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ABSTRACT Multitask learning (MTL) is helpful for improving the performance of related tasks when

the training dataset is limited and sparse, especially for low-resource languages. Amharic is a low-

resource language and suffers from the problems of training data scarcity, sparsity, and unevenness.

Consequently, fundamental acoustic units-based speech recognizers perform worse compared with the

speech recognizers of technologically favored languages. This paper presents the results of our contribu-

tions to the use of various hybrid acoustic modeling units for the Amharic language. The fundamental

acoustic units, namely, syllable, phone, and rounded phone units-based deep neural network (DNN)

models have been developed. Various hybrid acoustic units have been investigated by jointly training

the fundamental acoustic units via the MTL technique. Those hybrid units and the fundamental units

are discussed and compared. The experimental results demonstrate that all the fundamental units-based

DNN models outperform the Gaussian mixture models (GMM) with relative performance improvements of

14.14%–23.31%. All the hybrid units outperform the fundamental acoustic units with relative performance

improvements of 1.33%–4.27%. The syllable and phone units exhibit higher performance under sufficient

and limited training datasets, respectively. All the hybrid units are useful with both sufficient and limited

training datasets and outperformed the fundamental units. Overall, our results show that DNN is an effective

acoustic modeling technique for the Amharic language. The context-dependent (CD) syllable is the more

suitable unit if a sufficient training corpus is available and the accuracy of the recognizer is prioritized. The

CD phone is a superior unit if the available training dataset is limited and realizes the highest accuracy and

fast recognition speed. The hybrid acoustic units perform the best under both sufficient and limited training

datasets and achieve the highest accuracy.

INDEX TERMS Acoustic modeling units, Amharic, hybrid acoustic modeling units, low-resource language,

multitask learning.

I. INTRODUCTION

Deep neural networks (DNNs) were introduced into speech

recognition research in 2011 as an acoustic modeling tech-

nique in the hybrid DNN-Hidden Markov Model (HMM)

and as a feature extractor for the tandem GMM-HMM and

The associate editor coordinating the review of this manuscript and
approving it for publication was Stavros Ntalampiras.

DNN-HMM models. Subsequently, many studies were

conducted to explore the effectiveness of DNNs for context-

independent and context-dependent large-vocabulary con-

tinuous speech recognition (LVCSR) tasks. These studies

were conducted on both high-resource and low-resource

languages using large, very large, and small training datasets.

The studies that were conducted on high-resource languages

include [1]–[7]. All these works were conducted using the
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hybrid DNN-HMM model, in which a DNN is used to com-

pute the posterior probabilities of the context-independent

states and context-dependent tied states while the HMM is

used to model the temporal-sequential characteristics of the

speech.

Previous studies such as [8]–[17] investigated low-

resource languages using a DNN as the hybrid in the mono-

lingual, multilingual, multitasking, and cross-languagemodel

transfer approaches and as the feature extractor for the

tandem and DNN-HMM models. All the studies on both

high-resource and low-resource languages concluded that

the DNN outperforms the traditional GMM acoustic model

in terms of a significant word error rate (WER) reduction.

As a result, at this time, the deep neural network and

its various architectures have become the state-of-the-art

acoustic modeling techniques for LVCSR tasks. However,

the hybrid DNN-HMMmodels of low-resource languages are

outperformed by the corresponding high-resource language

models. This phenomenon is because low-resource languages

suffer from the problems of training data scarcity, sparsity

and unevenness. As a result, the hybrid DNN-HMM models

tend to overfit. The overfitting problem is mitigated via

various approaches, such as applying model size optimiza-

tion parameters such as weight regularization (e.g., dropout)

and activation functions (e.g., maxout, pnorm, and soft-

maxout) [18]–[20] and using sufficient training datasets from

high-resource languages via various training data sharing

paradigms such as multilingual learning [12], [21], [22],

cross-language model transfer [14], and multitask learn-

ing [10], [11].

Multitask learning is successfully used to training related

languages using training datasets from diverse languages as

shared hidden-layer multilingual models for sharing knowl-

edge among the languages [14], [23], [24]. Similarly,

multitask learning is also used to jointly train related tasks

(with different acoustic modeling units) using only a single-

language dataset, without the need for additional datasets

from other languages [10], [11], [25]–[28]. In MTL, if the

tasks are related, learning them together can facilitate the

transfer of knowledge among tasks because it effectively

increases the amount of training data for each task. Hence,

MTL is typically helpful when the training data size is small

compared to the model size. Thus, this learning paradigm is

useful for low-resource-language speech recognition tasks.

Triphones and senones are the standard acoustic model-

ing units that are used in the hybrid DNN-HMM systems

for automatic speech recognition. However, these acoustic

units cannot exploit both spectral and temporal characteris-

tic of continuous speech. Hence, longer acoustic modeling

units, such as syllables and graphemes, are used to over-

come the limitations of the context-dependent phones and

senones units. Nevertheless, longer-unit-based acoustic mod-

els are profoundly affected by the problems of data scarcity,

sparsity, and unevenness, especially for low-resource lan-

guages. To overcome these challenges, the hybrid acoustic

modeling units are used either to manipulate the training

dataset with backoff sparse long acoustic units to the context-

dependent phone units [29] or to jointly train fundamental

acoustic modeling units as a hybrid modeling unit using the

MTL-DNN approach [4], [10], [11], [26].

Amharic has two fundamental acoustic modeling units,

namely, phones (basic and rounded phones) and sylla-

bles (vowel (V), consonant-vowel (CV), vowel-consonant

(VC), consonant-vowel-consonant (CVC), vowel-consonant-

consonant (VCC), and consonant-vowel-consonant-

consonant (CVCC)), which are used to develop LVCSR

systems. Amharic is also a low-resource language and has

an insufficient training corpus. This insufficiency affects

the performance of speech recognizers that are developed

using the above basic acoustic modeling units. As a result,

the phone-based acoustic models suffer from the problem

of data scarcity and syllable-based acoustic models suffer

from the problems of data scarcity, sparsity and unevenness.

These problems are mitigated by either preparing a sufficient

training corpus or building an acoustic model using the exist-

ing training datasets via the various behavior DNN models.

However, the development of a training corpus requires

and consumes much more time, human labor, and financial

resources. Thus, this study examines hybrid acoustic model-

ing units via a MTL-DNN scheme for building an acoustic

model for the Amharic language using the available training

data. This approach is selected due to the performance of the

DNN and MTL acoustic modeling schemes and the related-

ness of the basic acoustic modeling units of the language.

First, the DNN can extrapolate new features from a limited

set of features that are contained in a training set, and it

has learnable activation functions via which the data are

mapped. The underlying data distribution is approximated for

the sparse dataset. This approach uses the same hidden layers

for related tasks when it is used for joint training. Hence,

the DNN reduces the data sparsity and unevenness in the

limited training datasets. Second, MTL is especially useful

if the size of the training dataset is limited and if there are

sparse and unevenly distributed acousticmodeling units in the

limited training data. Third, the language fundamental acous-

tic modeling units (CD syllable, CI syllables, CD phones,

CI phones, CD rounded phones, and CI rounded phones) are

related tasks, and they can be trained using the same acoustic

input features.

