
INTRODUCTION

Clostridium difficile is a major cause of nosocomial

antibiotic-associated diarrhea [1]. Toxins A (enterotoxin;

TcdA) and B (cytotoxin; TcdB) are well-known primary

virulence factors of C. difficile [2]. These toxins are encod-

ed by 2 separate genes, tcdA and tcdB, which are located
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Background: Clostridium difficile is a major cause of antibiotic-associated diarrhea. The objective
of this study was to characterize clinical isolates of C. difficile obtained from various regions in Korea
with regard to their toxin status, molecular type, and antimicrobial susceptibility. 

Methods: We analyzed a total of 408 C. difficile isolates obtained between 2006 and 2008 from
408 patients with diarrhea in 12 South Korean teaching hospitals. C. difficile toxin genes tcdA, tcdB,
cdtA, and cdtB were detected by PCR. Molecular genotyping was performed by PCR ribotyping.
Antimicrobial susceptibilities of the 120 C. difficile isolates were assessed by agar dilution methods.

Results: Among 337 toxigenic isolates, 105 were toxin A-negative and toxin B-positive (A-B+) and
29 were binary toxin-producing strains. PCR ribotyping showed 50 different ribotype patterns. The
5 most frequently occurring ribotypes comprised 62.0% of all identified ribotypes. No isolate was
susceptible to cefoxitin, and all except 1 were susceptible to piperacillin and piperacillin-tazobac-
tam. The resistance rates of isolates to imipenem, cefotetan, moxifloxacin, ampicillin, and clindamycin
were 25%, 34%, 42%, 51%, and 60%, respectively. The isolates showed no resistance to metron-
idazole or vancomycin. 

Conclusions: This is the first nationwide study on the toxin status, including PCR ribotyping and
antimicrobial resistance, of C. difficile isolates in Korea. The prevalence of A-B+ strains was 25.7%,
much higher than that reported from other countries. Binary toxin-producing strains accounted for
7.1% of all strains, which was not rare in Korea. The most prevalent ribotype was ribotype 017, and
all A-B+ strains showed this pattern. We did not isolate strains with decreased susceptibility to metron-
idazole or vancomycin. (Korean J Lab Med 2010;30:491-7)

Key Words : Clostridium difficile, toxin A, toxin B, Ribotyping, Drug Resistance, Epidemiology 

Received : June 17, 2010 Manuscript No : KJLM10-109
Revision received : August 9, 2010
Accepted : August 12, 2010
Corresponding author : Kyungwon Lee, M.D.

Department of Laboratory Medicine, Research Institute of 
Bacterial Resistance, Yonsei University College of Medicine, 
134 Sinchon-dong, Seodaemun-gu, Seoul 120-752, Korea
Tel : +82-2-2228-2446 , Fax : +82-2-313-0908
E-mail : leekcp@yuhs.ac

*This work was supported by the Korea Research Foundation Grant
funded by the Korean Government (MOEHRD, Basic Research 
Promotion Fund) (KRF-2007-313-E00440).

ISSN 1598-6535  The Korean Society for Laboratory Medicine 

Korean J Lab Med 2010;30:491-7

DOI 10.3343/kjlm.2010.30.5.491



in the pathogenicity locus of the chromosome called PaLoc

[3, 4]. 

Toxigenic isolates of C. difficile usually produce both

toxins A and B. Toxin A-negative and toxin B-positive

(A-B+) strains of C. difficilewere first described in the early

1990s [5,6]. A-B+ strains fail to produce detectable amounts

of toxin A due to a deletion in the repeating sequence of

the tcdA gene. However, A-B+ strains have been associ-

ated with clinical conditions ranging from asymptomatic

carriage to fatal pseudomembranous colitis. Alfa et al.

[7] reported convincing evidence that indicates that these

strains have been responsible for outbreaks in hospitals. 

Some isolates of C. difficile produce an additional binary

toxin (actin-specific ADP-ribosyltransferase toxin, CDT),

whose role in C. difficile-associated disease (CDAD) is

unclear [8]. The 2 genes cdtA and cdtB encode the enzy-

matic (CDTa) and binding (CDTb) components of the

binary toxin. These genes are located on the CDT locus

of the chromosome but are not part of the PaLoc [8, 9].

