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Abstract: The optimization of the photoactive electrode based on TiO2 with a complex architecture for
UV dyes along with water-based electrolyte has successfully allowed us (i) to obtain a photovoltaic
efficiency of the dye-sensitized solar cell with 1.45 times higher than the best efficiency reported for
synthetic dye and 3 times for curcumin dye so far; (ii) transparency on the entire Photosynthetic
Active Radiation domain; (iii) preserving high efficiency for lighting 1 sun (summer) and shading,
especially for 60 mW/cm2, which represents the maximum illumination in the rest of the seasons.
Our water-based dye-sensitized solar cells loaded with synthetic and natural UV dyes have revealed
that the implementation of a dye-sensitized solar cell in autonomous greenhouses is a viable and
inexpensive concept.

Keywords: dye-sensitized solar cell; wavelength-selective greenhouse; UV natural dye; UV synthetic dye

1. Introduction

In the context of the expected energy and food crisis, medium- and long-term fore-
casts have highlighted the need for finding synergetic solutions. An agrivoltaic system is
proposed as a possible option that combines agriculture and the generation of photovoltaic
energy, alleviating land competition or other spatial restrictions for energy production.
A photovoltaic greenhouse must strike a balance between two complementary require-
ments: (i) maximizing the flow of Photosynthetic Active Radiation (PAR), the light of
wavelengths between 430 and 700 nm, which is essential for the growth and photosyn-
thesis of plants, by reducing the shading effect of photovoltaic panels [1], and (ii) further
enhancement of the production of energy that will ensure the energetic autonomy of
the greenhouse.

The theoretically predicted power conversion efficiency (PCE) of the dye-sensitized
solar cell (DSSC) is approximately 20% [2], and in the last few decades, a lot of experiments
have focused on continuing increasing the efficiency compared with the used Si-based solar
cell, as well as the large modules installations for terrestrial power generation. In recent
years, this limited objective has been extended to the advantages over the widely used
Si-based solar cell, including higher energy conversion efficiency under weak and indirect
illumination conditions. These advantages can compensate for the weaknesses of Si-
based solar cells and together with the simple manufacturing process, low fabrication cost,
flexibility in scaling, low material usage [3–5], and low light level sensitivity, but mainly
the variation in color and transparency of the photoanode together with that of the counter
electrode [6,7], are essential characteristics that could make these cells the ideal candidate
for greenhouse application [8,9].
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The selection of the color of DSSC given by the dye can act as a plant growth regulator
or serve as a photo selective covering adsorbed with dye to manipulate the light spectrum
entering the greenhouse. Thus, this technology could deliver impressive benefits in contrast
to conventional photovoltaic panels (the first and second generations of the solar cells)
because of its solar radiation manipulation through the optimum choice of photosensitizer.

Making more efficient photoelectrodes is one of the key factors needed for the in-
creased performance of DSSCs, being responsible for the dye loading capacity and the
transfer pathway of electrons. For this, several strategies for the TiO2 photoanode im-
provement were proposed, including the overlayer of TiO2 substrate with CdSe particles
for a better electron transfer [10], the Ag doping of the TiO2 material leading to a visible
increase in JSC [11], and a polymer interlayer TiO2-based DSSC for the prevention of charge
recombination and to facilitate the ionic conduction [12].

Our paper aims to propose and experimentally demonstrate an architecture of DSSC
which shall be respected simultaneously: (i) partial absorption of solar UV radiation with a
positive impact on plant growth and reduced plant pathogenicity [13]; (ii) transparency
throughout the PAR domain; (iii) water-based electrolytes, ensuring the realization of safe,
less expensive, and environmentally friendly solar cells [14]; and (iv) improvement of
the energy performance of DSSC based on UV dyes for full sun and shading conditions.
Each of the above requirements has been successfully fulfilled, namely: (i) an affordable
commercial dye (DN-F01) and a natural curcumin dye that absorbs UV radiation; (ii) in-
troduction of the water in a low-cost common electrolyte; (iii) design and optimization of
the photoactive electrode based on the TiO2 polymorphs for these dyes and water-based
electrolyte; (iv) improving the energy performance of DSSC based on synthetic and natural
UV dyes for full sun and shading conditions, without affecting PAR.