This paper offers the following contributions:

• Exploring the use of the DNN acoustic modeling

technique to build a LVCSR system for Amharic by

developing the optimal DNN acoustic models using

the fundamental acoustic modeling units, namely,

the CD syllable, CI syllable, CD phone,1 CI phone, CD

rounded2 phone, and CI rounded phone.

1Phone acoustic units contain only basic phones, where the rounded
phones map to the corresponding basic phones.

2Rounded phone acoustic units contain all the basic phones and the
rounded vowels, where rounded phones map to the basic phones and rounded
vowels to consider their roundedness.
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• Analyzing the influence of data sparsity on the per-

formance of syllable-based models and comparing the

speaker-independent and speaker-adapted DNN models

to minimize the data sparsity and uneven distribution of

syllables in the existing limited datasets.

• Proposing various new hybrid3 acoustic modeling

units by training the fundamental acoustic modeling

units jointly via the MTL-DNN scheme for Amharic

language.

• Comparing the proposed hybrid acoustic modeling units

with the fundamental acoustic units in terms of the

recognition performance and speed and suggestingwhen

to apply these units to develop a higher performing

speech recognizer for Amharic language.

• Developing and evaluating the proposed hybrid unit

and fundamental acoustic unit-based speech recognizers

using the dataset from [30] and own, and the hybrid unit-

based recognizers are obtained superior performances

and recognition speeds over the fundamental acoustic

unit-based recognizers.

The remainder of this paper is organized as follows.

Section II presents the MTL-DNN acoustic modeling

paradigm. A description of the Amharic language and the

acoustic modeling units of the Amharic speech recognition

system are presented in Section III. Section IV explains the

corpora that are used for training and testing the models.

The experiments, results, and discussion are presented in

Section V. The conclusions and future directions of this work

are discussed in Section VI.

II. MTL-DNN ACOUSTIC MODELING PARADIGM

Multitask learning is a machine learning strategy that is used

to improve the overall performance of a learning task by

jointly learning multiple associated tasks [11]. Multitask

learning helps to transfer knowledge between or among tasks

if the tasks are associated with each other and share an inter-

nal representation by joint learning [11]. In this approach,

most of the DNN learns a primary task, in addition to one,

two or more ancillary tasks, and these ancillary tasks aim to

help the model converge to the benefit of the primary task.

The selection of ancillary tasks has a significant impact on

the performance of the primary task. If the ancillary tasks are

well selected, the primary task can improve its robustness to

unseen data, thereby leading to better generalization. The key

benefits of MTL for the DNN include model regularization,

attention focusing, eavesdropping, representation bias, and

implicit data augmentation [31].

MTL has been effectively used as the shared hidden layer

in multilingual modeling to train related languages for shar-

ing knowledge among them [14], [23], [24]. MTL is an

efficient method for low-resource-language speech recogni-

tion because it profoundly improves the performance on the

3Hybrid acoustic modeling unit refers to the joint training of either
two or three basic acoustic modeling units via MTL.

individual languages that have been jointly trained. MTL

has also been used to jointly train related acoustic mod-

eling units using the specified language dataset without

the need for additional training datasets from other lan-

guages [4], [10], [11], [25]–[28]. Seltzer and Droppo have

investigated the joint training of monophone state posteriors

as a primary task with state context, phone context or phone

labeling as ancillary tasks to improve the phoneme recog-

nition performance [28]. Chen et al. [10] were motivated

by [28] to examine the MTL-DNN model for the joint train-

ing of triphone and tri-grapheme acoustic models for under-

resourced-language speech recognition, where the triphones

were used as the main task and the tri-graphemes were used

as an ancillary task [10]. Chen and Mak [27] have explored

the joint training of the monophone and senones as ancillary

tasks with the distinct triphone states for TIMIT and WSJ

phone speech recognition. Chen and Mak [11] have also

analyzed the training of language-specific triphones and a

universal phone set for various languages via the MTL-DNN

for low-resource languages. Li et al. have explored hybrid

acoustic units that combine the context-dependent phones

as the main task with context-dependent initials/finals and

syllable acoustic units as auxiliary tasks using MTL for Chi-

nese speech recognition [4]. Bell and Renals have proposed

a monophone classification secondary task for CD phone

acoustic modeling [25]. Bell et al. have also demonstrated

the joint training of context-dependent phones as a primary

task with context-independent phones as an ancillary task,

and the context-dependent phones train with senones as an

auxiliary task with context-dependent phones as a primary

task in the MTL approach [26]. All these studies achieve

superior performance compared to the equivalent single-task

DNNmodels. These studies demonstrate the benefits ofMTL

for speech recognition tasks in general and for low-resource-

language speech recognition tasks in particular.

Amharic is a low-resource language with the limitations

of data sparsity and unevenly distributed acoustic units in the

available training corpus. These limitations lead to inferior

speech recognizer performance compared with high-resource

languages. To overcome these limitations and to improve

the recognizer performance, we have explored new hybrid

acoustic modeling units by jointly learning the fundamental

acoustic units of the language in the two-task and three-task

learning paradigms.

III. AMHARIC LANGUAGE AND ACOUSTIC MODELING

UNITS OF THE AMHARIC LVCSR SYSTEM

A. THE AMHARIC LANGUAGE

The Amharic language is the working language of the Federal

Democratic Republic of Ethiopia. This language, which is

named Amarinya or Amarigna, is the second most widely

spoken language in the semantic language family, after

Arabic. Based on the 2007 census, Amharic has over

22 million native speakers in Ethiopia [32], [33]. There are

2.7 million additional speakers who live in other countries
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TABLE 1. Amharic consonants (adapted from [34]).

FIGURE 1. Amharic vowels with their features (adapted from [34]).

such as Israel, Eretria, Canada, United States of America,

Germany, and Sweden [35]. The language has five dialects:

Addis Ababa, Gojam, Gonder, Wollo, and Menz [36].

The phonetic set of the Amharic language consists of

7 vowels and 32 consonants, which yield 39 phonemes; these

phonemes constitute the complete inventory of sound units of

the language [34]. The seven vowels are , u, i, a, e, , and o.

These vowels can be classified as rounded and unrounded; as

front, middle, and back; and as high, middle, and low based

on the lip rounding and horizontal and vertical tongue move-

ments, respectively, as shown in Figure 1. The 32 consonants

are classified as stops, fricatives, affricatives, nasals, liquids,

and semivowels based on the manner of articulation, as listed

in Table 1.

The Amharic writing script is syllabic, where each char-

acter represents a combination of a consonant with a vowel

to compose a CV syllabic structure, except for the glottalized

and sixth-order consonants [29], [37]. The glottalized and

sixth-order consonants can be pronounced with or without

vowels. As a result, the language has a total of 276 distinctive

writing symbols, where 231 graphemes of 33 core symbols

with seven orders as listed in Table 2, 20 graphemes of

four labiovelar symbols with five orders, 18 graphemes of

eighteen labialized symbols with one order, and 7 graphemes

of one labiodental symbol with seven orders [29], [37].

TABLE 2. Sample core letters of Amharic.