The prevalence of A-B+, and binary toxin-producing C.

difficile strains varies geographically [10].

Recently, outbreaks of CDAD due to an emerging strain

of C. difficile (PCR ribotype 027) associated with high mor-

bidity and mortality have been reported in Canada, the

United States, and Europe [11]. This strain produces a

binary toxin and has deletions in tcdC, a putative nega-

tive regulator for toxins A and B [11, 12]. The epidemic

strain is resistant to gatifloxacin and moxifloxacin, and

increasing use of fluoroquinolone has been considered a

risk factor in these outbreaks [11]. The most commonly

used drugs for the treatment of CDAD are metronidazole

(MTZ) and vancomycin (VAN). C. difficile is considered to

be susceptible to both agents, and therefore, the in vitro

activity of these agents against C. difficile isolates is rarely

performed in most centers. However, a few reports have

been published regarding elevated minimum inhibitory

concentrations (MIC) of MTZ and VAN against C. difficile

[13]. Moreover, increased resistance to antimicrobial agents

has played a role in their selection in hospital environ-

ments [14].

The objective of this study was to characterize clinical

isolates of C. difficile associated with diarrhea through-

out South Korea with regard to their toxin status, molec-

ular typing, and antimicrobial susceptibility. 

MATERALS AND METHODS

1. Bacterial strains 

We obtained and analyzed 408 unduplicated isolates of

C. difficile recovered between 2006 and 2008 from 408

patients with diarrhea in 12 tertiary teaching hospitals

in 7 regions of Korea. We received C. difficile isolates or

frozen stool samples from all 12 hospitals. Stool samples

were cultured anerobically on C. difficile selective agar

(CDSA, Becton Dickinson and Company, Sparks, MD, USA)

for 48 hr at 37℃. Species identification was performed

on the basis of typical morphology on agar plates as well

as characteristic odor and ATB 32A system results

(BioMerieux SA, Marcy I’Etoile, France). The reference

strains VPI 10463, 3608/03, SE844, 48489, 1470, and

UK078 were supplied by Dr. Maja Rupnik, Michel Delmee,

and Thomas V. Riley. 

2. Toxin analysis by PCR

C. difficile toxin genes were detected by PCR as

described previously [15, 16]. The primer pairs used were

NK9-NK11 for the repetitive domain of tcdA, NK104-

NK105 for tcdB, cdtA pos-cdtA rev for cdtA, and cdtB

pos-cdtB rev for cdtB.

3. PCR ribotyping

PCR ribotyping was performed as previously described

with the primers 5′-CTGGGGTGAAGTCGTAACAAGG-

3′(position 1445 to 1466 of the 16S rRNA gene) and 5′-

GCGCCCTTTGTAGCTTGACC-3′(position 20 to 1 of the

23S rRNA gene) [17]. Comparison of the PCR ribotyping

patterns was performed visually. Ribotype patterns that

differed by at least 1 band were assigned to different

types. Ribotype groups were designated by upper- and
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lower-case letters combined with a number.

4. tcdC sequencing

The tcdC gene was PCR-amplified with the primers

PaL15 and PaL16 on the ribotype 027 strain as previous-

ly described [18]. Amplicons were sequenced commer-

cially (Macrogen, Seoul, Korea). The analyzed amino

acid sequences were compared to the published tcdC

sequence for strain VPI10463 [18]. 