Thus, the photoactive TiO2-based electrode with complex architecture was successfully
optimized for UV dyes sensitization and tested using water-based electrolyte, yielding
a photovoltaic efficiency 1.45 and 3 times higher than the best efficiency reported for
synthetic and curcumin dye so far [15,16]. With a maximum of efficiency under 60 mW/cm2

of illumination, excellent performance even under conditions of not optimal lighting
was obtained.

2. Materials and Methods
2.1. Preparation of TiO2 Nanoparticles (TiO2_NP)

An amount of 2.13 mL of titanium (IV) isopropoxide (Sigma-Aldrich Co., Merck KGaA,
Darmstadt, Germany) was added at room temperature and continuously stirred into a
solution formed from 1 g of Pluronic P123 (Sigma-Aldrich) dissolved in 10 mL of isopropyl
alcohol. The prepared solution was stirred for 3 h at 350 rpm, and after left to age for 24 h,
until a solid gel was formed. The as obtained gel was then dried at 60 ◦C for 24 h and
further sintered at 450 ◦C for 1 h, to obtain the white TiO2 particles.

2.2. Preparation of TiO2 Particles for Light Scattering (TiO2_LS)

In the first step, TiO2_LS1 were obtained by dissolving 5 mL of titanium (III) chloride
solution (Sigma-Aldrich Co., Merck KGaA, Darmstadt, Germany) in 30 mL of water and
stirred for 10 min at room temperature. 6 mL of supersaturated NaCl solution was then
added to the previously prepared mixture and stirred for another 10 min. The resulting
mixture was transferred to a 50% filled Teflon-lined autoclave and heated at 160 ◦C for 2 h.
After the hydrothermal treatment a white precipitate was obtained, which was washed
several times by centrifugation at 8000 rpm with Dl water and ethanol and air-dried at
30 ◦C for 24 h.

For the formation of nanosheet aggregates, another step of hydrothermal treatment
was applied to a mixture consisting of 0.1 g of a previously made TiO2_LS1 precursor,
and added into a solution of 5M NaOH, at 140 ◦C for 24 h. The resulting white sediment
was washed by filtration with a 0.1 M HCl solution until an acidic pH of the rinse solution
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was obtained and further sintered at 400 ◦C for 30 min, to obtain the TiO2 nanosheet
aggregates (TiO2_LS2) for light scattering.

The phase purity and crystal structure of the as-obtained powders were characterized
by X-ray diffraction (XRD), using the PANalytical PW 3040/60 X’Pert PRO diffractometer
(Malvern Panalytical, Malvern, United Kingdom), with a 1.5418 Å wavelength of the Cu-
Kα radiation, in the range 2θ = 10–80◦. Surface morphology was analyzed with the FEI
Inspect S scanning electron microscope (SEM, FEI Company, Eindhoven, The Netherlands).
A Lambda 950 UV-Vis-NIR (PerkinElmer, Waltham, CT, USA) spectrophotometer with a
150 mm integrating sphere was used to collect the diffuse reflectance spectra (DSR) in the
wavelength range of 300–800 nm at room temperature, and the optical band gap of the
oxide powders was estimated. The FTIR spectra were collected in the 4000–400 cm−1 range,
with a JASCO-430 (Jasco Co., Tokyo, Japan) Fourier transform spectrometer and by using
the KBr pellet technique.

2.3. Preparation of Curcumin Dye

To obtain the curcumin dye, 4 g of turmeric powder was dissolved in 200 mL of ethyl
acetate by magnetic stirring for 1 h at 40 ◦C. The extract was then filtered on filter paper three
times to remove any solid particles. The concentration of the curcumin extract was made
using a Heidolph Rotary Evaporator-Laborota 4000 (Heidolph Instruments, Schwabach,
Germany), at a pressure of 160 mbar and a bath temperature of 40 ◦C. An amount of 40 mL
of the concentrated natural curcumin dye was obtained and used as a photosensitizer in
DSSC. The extraction of the natural dye from turmeric powder is described in Figure 1.
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Figure 1. The Curcumin dye extraction process.

The absorbance spectrum was collected using a Lambda 950 UV-Vis-NIR (PerkinElmer, Waltham,
CT, USA) spectrophotometer in the wavelength range of 250–800 nm at ambient temperature.