Moreover, Amharic is a syllabic language that has

V, VC, VCC, CV, CVC, and CVCC possible syllable struc-

tures [34], [37]. Of these syllables, the CV syllable is the

most widely distributed syllable in the language; 231 core

and 7 labiodental letters are basic CV syllables, while the

20 labiovelar and 18 labialized letters are combinations of

two or three CV syllables. There are syllables that have dif-

ferent symbolic representations and similar pronunciations.

These syllables are ( /h/, /h/, /h/, and /h/), ( /s/ and /s/),

( /t’/ and /t’/), and ( /? / and /? /).

However, the speech recognition task requires a unique

pronunciation of each orthographic syllable symbol. Hence,

such syllables should be reduced to the common syllables.
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The common syllables that are used as the reduced syllables

are /h/, /s/, /t’/, and /?/ for ( , , , and ), ( and ),

( and ), and ( and ), respectively. As a result, six syllables

are removed, and each of these syllables has seven orders;

hence, a total of 42 syllables are removed (6∗7 orders =

42 syllables). The 276 syllables are reduced to 234 syllables.

However, of these 234 syllables, there are two syllables that

have similar pronunciations in the first and fourth syllable

orders: ( /a/ and /a/) and ( /h/ and /h/). Of these syllables,

we have used the first-order syllable for our study. Thus,

232 syllables remain. However, syllable /h / has a distinct

pronunciation, and we have considered it as a uniquely pro-

nounced syllable. Hence, we have used a total of 233 unique

CV syllables in our study [30].

B. ACOUSTIC MODELING UNITS OF THE AMHARIC

LVCSR SYSTEM

In the development of a speech recognition system, the uti-

lization of different acoustic modeling units depends on the

nature of the target language and the size of the available

training dataset. Based on the characteristics of the language,

Amharic has twomajor fundamental acoustic modeling units:

phones and syllables. By using these acoustic modeling units,

researchers have been attempting to develop speech recog-

nition systems for Amharic since 2002. Tadesse [38] inves-

tigated the use of sub-word acoustic units, namely, phones

(CI and CD) and CV syllables (CI and CD), for small-

vocabulary isolated word recognition. Tadesse suggested that

the use of CV syllables leads to low performance relative to

phones in the acoustic modeling. Abate and Menzel, in [36]

and [39], obtained similar results to those of Tadesse [38]

when they developed speech recognition systems using the

triphone and CI CV syllable as acoustic units. These authors

reported that the CI CV syllable is outperformed by the

triphone in terms of accuracy; however, in terms of recog-

nition speed and required storage space, the CI CV syllable

outperforms the triphone.

However, Tachbelie et al. [29] and Tachbelie et al. [37]

found that the poor performance in Tadesse [38] was

due to the use of limited training datasets. Those authors

investigated the tied-state triphone, CD syllable, CI syl-

lable, and hybrid (syllable and phone) acoustic units for

Amharic LVCSR. According to these findings, the hybrid

(phone-syllable)-based recognizers did not achieve signifi-

cant performance improvements over the highest performing

CD-syllable-based recognizers when word units were used in

the pronunciation dictionary and language model. However,

the recognizers yielded largerWER reductions in morpheme-

based speech recognition. CD CV syllable units are the best

alternatives if and only if a sufficient training dataset is

available; if the training dataset is limited, the CI syllable

units are more suitable than tied-state triphone acoustic units.

Woldeyohannis et al. [40] recently investigated phoneme

(triphone) and CV syllable acoustic units and demonstrated

that the phoneme (triphone) acoustic units outperformed the

CV syllable units.

Alternatively, Gebremedhin et al. [35] explored the com-

mon acoustic model for similarly pronounced CV syllables,

which is based on the vowel articulation. Hence, the num-

ber of CV syllables that are used as acoustic modeling

units was 93, which was reduced from 233 CV syllables.

Dribssa and Tachbelie [41] investigated the use of various

syllable types, namely, V, CV, VC, CVC, VCC, and CVCC,

as acoustic units. These authors demonstrated that the use of

all syllable types as acoustic units is promising for LVCSR if

the training dataset is sufficiently large. In all prior works,

the conventional GMM acoustic modeling approach was

employed. Seid and Gambäck [42] examined the effective-

ness of the artificial neural network (ANN)-HMM model

using phone acoustic units and they concluded that the use of

the ANN as an acoustic modeling technique yields promising

results for the Amharic language.

In prior works, the researchers prepared their own training

datasets for accomplishing their objectives since Amharic

is a low-resource language. Abate et al. [30] developed a

medium-sized corpus of 20 hours for the language. This

corpus is small compared with other languages. Moreover,

Amharic has 59,319 triphone and 12,649,337 tri-syllable

modeling units for phone and syllable units, respectively.

Hence, the modeling units of the phones are 213 times less

numerous than those of the syllables. Hence, the phones are

easy tomodel using a relatively small training dataset because

the modeling units are small and the phones are distributed

evenly throughout the training dataset. However, syllables are

longer than phones since each syllable contains two or more

phone units, and they have many modeling units. Hence,

they require a large training dataset and evenly distributed

syllables in the training dataset for building a reliable LVCSR

system. As a result, syllable acoustic modeling units are chal-

lenged by the problems of data scarcity and sparsity. To over-

come these challenges, this study proposes hybrid acoustic

modeling units by jointly training the fundamental acoustic

modeling units to share the training data among them via the

MTL-DNN paradigm, in contrast with Tachbelie et al. [29]

and Tachbelie et al. [37], in which the hybrid units are sug-

gested by manipulating the training dataset via backoff from

sparse syllables to phones.

IV. PREPARATION OF THE CORPORA

A. SPEECH CORPUS

As presented in Table 3, the training speech corpus that is

used in our investigation is obtained from two sources. The

first source is Abate et al. [30], which has 20-hour read

training speech corpus that was collected from 50 male and

50 female speakers. The second source is a 6-hour training

speech corpus, which we prepared from two radio news

broadcasting corporations, namely, the Deutsche Welle and

Voice of America Radio stations, and a total of 2,674 sen-

tences (14,209 types or 44,133 tokens) are taken from 15male

and 10 female news readers. We have also used the 5k devel-

opment test set from [30] as a testing dataset, which was

collected from 20 speakers.
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TABLE 3. Speech training corpus.

However, the syllable distribution in the total training

speech corpus is uneven, as presented in Table 4. Of the

233 uniquely pronounced CV syllables, 9.9%, 20.6%, 36.1%,

and 42.9% of the syllables have frequencies of less than

50, 100, 300, and 500 in the training speech corpus.

Moreover, compared to other speech corpora that contain

hundreds or thousands of hours of speech data for training,

this corpus is small; hence, the models will suffer due to lack

of training data.

TABLE 4. Syllable frequency distribution in the training speech corpus.

B. TEXT CORPUS

The text corpus that is used in this study is obtained

from two sources: The first source is a text corpus from

Tachbelie and Abate [43], which contains 217,566 sentences,

and the second source is an Amharic-English bilin-

gual corpus from European Languages Resource Associa-

tion (ELRA), which contains 6,613 news sentences [44].