5. Antimicrobial susceptibility testing 

Antimicrobial susceptibility tests were performed with

120 C. difficile isolates using 10 randomly selected iso-

lates per hospital and the agar dilution method on Bru-

cella blood agar according to the recommendations of the

CLSI [19]. Quality control strains used for susceptibility

testing included Bacteroides thetaiotaomicron (ATCC

29741) and B. fragilis (ATCC 25285). Antimicrobial agents

used were ampicillin (Sigma-Aldrich Co., St. Louis, MO,

USA), piperacillin and tazobactam (Yuhan, Seoul, Korea),

cefoxitin (Merck Sharp & Dohme, West Point, PA, USA),

cefotetan (Daiichi Pharmaceutical, Tokyo, Japan), clin-

damycin (Korea Upjohn, Seoul, Korea), imipenem and

metronidazole (Choong Wae, Seoul, Korea), moxifloxacin

(Bayer Korea, Seoul, Korea), and vancomycin (Chong Kun

Dang, Seoul, Korea). For the combination of piperacillin

and tazobactam, a constant amount of tazobactam (final

concentration, 4 mg/mL) was added to piperacillin. The

CLSI breakpoints were used for the analysis. However,

the CLSI guidelines do not recommend a breakpoint for

VAN, and therefore the breakpoint suggested by the

European Committee on Antimicrobial Susceptibility

Testing (EUCAST; www.escmid.org/research_projects/

eucast) was used. 

RESULTS

1. Toxin analysis by PCR 

Of the total 408 isolates, 337 (82.6%) were toxigenic C.

difficile (A+B+ and A-B+). We identified 232 (56.9%) A+B+

strains and 105 (25.7%) A-B+ strains. The recovery rates

of the toxigenic strains were 70-100% according to the

hospitals studied. The proportion of A-B+ strains differed

between the hospitals during the study period (from 0%

to 37.9%). 

Twenty-nine (7.1%) strains were CDT+. The proportion

of CDT+ strains varied between the hospitals (from 0% to
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*data from the Korean Hospital Association 2007.
Abbreviations: A+B+, toxin A-positive, toxin B-positive; A-B+, toxin A-negative, toxin B-positive; A-B-, toxin A-negative, toxin B-negative, CDT+, binary
toxin-positive; CDT-, binary toxin-negative.

Hospitals N of isolates tested Study period Number of beds*
N (%)

A+B+CDT- A+B+CDT+ A-B+CDT- A-B-CDT-

Seoul A 145 Jan.2007-Dec. 2007 2,064 52 (35.9) 8 (5.5) 55 (37.9) 30 (20.7)
Seoul B 37 Jan.2007-Jun.2008 758 19 (51.4) 4 (10.8) 9 (24.3) 5 (13.5)
Seoul C 30 Jan.2007-Feb.2008 938 13 (43.3) 6 (20.0) 6 (20.0) 5 (16.7)
Seoul D 20 Jan.2008-Feb.2008 2,200 8 (40.0) 3 (15.0) 3 (15.0) 6 (30.0)
Gyeonggi A 41 Jun.2007-Mar.2008 589 23 (56.1) 2 (4.9) 9 (21.9) 7 (17.1)
Gyeonggi B 17 Jan. 2008-May. 2008 920 14 (82.3) 1 (5.9) 2 (11.8) 0 (0)
Gyeonggi C 15 Jan.2006-Dec. 2006 550 8 (53.3) 0 (0) 3 (20.0) 4 (26.7)
Chungnam 22 Oct.2007-May.2008 803 12 (54.5) 2 (9.1) 6 (27.3) 2 (9.1)
Daejeon 25 Mar.2008-Jun.2008 813 17 (68.0) 2 (8.0) 3 (12.0) 3 (12.0)
Busan 20 Feb.2007-Dec. 2007 912 12 (60.0) 0 (0) 6 (30.0) 2 (10.0)
Gwangju 20 Mar.2008-Jun.-2008 555 15 (75.0) 0 (0) 0 (0) 5 (25.0)
Gangwon 16 Nov.2007-May.2008 816 10 (62.5) 1 (6.3) 3 (18.8) 2 (12.5)
Total 408 203 (56.9) 29 (7.1) 105 (25.7) 71 (17.4)

Table 1. The frequencies of the occurrences of toxins A-, B-, and binary toxin-producing strains in 12 South Korean hospitals



20.0%). All CDT+ strains were A+B+ (Table 1). 

2. PCR ribotyping 

A total of 50 different ribotype patterns were found.

We identified 24 patterns of A+B+ CDT- strains (ribotype

AB1-AB24), 12 A+B+ CDT+ (ribotype C1-C12), and 13 A-B-

(ribotype ab1-ab13). The PCR ribotypes aB, C5, and C2

are equivalent to the PCR ribotypes 017, 027, and 078 by

O’Neill’s method, respectively [17] (Fig. 1).