2.4. Fabrication of DSSCs

TiO2_NP and TiO2_LS pastes were prepared as in our previous study [17] using ethyl
cellulose, α-terpineol, glacial acetic acid, and Dl water as paste constituents.

For the optimized photoanode realization, multiple layers of paste were deposited
using the doctor blade technique on the previously cleaned and UV-Ozone-treated FTO
glass substrate (Sigma Aldrich, with a surface resistivity of ~13 Ω sq−1). First, a TiO2_NP
layer was deposited, followed by 2 layers of TiO2_LS (TiO2_LS1 or TiO2_LS2), after each
deposited layer, a sintering process was applied at a temperature of 500 ◦C for 1 h with a
1 ◦C min−1 heating rate. Finally, the double-layered paste configuration was immersed in
a 40 mM TiCl4 solution at 70 ◦C for 1 h and sintered at 450 ◦C for 1 h with a 1 ◦C min−1

heating rate.
The optimized configuration was determined by testing different photoanodes pre-

pared with different functionalized layers. Photoanode 1 (PhA 1) consists of a single layer
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of TiO2_NP, photoanode 2 (PhA 2) consists of TiO2_NP and TiO2_LS1 layers, photoanode 3
(PhA 3) consists of TiO2_NP and TiO2_LS2 layers, and photoanode 4 (PhA 4) consists of a
TiO2_NP layer, a TiO2_LS2 layer, and TiCl4 treatment. For a better understanding of the
layer configuration, a schematic representation is presented in Figure 2.
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Figure 2. Schematic representation of the layer configuration in (a) PhA 1, (b) PhA 2, (c) PhA 3,
and (d) PhA 4 photoanodes.

Two dyes were used for the sensitization of the photoanodes, a synthetic dye consisting
of a 0.3 mM solution of DN-F01 (Dyenamo Yellow) in absolute ethanol (5 h immersion time)
and a natural curcumin extract (1 h immersion time). The obtained sensitized photoanodes
were fixed together with the counter electrodes produced by treating a H2PtCl6 solution at
400 ◦C, using a Meltonix 1170-60 thick spacer.

The electrolyte used and injected into the space between the electrodes consists of a
solution of 0.6M 1-butyl-3-methyl-immidazolium iodide, 0.03 M I2, 0.10 M guanidinium
thiocyanate and 0.5 M 4-tertbutylpyridine in acetonitrile/valeronitrile (85:15, v/v), here-
inafter referred to as E. The water effect on the DSSC performance was also studied by
replacing 10% of the solvent medium in the E electrolyte with water, named E10%.

The DSSCs produced based on the photoanodes will henceforth be called DSSC 1,
DSSC 2, DSSC 3, and DSSC 4, respectively.

For determining the photovoltaic performances of the DSSCs, the photocurrent density
vs. photovoltage curves were recorded on a Keithley 2450 source measure unit, keeping a
scan rate equal to 1 mV and under different illumination conditions (20–100 mW cm−2).
Electrochemical impedance spectroscopy (EIS) measurements were performed using a
Voltalab potentiostat model PGZ 402, with VoltaMaster 4 software (version 7.09), under
different illumination conditions and a frequency range from 0.001 to 10 kHz, using 10 mV
of the magnitude for the modulation signal. The applied potentials were taken as the VOC
values determined for the DSSC4 configuration tested with and without water content in
the electrolyte, at two illumination intensities (60 and 100 mW cm−2), and by using both
dyes’ sensitization (synthetic and natural).

3. Results

The XRD pattern of the TiO2 nanoparticles obtained by a simple sol–gel procedure
is shown in Figure 3a. All diffraction peaks are indexed as TiO2 crystallized in anatase
form, having a tetragonal structure (space group: I41/amd; JCPDS No. 01-073-1764). No
other TiO2 crystalline phases such as rutile or brookite can be observed. The XRD patterns
of the obtained microparticles used as scattering layers in the DSSC configurations are
presented in Figure 3b,c. In the case of the TiO2_LS1 sample, a crystallization in rutile form
with the tetragonal structure of the TiO2 can be observed (space group: P42/mnm; JCPDS
No. 00-021-1276). Furthermore, a mixture of polymorphic phases of ~46% rutile and ~54%
anatase was obtained in the TiO2_LS2 sample.
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Figure 3. X-ray diffraction pattern of (a) TiO2_NP, (b) TiO2_LS1, and (c) TiO2_LS2 obtained at
room temperature.