However, the 217,566 sentences consist of many dupli-

cate and testing dataset sentences, which are removed to

avoid overlapping between the text corpus and the testing

dataset, and 209,463 sentences are obtained. Then, these

sentences are merged with the 6,613 news sentences and

a total of 216,076 sentences (313,488 word types and

4,553,669word tokens) are obtained; the resulting text corpus

that mainly used to generate lexical dictionaries and to train

language models.

In this study, the phone-level Unicode versions of the text

corpus and transcribed speech text are used. Thus, transliter-

ation4 of the text corpus and the transcribed speech text from

their syllable-level Unicode versions into the corresponding

4Transliteration refers to the conversion of a syllable-level Unicode ver-
sion to the corresponding phone-level Unicode version.

phone-level Unicode versions can be conducted as follows:

All the syllables except the 20 labiovelars and 18 labialized

syllables are transliterated in a CV manner. For example,

the word /bera/, which means ‘ox’, is transliterated as

/b re/, where syllable /b / is transliterated as the com-

bination of the sixth-order phone, namely, /b/, with the first

vowel, namely, / , to the transliterated form of /b / and

syllable /re/ is transliterated as the combination of sixth-

order phone /r/ with the 5th vowel, namely, /e/, to the

transliterated form of /re/.

However, the labiovelar and labialized syllables are com-

binations of two or three CV syllables. Thus, according

to [45]–[47], these syllables can be transliterated as the

concatenations of sixth-order phones with rounded vowels.

For instance, syllable /qwa/ is a labialized syllable and is

transliterated as a combination of sixth-order phone /q/ with

rounded vowel /wa/ to the corresponding phone translit-

eration of /qwa/. Similarly, /ankwakwi/, which

means ‘‘she knocks’’, is transliterated as /a/ + /n / +

/kwa/+ /kwi/, where the first term is a vowel, which

is taken directly; the second term is a basic syllable, which

is transliterated via the CV approach; and the third and the

fourth terms are labialized and labiovelar syllables, which are

transliterated as combinations of the sixth-order phones with

rounded vowels.

C. LEXICAL DICTIONARIES

According to the acoustic modeling units that are investi-

gated, we construct three lexical dictionaries: syllable, phone,

and rounded phone dictionaries. All three dictionaries are

derived from the text corpus by selecting the most frequent

words and are of size 85k. The syllable-based lexicon con-

tains 233 uniquely pronounced CV syllables. The phone-

based lexical dictionary contains 34 phones: seven vowels

and 27 consonants. The rounded-phone-based lexicon con-

siders the rounded nature of the rounded consonants

(labiovelars and labialized) in addition to the basic 34 phones.

Therefore, the lexicon contains a total of 39 phones: seven

vowels, 27 consonants, and five rounded vowels. In all

lexical dictionaries, language properties such as gemination,

insertion of an epenthetic vowel, glottal stop consonant pro-

nunciation, and elision of vowels or insertion of semivowels

are not considered; this is because the lexicons are prepared

by nonlinguistic experts with the help of the writing system

of the language.

V. EXPERIMENTATION

A. EXPERIMENTAL SETUP

The baseline GMM-HMM models are developed using a

state-of-the-art speech recognition toolkit, namely, Kaldi

[48]. In the feature extraction process, 16-kHz speech input

is coded with 13-dimensional Mel-frequency cepstral coef-

ficients (MFCCs) with a 25-ms hamming window and a

10-ms frame shift. Each frame of the speech data is rep-

resented by a 39-dimensional feature vector that consists
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of 13 MFCCs with their deltas and double-deltas. Then,

the speaker-based mean and variance normalization using

cepstral mean and variance normalization (CMVN) are

applied to both the training and testing features. Seven con-

secutive feature frames are spliced to 40 dimensions via

linear discriminative analysis (LDA) and maximum like-

lihood linear transformation (MLLT), which is a feature

orthogonalizing transform, is applied to make the features

more accurately modeled by diagonal covariance Gaussians.

Moreover, to address speaker variability, speaker adaptive

training (SAT) is performed using feature-space maximum

likelihood linear regression (fMLLR). Using these features,

we conducted experiments to determine the number of states

and the HMM topologies for the phone and syllable acoustic

modeling units. According to the results, the 3-state left-to-

right HMM topology with the fourth-last non-emitting state

is better for the phone acoustic modeling units. However,

the syllable units are longer and subject to substantial acoustic

variation, and a model of such units are expected to have

many HMM states. Therefore, the 5-state left-to-right HMM

topology with the sixth-last non-emitting states is suitable for

the syllable acoustic modeling units.

In the Kaldi setup, the numbers of tied states and Gaussians

depend on the number of hours of training speech to avoid

the problems of overfitting and underfitting. We started from

the Iban language example setup since its training hours

are more similar to ours compared to the other examples.

The number of leaves was 4200 and the total number of

Gaussians was 40000. For all context-dependent acoustic

units, after several tunings, we attain the best performances

at 3948, 3532, and 3448 tied states with 50000 Gaussian

mixtures for the syllable, rounded phone, and phone units,

respectively. The numbers of context-independent states for

the syllable, rounded phone, and phone units are 1165, 122,

and 107, respectively, and all the context-independent acous-

tic units use the same numbers of Gaussian mixtures as

the context-dependent acoustic units. As a result, for DNN

training, the dimensions of the output layers are 3948, 3532,

and 3448 senones for the CD syllable, CD rounded phone,

and CD phone units, respectively, whereas for the context-

independent models, the dimensions of the output layers are

1165, 122, and 107 for the syllable, rounded phone, and

phone units, respectively.

A word-based backoff trigram language model is built

using the SRI language modeling (SRILM) toolkit [49]. The

model is trained using a text corpus of 216,076 sentences

and smoothed using the modified Kneser-Ney smoothing

algorithm. The perplexity value of the model is 76 on the

5k development test set sentences and it has an out of vocab-

ulary (OOV) rate of 5%. This language model is applied for

all acoustic modeling units: CD syllables, CD phones, CD

rounded phones, CI syllables, CI phones, and CI rounded

phones.

For our DNN-HMM experiments, we developed DNN

models that train using single-task learning (STL) and MTL

schemes. The network configuration for single-task DNN

training is as follows: 40-dimensional higher resolution

MFCC features and 100-dimensional i-vector speaker adap-

tion features are used as input features. A left context width

of 9 and a right context width of 7 are used to combine the

frames. The dimension of the input layer is 140. The pnorm

nonlinearity [50] is used as an activation function, which is

a dimension-reducing nonlinearity, and pnorm units with a

group size of 8 and a p-value of two are used for all the

acoustic modeling units. The greedy layer wise supervised

pretraining algorithm is used for network initialization, and

all the DNN models are trained using the preconditioning

stochastic gradient descent optimization algorithm to min-

imize the cross-entropy training criteria with a mini-batch

size of 512 frames. We use exponential learning rate schedul-

ing, in which the initial learning rate is 0.005 for the first

epoch and is decreased exponentially to the final learning rate

of 0.0005 for the last epoch during training [50]. We use the

Kaldi toolkit [48] as the DNN training tool. The training pro-

cess is accelerated using theNvidia GeForceGTX1050GPU.

