multiple patterns are calculated. �e dimensions of these
coecient matrices are the same if time series sensor data
have the same length. To �nd signi�cant wavelet coecients,
the Central Limit �eorem [35] is applied to the elements of
the DWT coecient matrices to generate a new matrix � as
shown by

� = 1
� (� (∑�=1 !̃�)) ( ∑

�=1
!̃� − �(�( ∑

�=1
!̃�)) ⋅ &) , (7)

where � is the operator to reduce a matrix by its last row

and & is a matrix which has the same size as !̃� and has
all the elements of 1. �e members of the � matrix are
then compared with a threshold and save the comparison
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results to the corresponding location in a matrix ��. �e
comparison result is 1 when the member of the � matrix is
greater than the threshold and 0 when the member of the� matrix is less than the threshold. Pittner and Kamarthi
[28] prove that the 1s in the matrix �� occur at the same
locations where the signi�cant wavelet coecients occur in

the matrices !̃�. Based on the �� matrix, the clusters are then
formed with the following rules: (1) each cluster contains
one “1” element and (2) if one row contains no “1” element,
this row is treated as one cluster. A�er the boundaries of
each cluster are determined from the �� matrix, the wavelet

coecients in the !̃� matrices are grouped into clusters
using the cluster boundary information obtained from the��
matrix. �e feature vector of the !̃� matrix is calculated with
the Euclidean norms of each cluster as shown in Figure 3.

4. Performance Evaluation

Performance evaluation was conducted to test the e�ective-
ness of the feature extraction methods. Two test scenarios
were designed: (1) same type of structural damage with
di�erent extents (patterns 2–6 in Table 1) and (2) di�erent
damagemodalities (patterns 6, 10, 11, 12, 14, and 16 in Table 1).
We adopted sensor data collected by sensor node 232 in
the forced vibration test. Data points in the sensor data
�les were divided into two groups: training data and test
data. Feature vectors generated from training data were used
to �nd the representative feature vectors for each damage
pattern using '-means method. �e feature vectors created
from test data were used to test the e�ectiveness of feature
extraction methods for damage pattern recognition using'-
nearest neighbor ('NN-1) classi�cation method.

To �nd good similarity measures for structural damage
pattern recognition, a number of commonly used similarity
measures are evaluated using Z24 bridge datasets. �e tested
similarity measures include Manhattan distance, Euclidean
distance, L-in�nity (Maximum)norm,Mahalanobis distance,
cosine distance, standardized Euclidean (Seuclidean) dis-
tance, and correlation distance. Let � and * be two feature
vectors with dimension �. �e de�nitions of these similarity
measures are given as follows.

(i) Manhattan distance:

-�� = �∑
�=1

////�� − *�//// . (8)

(ii) Euclidean distance:

0 = √(� − *) (� − *)�. (9)

(iii) L-in�nity:

-�� = max (////�� − *�////) , 
 ∈ �. (10)

(iv) �e Mahalanobis distance of a multivariate vector� = (�1, �2, . . . , ��)� from a group of values with

mean � = (�1, �2, . . . , ��)� and covariance matrix 6
is de�ned as

0 = √(� − �)�6−1 (� − �). (11)

(v) Cosine distance:

-�� = 1 − �*�
(���)1/2(**�)1/2 . (12)

(vi) Standardized Euclidean (Seuclidean) distance:

-2�� = (� − *)0−1(� − *)�, (13)

where 0 is a diagonal matrix with diagonal elements

given by V
2
� , which denotes the variance of the 7th-

feature over all the features vectors contained by �
and *.

(vii) Correlation distance:

-�� = 1 − (� − �) (* − *)�
((� − �) (� − �)�)1/2((* − *) (* − *)�)1/2 ,

(14)

where� = (1/�)∑���, * = (1/�)∑� *�.
4.1. �e E	ects of Similarity Measures and the Length of Time
Series on the Performance of Pattern Recognition Using AR-
Based Feature Extraction. To test the performance of feature
extraction methods, the Z24 Bridge datasets described in
Section 2 are used. In the Z24 bridge datasets, each sensor
data �le contains 65536 acceleration data points. To avoid
unstable measurement data in the beginning of each test,
the �rst 4999 data points are abandoned. �e rest of the
measurement data in data �les are used for feature extraction.
�e �rst time series starts from 5000th data point. �e next
time series is formed by shi�ing 100 data points fromprevious
time series. For example, the second time series starts from
5100th data point and the third time series starts from 5200th
data point. Various lengths of time series are formed to test
the impact of time series length on the performance of pattern
recognition.�e selected time series lengths include 100, 200,
300, 500, 700, 1000, 1500, 2000, 3000, and 5000.