All A-B+ strains showed the same banding pattern (ribo-

type aB) in ribotyping, which was identical to the pat-

tern of the C. difficile 1470 strain (ribotype 017). Ribo-

type aB was the predominant type (105 isolates, 25.7%).

The most frequently observed ribotypes of C. difficile in

decreasing order were as follows: ribotype AB2 (71, 17.4%),

ribotype AB3 (30, 7.4%), ribotype AB1 (27, 6.6%), and ribo-

type AB17 (20, 4.9%). These 5 ribotypes comprised 62.0%

of the total. Ribotypes of C. difficile isolates were differ-

ent from their toxin statuses. 

Only 1 C. difficile isolate showed a pattern (ribotype C5)

identical to PCR ribotype 027. Sequence analysis of tcdC

in this isolate showed a single-base pair deletion at posi-

tion 117 as well as a well-documented 18-bp deletion, which

was identical to the sequence results of the epidemic strain

of C. difficile 027. When examined by the E-test, the

isolate was susceptible to moxifloxacin (MIC=0.5 mg/mL). 

Thirteen strains of PCR ribotype 078 (ribotype C2) were

identified in 6 hospitals, making ribotype 078 the most

prevalent ribotype among CDT+ strains (13/29 CDT+ strains,

44.8%; 13/408 isolates, 3.1%).

3. Antimicrobial susceptibility testing 

The in vitro activities of antimicrobial agents against

C. difficile isolates are summarized in Table 2. No iso-

lates were susceptible to cefoxitin and all except 1 were

susceptible to piperacillin and piperacillin-tazobactam.

The resistance rates to imipenem, cefotetan, moxifloxacin,

ampicillin, and clindamycin were 25%, 34%, 42%, 51%,

and 60%, respectively. All strains were susceptible to

metronidazole and vancomycin. 

DISCUSSION

We conducted this study to enhance the knowledge on

the nationwide epidemiology of C. difficile. This study

included data from 12 hospitals in 7 different areas of

South Korea.

The prevalence of A-B+ strains differs according to the

country studied. In Europe, 6.2% of toxigenic C. difficile

isolates recovered in 2005 were A-B+ [10]. In a recent

study, A-B+ strains comprised 33.3% of 75 toxigenic iso-

lates from Shanghai and 0% of 80 isolates from Stock-

holm [20]. The prevalence of A-B+ strains was 25.7% (0-

37.9%, according to the data obtained from hospitals) in
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Fig. 1. PCR ribotype patterns of the Clostridium difficile isolates
representing PCR ribotypes AB24, C11, C5, C2, AB14, AB23,
and aB (Lane 1 to 7, respectively). Lane L refers to 100 bp lad-
der. Banding patterns of the C5, C2, and aB ribotypes were iden-
tical to the pattern of C. difficile ribotype 027, 078, and 017 strains. 

L 1 2 3 4 5 6 7 L

500 bP

300 bP

Abbreviations: MIC, minimum inhibitory concentration; S, Susceptible;
I, Intermediate; R, Resistant.

Antimicrobials
MIC (mg/mL)

S I R
Range MIC50 MIC90

Ampicillin 1-8 2 2 0 49 51
Piperacillin 2-64 8 16 99 1 0
Piperacillin- 4-64 8 16 99 1 0
tazobactam

Cefoxitin 64->128 128 >128 0 0 100
Cefotetan 8->128 32 128 26 40 34
Clindamycin 0.5->128 128 >128 11 29 60
Imipenem 2-64 8 16 22 53 25
Metronidazole 0.12-8 1 4 100 0 0
Moxifloxacin 1->128 2 16 53 5 42
Vancomycin 0.25-2 0.5 1 100 0 0

Table 2. The MICs of 10 antimicrobial agents for 120 Korean
Clostridium difficile isolates



this study. In our previous study, the prevalence of A-B+

strains increased steadily (4.2% in 1995, 39.6% in 2004)

[21], and in another multicenter study conducted in Korea,

17.6-54.8% of the isolated strains were A-B+ in 2005 [22].

The prevalence of A-B+ strains in Korea and Shanghai

was much higher than in European countries. 