We use the standard values of the decoding parameters that

are embedded in the toolkit, such as the decoding beam,

lattice beam, acoustic and language model scales, and word

insertion penalty. A weighted finite state transducer is used

for decoding.

By making the above parameters consistent for all acous-

tic modeling units, we conduct several preliminary experi-

ments to decide the optimal values of major hyperparameters,

namely, the number of hidden layers, the size of hidden layer

dimensions, and the number of epochs. For tuning the number

of hidden layers, we used the pnorm hidden layers with

input dimensions of 2400 and output dimensions of 300 and

epochs with value of 10. The tuning results are presented

in Figure 2. The results show that the optimal number of

hidden layers is four for all acoustic modeling units. To tune

the size of hidden layer dimensions, we use four hidden

layers and 10 epochs. The input dimensions of 2000 and

output dimensions of 250 are the optimal sizes of the pnorm

hidden layer dimensions for all acoustic units as presented

in Figure 3. The optimal number of epochs is eight for all

acoustic modeling units which is achieved after tuning for

several epochs by making the number hidden layers four and

the size of the hidden layer input dimensions of 2000 and

FIGURE 2. WER results vs. the number of hidden layers for all
fundamental acoustic modeling units.
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FIGURE 3. WER results vs. the size of hidden layer dimensions for all
fundamental acoustic modeling units.

output dimensions of 250. The tuning results are presented

in Figure 4.

FIGURE 4. WER results vs. the number of epochs for all fundamental
acoustic modeling units.

For multitask DNN training, we use all the model parame-

ters of the single-taskDNN except the taskweight values. The

task-weight values for two-task and three-task DNN training

are tuned and the results are presented in Tables 8 and 9,

respectively. According to the results, the task weight values

of 0.7 and 0.3 for primary and ancillary tasks are optimal

values for two-task learning while task weight values of 1,

0.7, and 0.3 for primary task and first and second auxiliary

tasks, respectively, are optimal values for three-task learning.

Using the optimal values of the major hyperparameters

which are obtained from the above preliminary experiments

and other parameters which are described in this sub-section,

we have conducted several actual experiments as described in

sub-section B.

B. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the different experiments with their

results analysis and discussions.

1) EXAMINE THE DEVELOPMENT OF

FUNDAMENTAL-ACOUSTIC-UNIT-BASED STL-DNN MODELS

The first experiment explores the development of the

fundamental-acoustic-unit-based DNN models for the

Amharic language, as presented in Tables 5 and 6. According

to the results of the experiments, all the basic-acoustic-

modeling-unit-based DNN models outperform the baseline

GMM models. In the CD unit experiment, as presented

in Table 5, the CD phone and CD syllable outperform the

CD rounded phone. The CD syllable realizes 11.28% WER,

which corresponds to absolute and relative WER reductions

of 2.36% and 17.3% over the equivalent GMM model. The

CD phone realizes 11.25% WER, which represents 2.24%

absolute and 16.6% relative performance improvement over

the corresponding GMM model. The CD rounded phone

outperforms the GMM model by absolute and relative WER

reductions of 1.9% and 14.14%, respectively.

TABLE 5. WERs (%) of the baseline context-dependent models.

TABLE 6. WERs (%) of the context-independent models.

In the CI unit experiment, as listed in Table 6, the CI syl-

lable outperforms the baseline syllable-based GMM model

with 3.51% and 21.13% absolute and relative performance

improvement, respectively. Similarly, the CI phone and

CI rounded phone realize absolute performance enhance-

ments of 5.07% and 3.61%. Hence, the relative perfor-

mance improvements over the baseline models are 23.31%

and 17.56%, respectively. As a result, in both experiments,

the CD- and CI-acoustic-unit-based DNNmodels outperform

the baseline conventional GMM models with an absolute

WER reduction of 1.9 to 5.07%. These results demon-

strate that the DNN acoustic modeling technique substan-

tially improves the performance of LVCSR systems for the

Amharic language.

Moreover, the rounded phone acoustic modeling units

are investigated to analyze the influence of the labiovelars

and labialized phones on the performance of the LVCSR

system in comparison with the fundamental phone units. The

experimental results that are presented in Tables 5 and 6

demonstrate that the rounded phones are outperformed by

2.5% and 1.6% by the basic phone units in the context-

dependent and context-independent speaker-adapted models.

Similarly, according to the speaker-independent experimental

results, which are presented in Tables 10 and 11, the rounded

phones are outperformed by 0.9% and 1.7% by the basic

phones in the context-dependent and context-independent

models, respectively. The experimental results demonstrate

that considering the rounded nature of the rounded phones
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does not improve the performance of the DNN models.

Therefore, the basic phones are more suitable than the

rounded phones as acoustic modeling units for developing

phone-based DNN models.

2) EFFECT OF SPARSELY DISTRIBUTED SYLLABLES ON

THE PERFORMANCE OF LVCSR SYSTEM

In this experiment, we examine the effect of an uneven

distribution of syllables in the training dataset on the perfor-

mance of the Amharic syllable-based LVCSR system. The

experiment is conducted by removing the rarely occurring

syllables from the phone list and lexical dictionary. The

syllables that have frequencies that are below 50 are removed,

and 210 syllables remain from a total of 233 syllables of the

language. Then, both the GMM and DNN acoustic models

are trained using 210 syllables with the model parameters

that are defined in the experimental setup in Section V-A.

Table 7 presents the experimental results. Since these models

are built using the evenly distributed syllables in the training

data, the CD syllable attains a 0.48% absoluteWER reduction

using the GMMmodel compared with the GMMmodel result

that is presented in Table 6, for which the model was built

using all the syllables. Correspondingly, the DNN model

that is built using the CD syllable obtains a 0.18% absolute

performance improvement over the baseline results that

are presented in Table 5. The performances of both the

CD-syllable-based GMM and DNN models improve when

they are trained using the evenly distributed syllables in

the limited training corpus. However, the performance of the

CD-syllable-based GMM model is better improved than the

DNN model relative to the baseline GMM and DNN models,

respectively. This finding is because the irregular distribution

of syllables in the training corpus has a larger effect on the

performance of the GMM model than on the DNN model

since the DNN can model rarely occurred modeling units.

Therefore, even if the DNN models reduce the data sparsity

and unevenness problems to some extent, the performances

of both the GMM and DNN models that are trained using the

CD syllable acoustic units are influenced by data sparseness

and unevenness.

TABLE 7. WERs of models that are based on evenly distributed syllables.

3) COMPARISON OF SPEAKER-INDEPENDENT AND

SPEAKER-ADAPTED DNN MODELS

In this experiment, we compare the speaker-independent and

speaker-adapted DNN models in terms of performance in

reducing the data sparsity and uneven distribution of sylla-

ble units in the limited training dataset. Initially, we build

the speaker-independent DNN models, which train over

TABLE 8. WER (%) of CD syllable-CI syllable acoustic units based
two-task DNN model with different task weight values.

TABLE 9. WER (%) of CD syllable-CI phone-CI syllable acoustic units
based three-task DNN model with different task weight values.