�e success rate of classifying test data to corresponding
damage patterns using AR-based feature extraction method
was evaluated for di�erent damage modalities and progres-
sive damage patterns. Figure 4 shows the average success
rate of pattern recognition in �rst scenario (pattern 2–6
in Table 1) using similarity measures de�ned above. Five
data patterns de�ned in the �rst scenario are No damage,
pier 3 settlement—20mm, pier 3 settlement—40mm, pier 3
settlement—80mm, and pier 3 settlement—95mm. �e �-
axis stands for the length of time series for feature extraction;
the � axis stands for the type of similarity measures; and the �
axis is the average success rate of AR-based feature extraction
method. From Figure 4, we can see that the Mahalanobis



6 �e Scienti�c World Journal

Std Euclidean
Manhattan

Euclidean
Correlation

Lin�
Cosine

Mahalanobis

0

20

40

60

80

100

100 200 300 500 700 1000 1500 2000 3000 5000

Su
cc

es
s 

ra
te

 (
%

)

Length of time series data

Si
m

ila
ri

ty
 m

ea
su

re
s

Figure 4: Average success rate of pattern recognition with di�erent similarity measures and the length of time series in �rst scenario.

Std Euclidean
Manhattan

Euclidean

Correlation
Lin�

Cosine

Mahalanobis

0

20

40

60

80

100

100 200 300 500 700 1000 1500 2000 3000 5000

Su
cc

es
s 

ra
te

 (
%

)

Length of time series data

Si
m

ila
ri

ty
 m

ea
su

re
s

Figure 5: Average success rate of pattern recognition with di�erent similarity measures and the length of time series in second scenario.

distance outperforms over other similarity measures. For
each similarity measure, the success rate increases as the
length of time series gets longer.

Figure 5 shows the average success rate of pattern recog-
nition for Patterns 6, 10, 11, 12, 14, and 16 in Table 1 (pier
3 settlement—95mm, concrete spalling—24m2, landslide at
abutment, concrete hinge failure, anchor head failure (4), and
tendon wire failure (100/4)). Figure 5 presents similar trends
as Figure 4 with regard to the e�ects of similarity measures
on the pattern recognition success rate for AR-based feature
extraction method. �e success rate in Figure 5, however, is
generally lower than in Figure 4.�is is due to the separation
of feature vectors in �rst scenario is better than that of the
second scenario. �is can be observed from Figures 6 and
7. �ese two �gures show the distribution of AR feature
vectors of data patterns in the �rst and second scenarios from
the sensor node 232 using Mahalanobis distance. To display
high dimensional feature vectors in 2D space, 20-dimensional
feature vectors are reduced to 2-dimensional feature vectors
using principal component analysis (PCA). �e �-axis is
the �rst component a�er PCA and the �-axis is the second
component a�er PCA.

�e impact of the length of time series on pattern recog-
nition success rate using Mahalanobis distance as similarity
measure was also investigated. Figure 8 shows the success
rates of pattern recognition in �rst scenario and Figure 9
shows the success rates of pattern recognition in second

scenario. Figure 8 indicates that the success rate increases as
the length of time series increases. In addition, the severity of
damage a�ects the pattern recognition success rate. Pattern
6, with largest settlement, has the highest pattern recognition
success rate. Figure 9 shows the success rate of pattern recog-
nition performed on di�erent damage modalities. Similarly,
the success rates go up as the lengths of time series increases.