The crystallite sizes of the obtained TiO2 powders were calculated using the Scherrer
formula [18]:

Dhkl =
kλ

Bcosθ
(1)

where k is a constant (∼1), B is the full width at half maximum (FWHM), λ the wavelength
of the X-ray and θ is the diffraction angle. The obtained crystallite sizes were of ~15 nm for
the TiO2_NP sample, of ~25 nm for the TiO2_LS1 sample, and of ~33 nm and ~23 nm for
the anatase and rutile phases of the TiO2_LS2 sample, respectively.

Figure 4 presents the SEM images of the two architectures proposed for the light
scattering effect, TiO2_LS1 showing a solid microsphere structure, and a dendritic structure
containing agglomerated nanorods was obtained for the TiO2_LS2 sample.
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The FT-IR spectra of the samples measured in the range of 4000–400 cm−1 are presented
in Figure 5. The first two peaks observed at 3438 and 1630 cm−1 correspond to the stretching
vibrations of the hydroxyl group O-H of interlayer water molecules and the bending mode
of water molecules δ(H2O), respectively [19]. The broad and intense band between 881 cm−1

and 408 cm−1 with maximum at 481 cm−1 assigned to Ti-O and Ti-O-Ti stretching and
bending vibrations is characteristic of the pure anatase polymorph of TiO2 [20]. In case of
TiO2_LS1, the intense band in the range of 881–452 cm−1 with a maximum at 620 cm−1 is
attributed to the Ti-O vibration of pure rutile [21]. In accordance with the XRD pattern of
TiO2_LS2, the band widening is extended in the range 1025–408 cm−1 with two specific
maxima for both anatase and rutile polymorphs. The high NaOH molarity used in TiO2_LS2
preparation caused the formation of surface hydroperoxo species, TiOOH, that exhibits an
absorption band at 970 cm−1 due to vibration modes [22].
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From the diffuse reflectance spectra, presented in Figure 6, the optical direct band
gaps of the TiO2 photoelectrode materials were estimated by using the Tauc plot [23],
and intercepting the extrapolated linear fit for the plotted experimental data of (αhν)2

versus incident photon energy (hν) near the absorption edge. The obtained values of 3.12 eV
and 3.09 eV for TiO2_NP and TiO2_LS1, respectively, are comparable to the data reported
in the literature for anatase and rutile polymorphs of TiO2 structures [24]. The value of
3.36 eV obtained for the TiO2_LS2 sample is much higher than previously reported values
of mixed anatase-rutile TiO2 nanoparticles [25]. In general, the value of Eg of a mixed
TiO2 nanoparticles with rutile and anatase structures decreases continuously with the
increase in rutile content. In the case of TiO2_LS2, a significant increase in the band gap was
highlighted and could be correlated with the presence of the surface titanium hydroperoxo
species revelated by FTIR spectra.

The UV-Vis spectrum of curcumin in ethyl acetate solution showed a broad absorption
at around 300–450 nm with a maximum absorption band at a wavelength of 416 nm
attributed to the electronic transitions n→ π *, and a weak absorption band at 251 nm to
the electronic transitions π→ π *, respectively. The groups responsible for the absorption
of the dye are the carbonyl groups in the structure of curcumin and the accumulation of
groups grafted on the aromatic nucleus producing a bathochrome shift. The DN-F01 dye
is similarly characterized by a broad absorption at around 350–480 nm with a maximum
absorption band at a wavelength of 421 nm (Figure 7).
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Figure 7. UV-Vis absorption spectra of (a) DN-F01 dye and (b) curcumin dye in ethyl acetate.

The successful implementation of DSSC in an energetically independent greenhouse is
conditioned by four main requirements, namely eco-friendly materials, transparency in the
entire PAR domain, high UV absorption, good photovoltaic efficiency, and sustainability
throughout the year. To simultaneously fulfil the above-mentioned objectives, four different
architectures of TiO2 photoactive electrodes (PhA 1, PhA 2, PhA 3, and PhA 4) using
synthetic and natural dyes, and water-based electrolytes were designed and tested.