LDA and MLLT alignment, and we compare the obtained

results with the experimental results that are presented

in Tables 5 and 6. Therefore, for the speaker-independent

model investigation, we used 3365, 2873, and 2866 tied

states as DNN targets for syllable, rounded phone, and phone

context-dependent units and 1165, 122, and 107 context-

independent states as DNN targets for syllable, rounded

phone, and phone context-independent units, respectively.

Tables 10 and 11 present the performances of the CD

and CI DNN models that are trained over LDA and MLLT

alignment, respectively. According to Table 10, the DNN

models that are trained using the CD syllable, CD phone, and

CD rounded phone units realize absolute WER reductions

TABLE 10. WERs (%) of the speaker-independent and context-dependent
GMM and DNN models.

TABLE 11. WERs (%) of context-independent and speaker-independent
GMM and DNN models.
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of 4.9%, 4.09%, and 4.16%, respectively, over the corre-

sponding GMM models. Here, the CD syllable unit signifi-

cantly reduces the relativeWERby 2.36% and 2.21% over the

equivalent CD phone and CD rounded phone units. Similarly,

according to Table 11, the DNNmodels that are trained using

the CI syllable, CI Phone, and CI rounded phone units realize

6.04%, 6.8%, and 6.18% absolute performance improve-

ments, respectively, over the baseline GMMmodels. In addi-

tion, the CI syllable units realize significant performance

improvements over the CI phone and CI rounded phone

units, with relative performance improvements of 3.13% and

5.32%, respectively. Overall, the experimental results demon-

strate that both CD and CI syllable units realize significant

absolute WER reductions over the equivalent other units.

Hence, the GMM model that is trained using the syllable

units suffer from the problems of data sparsity and uneven

distribution of syllables in the training data, while DNN

reduces such limitations of the GMM and realizes larger

performance improvement using the syllable units compared

to the other units.

According to the experimental results that are presented

in Tables 5 and 6, the ivector speaker-adapted syllable-

based DNN model outperforms the equivalent GMM.

However, the improvement is smaller than that of the speaker-

independent DNN model that is trained over LDA and

MLLT results, according to Tables 10 and 11. Comparing the

two experimental results, the speaker-adapted and speaker-

independent DNN models that are trained using CD syllable

units realize absolute performance improvements of 2.36%

and 4.9%, respectively. In contrast, the speaker-adapted and

speaker-independent DNN models that are trained using the

CI syllable units realize absolute performance improvements

of 3.51% and 6.04%, respectively. Hence, the performances

of the speaker-independent syllable-based DNNmodels have

improved more than those of the speaker-adapted syllable-

based DNN models over the baseline GMM models. Thus,

the data sparsity and uneven distribution of the syllable

units are better mitigated using the speaker-independent

DNNmodels compared to the speaker-adapted DNNmodels.

However, the speaker-adapted syllable-based DNN mod-

els consider the speaker variety; hence, they realize higher

overall accuracy than the speaker-independent syllable-based

DNN models. Both the speaker-independent and speaker-

adapted syllable-based DNN models have reduced the spar-

sity and unevenness of the syllable units in the limited training

dataset. However, those models still suffer from the lack of a

sufficient training dataset. Section V-B-4 suggests possible

solutions for overcoming these problems.

4) INVESTIGATION OF HYBRID ACOUSTIC MODELING

UNITS USING THE MTL-DNN PARADIGM

According to the experimental results that are presented

in Sections V-B 2 and 3, the performances of the

CD-syllable-unit-based GMM and DNN models are affected

by the sparsity and unevenness of the syllables in the training

dataset, in addition to the scarcity of sufficient training

corpora. To overcome these problems, this experiment pro-

poses different hybrid acoustic modeling units by training

the fundamental acoustic units via the MTL-DNN paradigm,

as presented in Table 12 and Figure 5. These units are inves-

tigated by dividing them into four major categories: In the

first category, the context-dependent acoustic units are used

as the primary task to jointly train with the corresponding

context-independent acoustic units as an auxiliary task. CD

syllable with CI syllable and CD phone with CI phone are

the proposed hybrid units that are included in this category,

as presented in the first two rows of Table 12.

TABLE 12. Performances of various hybrid-acoustic-unit-based MTL-DNN
models.

In the second category, the context-dependent units are

used as the primary task to train together with alternative

context-dependent units, which are trained using various tied

states as an auxiliary task. This category includes the CD

syllable along with another CD syllable that is trained using

a different number of senones as shown in the fourth row of

Table 12, and Table 13. In the third category, the context-

dependent units are used as the primary task to mutually train

with other context-dependent units as an auxiliary task, which

includes the CD syllable with the CD phone, as presented in

the third row of Table 12. All the proposed hybrid acoustic

units that are in the first, second, and third categories are

trained using the two-task learning paradigm. In addition,

there is a fourth category that combines the second- and

third-category hybrid acoustic units with the CI syllable

for training additional hybrid acoustic units. This category

includes the CD syllable-CD phone with the CI syllable and

the CD syllable-CD syllable with the CI syllable. These units

are trained together using the three-task learning approach,

as presented in the last two rows of Table 12.

TABLE 13. WERs of the MTL-DNN models in which the CD syllable is
jointly trained with an alternative CD syllable using various numbers of
senones.

In the first category, we examine the joint training of the

CD syllable as the main task with the CI syllable as an auxil-

iary task. This approach realizes the best WER of 10.86%,
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FIGURE 5. Architectural representation of the proposed hybrid acoustic modeling units.

which represents a 4.14% relative performance improve-

ment over the corresponding CD syllable STL-DNN model.

Similarly, we investigate the joint training of the CD phone

as the main task with the CI phone as an auxiliary task; it

realizes 11.01%WER, which represents a 2.13% relative per-

formance gain over the baseline CD phone STL-DNNmodel.

However, this result proves that the CI phone unit does not

substantially facilitate the performance of the CD phone unit.

This finding is because the CD-phone-based model does not

suffer from data sparsity or unbalanced distribution of phones

in the training dataset. According to the result, the CD-

syllable-based hybrid unit outperforms the CD-phone-based

hybrid unit. Thus, we use the CD syllable as the primary task

and other units as auxiliary tasks throughout the remaining

multi-task learning experiments, as presented in Table 12.

In the second category, we analyze the joint training of the

CD syllable as the primary task with the CD syllable that is

trained using a different number of senones as an auxiliary

task, as presented in Table 13. The results demonstrate that

the best performance is realized from the training of the

CD syllable with another CD syllable that is trained using

700 senones as an ancillary task, namely, 10.81% WER.

This result represents an absolute performance improvement

over the baseline CD syllable STL-DNN model of 0.47%.

In addition, Table 13 shows the influence of auxiliary task

on the performance of the primary task as a function of the

number of senones on which the auxiliary task is trained.