�e success rate is also a�ected by the separation of
feature vectors in feature space. Figures 6 and 7 show
the distribution of feature vectors in the �rst and second
scenarios. �e length of time series is 5000 in both plots. In
Figure 6, the feature vectors of pattern 6 are located far away
from feature vectors of other patterns. As a result, pattern 6
is easy to be recognized. �e success rate of pattern 6 is the
highest one compared with other patterns. Figure 7 shows
the distribution of the feature vectors from di�erent damage
modalities. As we can see from Figure 7, feature vectors of
pattern 14 are located far away from feature vectors of other
patterns, so the success rates of pattern 14 is higher than
the success rate of other patterns. In general, the separation
of feature vectors in �rst scenario is better than that of the
second scenario. �e overall success rate in �rst scenario is
also higher than that of the second scenario.

4.2. �e E	ects of Similarity Measures on the Performance
of Pattern Recognition Using DFT-Based Feature Extraction.
Figures 10 and 11 show the average success rate of DFT-based
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feature extraction method for structural damage pattern
recognition with di�erent similaritymeasures. In general, the
success rate ofDFT-based feature extraction is lower than that
of AR-based feature extraction method. Compare with two
test scenarios, the �rst scenario has relatively high success
rate. In both test scenarios, the dissimilarity measure—
Mahalanobis distance again showing better performance
than other similarity measures.

4.3. �e E	ects of Time Series Length on Success Rate Using
DFT-Based Feature Extraction. Figures 12 and 13 show the
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success rates of pattern recognition for each damage pattern
with di�erent lengths of time series. �e similarity measure
used in the tests is the Mahalanobis distance. For most
damage patterns, the success rate increases as the length of
time series increases. In general, the success rate of pattern
recognition in �rst scenario is better than that of the second
scenario. Figures 14 and 15 show the distribution of the feature
vectors in two scenarios using DFT-based feature extraction
method. �e length of time series is 5000 in both plots.
�e separation of feature vectors using AR-based feature
extraction method (Figures 6 and 7) is better than that of the
DFT-based feature extraction method (Figures 14 and 15). As
a result, the success rates of pattern recognition using AR-
based feature extraction (Figures 8 and 9) are higher than that
of the DFT-based feature extraction (Figures 12 and 13).

4.4. �e E	ects of Similarity Measures on the Performance
of Pattern Recognition Using DWT-Based Feature Extrac-
tion. Figures 16 and 17 show the average success rate of
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Figure 10: Average success rate of pattern recognition using DFT-based feature extraction in �rst scenario.
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Figure 11: Average success rate of pattern recognition using DFT-based feature extraction in second scenario.
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Figure 12: Success rate of pattern recognition using DFT-based
feature extraction in �rst scenario.

DWT-based feature extractionmethod for structural damage
pattern recognition with di�erent similarity measures. In
general, the success rate of DWT-based feature extraction
is lower than that of AR-based feature extraction method
but higher than that of the DFT-based feature extraction
method. Compare with two test scenarios, the �rst scenario
has relatively high success rate. In both test scenarios, the
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Figure 13: Success rate of pattern recognition using DFT-based
feature extraction in second scenario.

dissimilarity measure—Mahalanobis distance again showing
better performance than other similarity measures.

4.5. �e E	ects of Time Series Length on Success Rate Using
DWT-Based Feature Extraction. Figures 18 and 19 show the
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Figure 14:�e DFT feature vectors of data patterns in �rst scenario
from sensor node 232.
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Figure 15: �e DFT feature vectors of data patterns in second
scenario from sensor node 232.

success rates of pattern recognition for each damage pattern
with di�erent lengths of time series. �e similarity measure
used in the tests is the Mahalanobis distance. For most
damage patterns, the success rate increases as the length of
time series increases. Figures 20 and 21 show the distribution
of the feature vectors in two scenarios. �e length of time
series is 5000 in both plots. Comparing the success rate plot
with feature distribution in both test scenarios, the impact of
the separation of feature vectors on the success rate can clearly
be seen again.�e success rates of patterns 2 and 3 in the �rst

scenario are much higher compared with other patterns, and
the success rates of patterns 6 and 14 in the second scenario
are much higher compared with other patterns.