From the SEM images presented in Figure 8a–d, the uniformity and surface mor-
phology of the as-deposited TiO2 thin films can be observed. As can be seen, the particle
morphologies were preserved during the paste formation, deposition, and thermal treat-
ment of photoanodes.

To investigate the light scattering effect of the TiO2 particles synthesized for this pur-
pose, the reflectance spectra of all photoelectrode configurations were studied (Figure 9).
A higher reflectance for the PhA 2, PhA 3, and PhA 4 photoelectrodes in the wavelength
range of 400–800 can be observed compared with that of the TiO2_NP particle film (PhA 1),
confirming that spherical TiO2 aggregate films have a higher light scattering capacity, due
to their larger diameters, which are comparable to the wavelengths of visible light. The dis-
tance traveled by the incident light within the photoelectrode is significantly extended by
the better scattering effect, with this increasing the photon harvesting by the dye molecules
and leading to a relatively higher photocurrent [26].
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The J-V characteristics of the DSSCs using E and E10% electrolytes are presented in
Figure 10 and the detailed photovoltaic parameters (JSC, VOC, FF, and η) for both dyes are
summarized in Table 1. In the case of the synthetic dye and E electrolyte, a significant
increase in the efficiency is correlated with the addition of the LS2 layer (50% more), and to-
gether with TiCl4 treatment, 136% is achieved relative to DSSC1. The microsphere rutile
structure of TiO2_LS1 had a minor effect on the photovoltaic efficiency caused by the higher
light-scattering capacity compared with TiO2_NP. A positive effect of TiO2_LS2 on the
photovoltaic parameters is provided by the dendritic morphology presented in the mixture
of rutile and anatase polymorphic phases along with the surface hydroperoxo species,
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TiOOH. The increase in JSC (1.5 times) is directly determined by both the rutile phase of
the TiO2_LS2 microdendritic structure and the high refractive index (nrutile = 2.8736) which
reflects the incident sunlight onto the dye, increasing the light-absorbing capacity of the
dye. Additionally, the presence of rutile content prompts the electron transfer from rutile
to the anatase trapping sites; this synergistic effect inhibits the electron-hole recombination
occurrence, thus leading to an increase in DSSC performance [27]. The high anchoring
of the dye molecule on the TiO2 surface is due to the hydroxyl group (−OH) given by
the TiOOH surface species and in addition to the TiCl4 treatment have improved the dye
loading capacity of the DSSC 4. Furthermore, the improvement of VOC (more than 40 mV)
is the result of the high bandgap energy (Eg) of the TiO2_LS2 compared with the anatase
phase (Figure 6) which is only reflected in the most negative conduction band (CB) level,
the valence band (VB) level being similar for both crystal phases, rutile and anatase poly-
morphs. A similar beneficial evolution of the photovoltaic parameters was observed for
PhA 4 loaded with the curcumin dye, obtaining a photovoltaic efficiency three times higher
than the best efficiency reported for this dye so far [16].

Achieving photovoltaic efficiencies higher than the best efficiency reported so far for
both dyes, the complex architecture of PhA4 is validated for the future optimization of the
electrolyte, another important component of DSSC.
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Figure 10. J-V measurements of (a) DN-F01and (b) curcumin-sensitized DSSC4 with E and E10%
electrolytes and under 1 sun (100 mW/cm2) illumination.

Table 1. Photovoltaic parameters of the DSSCs tested using E and E10% electrolytes and both
synthetic and natural dyes.

Sample Dye Electrolyte JSC
(mA)

VOC
(mV)

FF
(%)

η
(%)

DSSC 1

DN-F01

E

4.15 738 42.7 1.307
DSSC 2 4.2 743 49.7 1.550
DSSC 3 5.76 778 43.8 1.962
DSSC 4 6.38 741 65.3 3.087

DSSC 1

E10%

4.35 726 50.0 1.579
DSSC 2 4.32 703 47.7 1.448
DSSC 3 6.06 761 50.2 2.315
DSSC 4 6.78 792 64.7 3.474

Best record a DN-F01
0.6 M TBAI, 0.1 M LiI, 0.05 M I2,
and 0.5 M 4-tert-butylpyridine