As the number of senones on which the ancillary task is

trained is increased and approaches the number of senones of

the primary task, the primary task obtains less assistance from
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the auxiliary task and the performance of the corresponding

hybrid model is reduced. However, the performance of the

primary task is improved when the number of senones of the

auxiliary tasks is 4-7 times less than the number of senones

of the primary task. Moreover, the CD phone is not assisted

substantially by the ancillary task for the CD phone with the

CI phone hybrid units in category one. Therefore, we did not

explore the effect of training the CD phone with the various

numbers of senones as the auxiliary task together with the

corresponding CD phone as the primary task in the hybrid

units.

In the third category, the CD syllable as the primary task

with the CD phone as an auxiliary task are trained together

and realize a 0.28% absolute WER reduction over the base-

line single-task CD syllable unit. Similarly, in the fourth

category, the CD syllable as the primary task, and the CD

phone and the CI syllable train together as auxiliary tasks and

realize an absolute WER reduction of 0.44%. Another hybrid

unit that combines the CD syllable as the primary task with

the CD syllable trains using 700 tied states and the CI syllable

as auxiliary tasks and realizes the lowest WER of 10.79%,

which represents 0.49% absolute and 4.34% relative WER

reductions over the baseline CD-syllable-based single-task

DNN model.

5) RECOGNITION SPEEDS OF HYBRID AND

FUNDAMENTAL ACOUSTIC MODELING UNITS

Table 14 presents the decoding speeds of the hybrid and

CD fundamental acoustic units. Of the hybrid acoustic

units, the CD syllable-CD syllable-CI syllable model realizes

the fastest decoding speed with a real-time factor (RTF)

of 1.02069, while the CD syllable-CD phone-CI syllable

hybrid-unit-based model exhibits the slowest decoding speed

with a real-time factor of 1.31444. This finding is because this

model uses a larger decoding beam size than the universal

decoding beam size, as specified in Section V-A. The CD

syllable-CD syllable and the CD syllable-CD syllable-CI

syllable units have realized the highest recognition accu-

racy, as stated in Section V-B-4. Thus, both units outper-

form other hybrid units in terms of the recognition speed

and accuracy. In contrast, the fundamental units, namely,

TABLE 14. Decoding speeds of the various context-dependent and hybrid
acoustic modeling units.

CD rounded phone, CD phone, and CD syllable units, realizes

the fastest, faster and fast decoding speeds, respectively, and

the decoding speed is inversely proportional to the recogni-

tion accuracy, which is reported in Section V-B-1. Moreover,

Table 15 lists the decoding speeds of the context-independent

units. The CI syllable unit is faster than the CI phone and

rounded phone units with a real-time factor of 1.02176.

TABLE 15. Decoding speeds of the context-independent acoustic
modeling units.

6) EFFECT OF THE TRAINING DATASET SIZE ON THE

PERFORMANCES OF STL AND MTL DNN MODELS

To analyze the influence of the size of the dataset on the

performances of the fundamental- and hybrid-acoustic-unit-

based STL and MTL-DNN models, we have prepared two

training of 7 hours and 13 hours in length via random

selection from 26-hour training dataset. Prior to training the

hybrid-unit-based MTL-DNN models, the fundamental-unit-

based STL-DNN models are developed. Those models are

trained with the parameters that are specified in the experi-

mental setup in Section V-A, except for the tied states and

the hidden layer dimensions. Since the training dataset is

relatively small, the average numbers of tied states that are

used are 2156 and 1706 for the CD syllable and CD phone

acoustic units, respectively. Moreover, the hidden-layer input

and output dimensions are reduced from the baseline values

of 2000 and 250 nodes to 1000 and 125 nodes, respectively,

to overcome model overfitting.

Table 16 presents the performances of the fundamental-

acoustic-unit-based STL-DNNmodels that were trained with

datasets of various sizes. Using the 7-hour dataset, the CD-

phone-based STL-DNN model outperforms the CD-syllable-

based STL-DNN model with an absolute WER reduction

of 5.02%. Similarly, the CD-phone-based model also outper-

forms the CD-syllable-based model with an absolute WER

reduction of 2.24% when the models are trained using the

TABLE 16. WERs (%) of the baseline CD- and CI-unit-based STL-DNN
models.
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13-hour dataset. Hence, the performance of the CD-syllable-

based STL-DNNmodel is improvedwhen the training dataset

size is substantially increased compared to the equivalent CD-

phone-based models. Hence, the CD-syllable-based models

realized a larger best-case absoluteWER reduction of 13.85%

compared to the CD-phone-based models.

Table 17 presents the performance of the proposed hybrid

modeling units as a function of the training dataset size. The

results demonstrate that all the investigated hybrid-acoustic-

unit-based MTL-DNN models outperform the equivalent

single-acoustic-unit-based models. Using the 7- and 13-hour

training datasets, the CD phone-CI phone-based model out-

performs the CD-syllable-based hybrid units. This result

is because there are many sparse and unevenly distributed

syllables in both limited datasets. For instance, there are

13 syllables that are not found in the 7-hour training dataset.

However, using the 26-hour training dataset, the CD syl-

lable units that are jointly trained with other units as a

hybrid unit outperform the CD phone-CI phone hybrid unit

and realize larger best-case absolute WER reductions of

12.91 to 13.69%.

TABLE 17. WERs (%) of the proposed hybrid unit-based MTL-DNN
models.

7) COMPARISON OF HYBRID AND FUNDAMENTAL

ACOUSTIC MODELING UNITS

The hybrid acoustic modeling units that are proposed in

Section V-B-4 are compared with the fundamental acous-

tic modeling units, namely, the CD syllable and the CD

phone, in terms of recognition performance and speed. All the

hybrid modeling units outperform the baseline CD syllable

and CD phone units with relative performance improvements

of 1.33 to 4.34%. This finding is because when the funda-

mental acoustic modeling units are jointly trained via MTL,

the training data size is increased and, hence, the risk of

overfitting and the Rademacher complexity of the model are

reduced. As a result, the data scarcity and sparsity challenges

are mitigated, and the performances of the hybrid-acoustic-

unit-based models are improved.

The hybrid units, namely, CD syllable-CI syllable,

CD syllable-CD syllable, and CD syllable-CD syllable-CI

syllable, outperform the equivalent hybrid units, such as CD

syllable-CD phone and CD syllable-CD phone-CI syllable.

This result is because the hybrid units in the first set share the

same labeled unit training dataset, while the hybrid units in

the second set use different labeled unit training datasets. The

higher performing hybrid acoustic units are CD syllable-CD

syllable-CI syllable and CD syllable-CD syllable, which real-

ize WERs of 10.79% and 10.81%, respectively. The results

demonstrate that the CD syllable-CD syllable-CI syllable and

CD syllable-CD syllable units outperform the corresponding

single-task CD syllable unit with 4.34% and 4.17% rela-

tive performance improvements, respectively. Consequently,

the highest performing hybrid acoustic modeling unit is the

CD syllable-CD syllable-CI syllable unit.

In contrast, the CD syllable-CD phone unit exhibits the

lowest performance of the hybrid acoustic modeling units.

The CD phone-CI phone hybrid unit outperforms the singly

training CD phone unit with a relative performance improve-

ment of 2.13%. However, the performance improvement is

small compared to the other hybrid acoustic modeling units.