The prevalence of CDT+ strains was 7.1% (0-20.0%) in

this study. Before the epidemics caused by ribotype 027,

a binary toxin was identified in about 6% of clinical C.

difficile isolates obtained in the United States and Europe

[16, 23]. The prevalence of CDT+ C. difficilestrains increased

to 34.6% due to the ribotype 027 epidemics in Canada [24].

In our previous study, the prevalence of CDT+ strains

increased from 0% in 2003 to 3.9% in 2006 [21]. There-

fore, we thought the prevalence of CDT+ strains had

steadily increased without evidence of a C. difficile epi-

demic. All CDT+ strains were A+B+. Therefore, no addi-

tional binary toxin test was required for the diagnosis of

CDAD. 

A total of 408 C. difficile isolates were successfully typed

with our PCR ribotyping method. Predominant ribotypes

among the participating hospitals were not significantly

different.   

All 105 A-B+ strains showed the same ribotyping pattern

(aB), which was the most common ribotype (105/408, 25.7%)

and indistinguishable from the pattern of C. difficile 1470

(ribotype 017). It was previously reported that most A-B+

strains yield this distinct ribotype pattern in many stud-

ies, suggesting a worldwide clonal spread [7, 10, 21]. 

Only 1 PCR ribotype 027 strain was identified in hos-

pital Seoul A. In contrast to epidemic 027 strains resis-

tant to fluoroquinolone, this isolate was susceptible, which

is in accordance with a report on 027 isolates obtained

before 2001 in North America [11].

PCR ribotype 078 is the predominant ribotype in calves

and pigs, and is an emerging new hypervirulent strain

[25]. The prevalence of CDAD caused by a PCR ribotype

078 strain increased from 3% to 13% during 2005-2008

in The Netherlands. CDAD caused by type 078 strains

has a similar severity of CDAD caused by type 027 strains

[26]. Thirteen strains of PCR ribotype 078 were identi-

fied in our study, which was the most prevalent ribotype

among CDT+ strains (44.8% of CDT+ strains, 3.1% of all

isolates).

Antimicrobial therapy plays a central role in the devel-

opment of CDAD. The increasing use of fluoroquinolones

in US health care facilities may have provided a selec-

tive advantage for the fluoroquinolone-resistant 027

strain and promoted its widespread emergence [11]. MTZ

and VAN remain the most active agents in this study.

No resistance to piperacillin-tazobactam was found in

isolates from Shanghai and Stockholm [20] and only 1

non-toxigenic isolate showed intermediate resistance in

this study. Resistance to other antimicrobials varies widely

between countries [29]. The resistance rate to moxifloxacin

was 42% in our study, which was lower than that in Scot-

land (87.5%, 2007) and higher than that in Sweden (15.0%,

2009). The resistance rate to clindamycin was 60% in our

study, which was lower than in Canada (90.9%, 2009)

and higher than that in Hungary (27.5%, 2009) [27]. 

The MICs of ampicillin, piperacillin, piperacillin-

tazobactam, cefoxitin, cefotetan, imipenem, metronida-

zole, and vancomycin were not significantly different

according to the toxin status. However, the MIC50 values

of clindamycin and moxifloxacin in A-B+ strains were sig-

nificantly higher than those of A+B+ strains: 128 and 16

in A-B+ versus 4 and 1 in A+B+, respectively (data not

shown). It was reported that higher MICs of antimicro-

bial agents for predominant C. difficile strains may have

played a role in their persistence and dissemination in

hospitals [28, 29]. Therefore, the increased prevalence of

A-B+ strains in this study may reflect their higher MICs

and the selective advantage it allows. This is the first

nationwide study on the toxigenic status, including

molecular genotyping and antimicrobial susceptibility

pattern, of C. difficile isolates in South Korea. The

prevalence of A-B+ and CDT+ strains was 25.7% and 7.1%,

respectively. Surveys of all A-B+ strains showed that the

most common ribotype was ribotype 017. We isolated 1

ribotype 027 strain, which is regarded as a historic iso-

late, with susceptibility to moxifloxacin. The prevalence

of ribotype 078 was 3.1%, which was higher than that of
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ribotype 027. We did not isolate strains with decreased

susceptibility to MTZ or VAN, since these 2 antimicro-

bial agents can be used without an antimicrobial sus-

ceptibility test.  
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