(4-TBP) in acetonitrile
5.23 710 64 2.39

DSSC 4 Curcumin
E 3.37 570 62.9 1.208

E10% 2.73 574 61.8 0.968

Best record b Curcumin from turmeric powder I−/I3
− redox based electrolyte 0.720 432 40.0 0.41

a Ref. [15], b Ref. [16].
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In an attempt to reduce the volatility, toxicity, flammability of the electrolyte, and at the
same time, overcome this poor stability on moisture, one of the main steps to eco-friendly
materials, the effect of water (Table 1), has been studied in detail for the configuration of
DSSC 4. A clear increase in efficiency can be observed with the addition of water in the
electrolyte for the DN-F01 dye, which is especially attributable to the increases in VOC with
51 mV by more than in the electrolyte without water. Due to the higher solubility in the
water of I−, compared with that of I3

−, the addition of water to the electrolyte leads to a
positive shift of the potential [28]. If no negative effect of water was observed in the case of
the synthetic dye, the curcumin dye was affected and a decrease in the cell photocurrent,
mostly due to the dye detachment from the semiconductors surface promoted by the water,
was highlighted.

The transmittance spectra (Figure 11) were similar for DSSC 4, characterized by a
high absorption of UV radiation, close to 98% for DSSC 4 with E10% electrolyte and a
transparency of the DSSCs on the entire PAR domain, in accordance with those reported in
the literature [29].
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E10% electrolytes.

One of the most important advantages of the DSSCs is sustainability over the whole
year, a prerequisite for successful implementation in a wavelength-selective greenhouse.
The effect of different light intensities (ranging from 20 to 100 mW/cm2) on the photovoltaic
performance of DSSC 4 was investigated (Table 2, Figures 12 and 13). To give a better
understanding of the charge dynamics involved in our DSSCs and the effect of the water,
electrochemical impedance spectroscopy (EIS) analysis was performed at VOC and under
1 sun illumination. In the equivalent circuit presented in the insets of Figure 14, R1
represents the intrinsic resistance of the assembled cells, R2 is the charge transfer resistance
at the CE/electrolyte interface, and R3 represents the charge transfer resistance at the
TiO2 photoelectrode/dye/electrolyte interface. Table 3 summarizes the fitted values of the
resistance associated with each interfacial process in the DSSC.

In case of the synthetic dye (Figure 12), under the illumination with different light
intensities, the JSC value varies almost identically for both DSSCs, without and with
water, from approximately 0.8 to 6.7 mA/cm2 with a steep increase to 60 mW/cm2. EIS
analysis highlighted that the evolution of JSC is directly correlated with R2 and R3 (Table 3),
for example, in the case of 60 mW/cm2 and 100 mW/cm2, increasing JSC is determined by
reducing the charge transfer resistance at the TiO2 photoelectrode/dye/electrolyte interface
and the improved catalytic activity, more drastically for E10%. The open-circuit potential
slightly increases with increasing illumination intensity and becomes almost constant
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after 60 mW/cm2. The voltage dependence of the output power (P = IV) under different
illumination intensities is shown in Figure 12. The power conversion increases with
increases in the light intensity until 3087 µW for DSSC 4_E and 3474 µW for DSSC 4_E10%,
respectively, at 100 mW/cm2. The stability of our DSSCs with increasing light intensity is
highlighted by the near-constant evolution of the fill factor, even with a 10% water content.
DSSC 4_E10 demonstrates nearly 3.5% photovoltaic efficiency for illumination intensity
between 60 mW/cm2 and 100 mW/cm2 with a maximum at 60 mW/cm2.

Table 2. The photovoltaic parameters of DSSC4 under different illumination intensities.