Moreover, the performance of the hybrid acoustic unit that

combines the CD syllable as the primary task with the CD

syllable that is trained using a different number of senones as

an auxiliary task depends highly on the number of senones

in the auxiliary task. Thus, it is advantageous to use fewer

senones for an ancillary task than the number of senones of

the primary task.

Using training datasets of various sizes, all the proposed

hybrid acoustic modeling units consistently outperform the

equivalent basic acoustic units, namely, the syllable and

phone units, as shown in Figure 6. Typically, as the training

data size increases, the performances of the hybrid-unit-based

DNN models improve and higher performance is realized

from the joint training of the CD syllable with other units.

Hence, the proposed hybrid acoustic modeling units can

improve the performance of LVCSR of the Amharic language

under both limited and sufficient training dataset conditions.

Moreover, the performances of both the syllable- and phone-

acoustic-unit-based DNN models improve when the training

dataset increases in size, as discussed in Section V-B-6. The

syllable-based model substantially outperforms the phone-

based model. The CD-phone-based models outperformed the

syllable-based model using limited training datasets (7 and

13 hours). Therefore, if the available training data corpus is

sufficiently large and only the accuracy is prioritized, the sin-

gle CD syllable unit is the better performing acoustic mod-

eling unit and to improve the performance, the CD syllable

should be trained jointly with other units as a hybrid unit

using theMTL technique. Alternatively, if the training dataset

is limited and both the accuracy and the decoding speed of

the recognizer are prioritized, the CD phone modeling unit

is the better performing acoustic unit and to improve its

performance further, the CD phone-CI phone hybrid acoustic

modeling units should be trained via the MTL paradigm.

Based on the recognition speed, the use of secondary tasks

increases the computational cost of training compared to the

single task, although the difference in recognition speed is
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FIGURE 6. Comparison of hybrid and fundamental acoustic modeling units.

not substantial since the secondary tasks are discarded at the

end of the training process. Thus, the decoding speed of a

hybrid-acoustic-unit-based MTL model that is trained using

the CD syllable as a primary task with various secondary

tasks is almost the same as that of the CD-syllable-based

single-task DNN model. In line with this, the CD-rounded-

phone-based and CD-phone-based STL-DNN models have

faster decoding speeds than the basic-CD-syllable-based

STL-DNN and hybrid-CD-syllable-unit-based MTL-DNN

models. This finding is because the decoding speed is varied

due to the graph size differences among the acousticmodeling

units, thereby rendering all the decoding parameters that are

specified in Section V-A universal for all models. The graph

sizes of all the hybrid-CD-syllable- and basic-CD-syllable-

unit-based models are larger than those of the equivalent

CD-phone- and CD-rounded-phone-unit-based models.

Moreover, the fundamental CI acoustic modeling units,

namely, the CI syllable and CI phone acoustic units, are

compared in terms of performance and decoding speed. The

CI syllable significantly outperforms the corresponding CI

phone with an absolute performance improvement of 3.58%.

This result is because CI syllable units are long and stronger

in terms of the co-articulation effect of the neighboring syl-

lable than the phone units. The CI syllable unit also has

the faster decoding speed than the corresponding CI phone

units. Hence, the CI CV syllable is the most suitable acoustic

modeling unit for building the CI DNN model for Amharic

speech recognition.

VI. CONCLUSIONS AND FUTURE WORK

This study proposed hybrid acoustic modeling units by

jointly training the fundamental acoustic units via the

MTL-DNNmodeling technique for LVCSRof a low-resource

language, namely, Amharic. First, this study developed the

single-task DNN models using the fundamental acoustic

modeling units, namely, phone, rounded phone, and syllable

units. The experimental results demonstrate that all the

single-task DNN models outperform the corresponding

baseline conventional GMM-HMM models, with absolute

WER reductions of 1.9 to 5.07%. However, the fundamen-

tal acoustic-unit-based single-task DNN models are suf-

fered from the problems of training data scarcity, sparsity,

and unevenness, especially CD syllable unit-based models.

Second, to overcome the above problems, this study proposed

various hybrid acoustic modeling units through the joint

training of the fundamental acoustic modeling units using

the MTL-DNN paradigm. Thus, the experimental results

demonstrate that all the proposed hybrid-acoustic-unit-based

DNN models outperform the singly trained fundamental-

acoustic-unit-based DNN models with relative performance

improvements of 1.33 to 4.34%. The best performing hybrid

acoustic units is the CD syllable-CD syllable-CI syllable

unit with a WER of 10.79%. Third, the recognition perfor-

mances of the fundamental and hybrid acoustic modeling

units are compared using training datasets of various sizes.

The experimental results indicate that the performances of

all the fundamental and hybrid acoustic units improve as the

training dataset size increases. Especially, the performances

of the CD-syllable-basedmodels improve significantly. Thus,

all the hybrid-acoustic-units-based DNN models outperform

the basic-acoustic-units-based models via different training

dataset sizes with the WER reductions of 2.13 to 5.62%.

Hence, the CD syllable acoustic modeling units perform bet-

ter if and only if a sufficient training corpus is available and

the accuracy of the recognizer is prioritized. The CD phone

units are the superior choice for acoustic modeling units if

the available training dataset is limited and the accuracy and

speed of the recognizer are prioritized. The hybrid acoustic
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modeling units are the best performing acoustic modeling

units if the accuracy of recognizer is prioritized under both

limited and sufficient training dataset conditions.

The findings of this study will facilitate the work of lan-

guage researchers and that of companies that are developing

speech recognition applications for this language. Moreover,

we recommend the investigation of various hybrid modeling

units by jointly training different language specific funda-

mental acoustic modeling units via multitask learning for

low-resource languages, which have limited training corpora

with sparse and unevenly distributed acoustic modeling units.

On the other hand, further investigation will focus on three

issues: the expansion of training corpus, the acoustic mod-

eling techniques, and the properties of the language. First,

increase the size of training corpus can boost the performance

of ASR system. Thus, we will explore the performances

of hybrid acoustic units based DNN-HMM models by aug-

menting the available training corpus (particularly, the highly

sparse syllables such as vu, vwa, kwi, ž , žwa, p’ , p’u, p’i,

p’e, and p’wa) using different audio augmentation techniques

and by borrowing the training corpus from acoustically

related resource-rich languages. Second, the acoustic mod-

eling techniques such as the convolutional neural network

(CNN), time delay neural network (TDNN), and long-short

memory termmemory (LSTM) deep neural network architec-

tures, significantly outperform the ordinary DNNmodel [20],

[51], [52]. Moreover, the sequential discriminative training

criteria have higher discriminative power, which enhances

the performance of the DNN ASR models related to those

that are trained using the default cross-entropy criterion [53].

Therefore, we will explore the performances of hybrid acous-

tic modeling units that are trained via the CNN, TDNN, and

LSTM acoustic modeling techniques with the discriminative

training criteria. Third, Amharic is a morphologically rich

language, in which the ASR models suffer from the OOV

problem. This problem can be mitigated by using the smallest

language and lexical modeling units other than the default

word unit, namely, morphs [37]. We will investigate the

impact of using morph units for language and lexical models

with the hybrid acoustic units on the performance of the

Amharic speech recognition systems.
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