4.6. Damage Localization Analysis Using Pattern Recognition
Approach. Damage localization is important when the dam-
age is detected. To investigate the applicability of pattern
recognition approach for structural damage localization, the
numerical analysis study has been conducted to examine
the shi� of the representative feature vectors of the damage
patterns from the normal pattern in the feature space using
damage pattern 6 data of Z24 Bridge. To �nd out the potential
relationship between damage location and the feature vectors
of sensor data, the distances between normal pattern feature
vectors and damage pattern 6 feature vectors are calculated.
�e similaritymeasure used in the calculation isMahalanobis
distance as

Feature shi� distance

= Mahalanobis (damage feature vectors,
normal feature vectors) .

(15)

Figure 22 shows the feature vector shi� of damage pattern
6 from the normal pattern on the sensor nodes 120–320. �e
distribution of these sensor nodes on the bridge is indicated
by numbers corresponding to their IDs as shown in Figure 22.
�ere are three rows of sensor nodes. �e sensor nodes 120–
135 form the �rst row and are located in the front edge of
the bridge; the sensor nodes 220–235 form the second row
and are located in the middle of the bridge; the sensor nodes
320–335 form the third row of sensor arrays. �e sensor data
used for the numerical analysis are chosen from the forced
vibration tests with vertical directionality. �e length of the
sensor data time series is 5000. �e shi�ed distances are
measured by the centroids of the normal feature vectors and
the damage pattern 6 feature vectors. From Figure 22, we can
see that the closer the sensor nodes to the damage location
(pier 3), the larger the shi�ed distance from pattern 6 feature
vectors to the normal feature vectors. �is result shows the
potential of using pattern recognition approach for damage
localization analysis.

4.7. �e E	ects of Time Series Length on Computing Time. To
investigate the impact of the time series length on computing
time, simulation tests were performed using di�erent feature
extraction methods and with various time series lengths.
�e evaluation tests were conducted using a Dell computer
with Intel Core2 Quad 2.4GHz CPU and 4GB of RAM.
Figure 23 shows the computing time for three feature extrac-
tion methods when the length of the time series changes.
For the DFT- and DWT-based feature extraction methods,
the length of the time series does not have signi�cant impact
on the computing time. For the AR-based feature extraction
method, the computing time increases when the length of the
time series increases.
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Figure 16: Average success rate of pattern recognition using DWT-based feature extraction in �rst scenario.
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Figure 17: Average success rate of pattern recognition using DWT-based feature extraction in second scenario.
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Figure 18: Success rate of pattern recognition using DWT-based
feature extraction in �rst scenario (sensor 232).

5. Conclusions

�is paper presents the research results of three feature
extraction methods: autoregressive model, discrete Fourier
transform, and discrete wavelet transform, for structural
damage pattern recognition. �e performance of a number
of dissimilarity measures for feature extraction and pattern
recognition is also investigated. �e test data for evaluating
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Figure 19: Success rate of pattern recognition using DWT-based
feature extraction in second scenario (sensor 232).

the performance of feature extraction methods and dissimi-
larity measures are chosen from the Z24 bridge test. �e Z24
bridge test data include the progressive damage data of the
same type but varying levels as well as radically distinct dam-
age modalities. �ese features of the damage data allow us to
evaluate the performance of feature extraction methods and
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Figure 20:�eDWT feature vectors of data patterns in �rst scenario
from sensor node 232.
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Figure 21: �e DWT feature vectors of data patterns in second
scenario from sensor node 232.

dissimilarity measures for di�erent damage modalities and
di�erent levels of damage severity. �e comparison results
show that the combination of AR-based feature extraction
and the Mahalanobis distance presents better performance
compared with other feature extraction methods and dis-
similarity measures. Although the computing time of AR-
based feature extraction will increase when the length of a
time series is longer than 1,000 data points, this will not

Damage localization analysis
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Figure 22:�e shi�ed distances of damage pattern 6 feature vectors
from normal pattern feature vectors.
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Figure 23: �e impact of the time series length on the computing
time for di�erent feature extraction methods.

impede the application of AR method. �e reason is that
the success rate of AR-based pattern recognition is already
high when the length of a time series is 700 data points for
both scenarios 1 and 2. �e success rate does not improve
too much when the length is further increased. In addition to
feature extraction and pattern recognition, the feasibility of
using pattern recognition approach for damage localization
analysis is also studied in this paper. �e simulation result
shows that the closer the sensor nodes to the damage location,
the larger the distances of damage feature vectors shi� from
the normal pattern feature vectors.
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