Cell Pin (mW/cm2) Electrolyte Dye JSC (mA) VOC (mV) P (µW) FF (%) η (%)

DSSC 4

20

E DN-F01

0.85 648 387 70 1.927
30 0.90 647 409 70 1.358
40 1.25 661 579 69.7 1.439
50 1.46 670 671 68.4 1.338
60 3.89 729 1926 67.8 3.204
70 4.25 728 2101 67.8 2.996
80 5.00 732 2435 66.5 3.042
90 5.56 736 2681 65.3 2.969

100 6.38 741 3087 65.3 3.087

DSSC 4

20

E10% DN-F01

0.80 668 368 68.8 1.838
30 0.82 659 361 68.5 1.233
40 1.21 680 564 68.2 1.402
50 1.43 697 681 68.0 1.355
60 4.06 768 2105 67.5 3.507
70 4.23 771 2202 67.6 3.149
80 4.86 776 2509 66.4 3.130
90 5.87 786 3032 65.6 3.362

100 6.78 792 3474 64.7 3.474

DSSC 4

20

E Curcumin

0.56 529 426 64.4 0.953
30 0.60 532 213 67.0 0.713
40 0.80 537 291 67.6 0.726
50 0.87 537 313 66.9 0.625
60 2.05 570 747 64.0 1.246
70 2.06 564 765 65.8 1.092
80 2.43 565 859 62.6 1.074
90 2.72 567 1004 65.2 1.117

100 3.37 570 1208 62.9 1.208

DSSC 4

20

E10% Curcumin

0.38 537 125 60.7 0.619
30 0.43 532 149 64.7 0.493
40 0.64 538 220 64.0 0.551
50 0.68 539 239 64.9 0.476
60 1.65 560 581 62.8 0.967
70 1.88 568 672 62.8 0.958
80 2.04 567 732 63.1 0.912
90 2.35 569 852 63.7 0.946

100 2.73 574 969 61.8 0.968

In the case of the curcumin dye (Figure 13), although the evolution of the photovoltaic
parameters (JSC, VOC, ff, η) depending on the illumination intensity is similar to that of
the synthetic dye, the water slightly affects the performance of the DSSC (increasing R2
and R3), but not the stability under illumination. The photovoltaic efficiency remains
almost constant for illumination intensities between 60 mW/cm2 and 100 mW/cm2 with a
maximum at 60 mW/cm2.

Our water-based dye-sensitized solar cells loaded with synthetic and natural UV dyes
have revealed excellent performance even under conditions of not-optimal lighting, which
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can usually occur in real outdoor applications, such as a greenhouse during of the day,
month, or season.

Table 3. EIS parameters obtained from fitting the Nyquist plots of DSSC 4 with and without water
content using both DN-F01 and curcumin dye, and under 60 mW/cm2 and 100 mW/cm2 of the
illumination intensity.

Cell Dye Pin (mW/cm2) Electrolyte R1 (Ω) R2 (Ω) R3 (Ω)

DSSC 4

DN-F01

60
E

7.15 3.2 12.4
100 7.14 2.26 7.56

60
E10%

6.82 1.64 14.51
100 6.82 1.27 8.27

Curcumin

60
E

7.09 3.08 21.24
100 7.09 2.14 13.24

60
E10%

7.65 3.79 32.96
100 7.8 2.51 14.67
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Figure 12. The photovoltaic performance of DN-F01 sensitized DSSC4 under different illumination
intensities tested using E and E10% electrolytes: (a) J–V characteristics; (b) voltage dependence of the
calculated power P; (c) dependence of VOC and JSC on the illumination intensity; (d) dependence of
efficiency and fill factor on the illumination intensity.
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Figure 13. The photovoltaic performance of curcumin sensitized DSSC4 under different illumination
intensities tested using E and E10% electrolytes: (a) J–V characteristics; (b) voltage dependence of the
calculated power P; (c) dependence of VOC and JSC on the illumination intensity; (d) dependence of
efficiency and fill factor on the illumination intensity.
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equivalent circuit diagram used to fit the observed impedance spectra.

4. Conclusions

In conclusion, a photoanode with a complex architecture consisting of a TiO2_NP layer,
a TiO2_LS2 layer, and TiCl4 treatment was designed, built, and optimized for loading with
an affordable commercial UV synthetic and natural dye using a water-based electrolyte.
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The best water-based dye-sensitized solar cell has demonstrated nearly 3.5% of photovoltaic
efficiency at an illumination intensity between 60 mW/cm2 and 100 mW/cm2. Highlighting
the maximum efficiency during all four seasons, along with selective absorption of UV,
transparent PAR, and improved eco-friendly characteristics of the materials used, has
demonstrated experimentally that the implementation of water-based dye-sensitized solar
cells in a wavelength-selective and autonomous greenhouses is a viable and inexpensive
concept for an agrivoltaic system.
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