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ABSTRACT

We investigate the wave properties for isothermal plasma state around to the de Sitter
black hole’s horizon using 3+1 split of spacetime. The corresponding Fourier analyzed per-
turbed perfect GRMHD equations are used to obtain the complex dispersion relations. We
obtain the real values of the wave number k, from these relations, which are used to evaluate
the quantities like phase and group velocities etc. These have been analyzed graphically in
the neighborhood of the horizon.
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I. INTRODUCTION

It is known that black holes greatly affect the surrounding highly magnetized plasma medium with their massive
gravitational fields. Therefore plasma physics around a black hole has become a subject of great importance in
astrophysics. In the immediate neighborhood of a black hole, general relativity applies. To formulate plasma
physics problems in the context of general relativity is very significant at the moment. An isolated black hole
can have an electromagnetic field, if it is endowed with a net electric charge (Israel, 1967, 1968; Hawking, 1972;
Robinson, 1974). Since a collapsed object can have a very strong effect on an electromagnetic field, it is of concern
to determine this effect using general relativistic magnetohydrodynamics (GRMHD) equations when a black hole
is placed in an external electromagnetic field. A covariant formulation of the theory based on the fluid equations
in curved spacetime has so far proved unproductive because of the curvature of four-dimensional spacetime in the
region surrounding a black hole. The 3 + 1 formulation of general relativity, developed by Thorne & Macdonald
(1982), Macdonald & Thorne (1982), and Price & Thorne (1986), provides a method in which the electromagnetic
equations and the plasma physics at least look somewhat similar to the usual formulations in flat spacetime while
taking accurate account of general relativistic effects such as curvature.

Works connected with black holes have been facilitated by the replacement of the hole’s event horizon with a
membrane endowed with electric charge, electrical conductivity and finite temperature, and entropy in Thorne, Price
& Macdonald (1986). Mathematically the membrane paradigm is analogous to the standard, full general relativistic
theory of black holes so far as physics outside the event horizon is concerned, and moreover, the formulation of all
physics in this region turns out to be very much simpler than it would be using the standard covariant approach
of general relativity.

Arnowitt, Deser & Misner (1962) have developed the 3+1 split of spacetime at first to study the quantization
of the gravitational field. Since then, their formulation has been applied in studying numerical relativity (Evans,
Smarr & Wilson, 1986). TPM extended the ADM formalism to include electromagnetism and applied it to study
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electromagnetic effects near the Kerr black hole. As a result, their work has inaugurated many opportunities for
studying electromagnetic effects on plasmas in the black hole environment.

Numerous endeavors have been taken to exploit the 3+1 formalism over the last few decades. Zhang (1989a,b)
considered the case of perfect GRMHD waves near to Kerr black hole and discussed the linearized waves for the cold
(negligible particle pressure) plasma propagating in two-dimensions. Holcomb & Tajima (1989), Holcomb (1990)
and Dettman, Frankel & Kowalenko (1993) investigated some properties of wave propagation in the Friedmann
universe. Khana (1998) derived the GRMHD equations for two-fluid plasma in Kerr black hole. Anón et al. (2006)
investigated various test simulations and discussed magneto-rotational instability of accretion disks. Anile (1989)
worked on relativistic shock waves in magneto-fluids in cold relativistic plasma. Komissarov (2002) discussed the
Blandford-Znajek monopole solution in black hole electrodynamics. Buzzi, Hines & Treumann (1995a,b) described
a general relativistic version of two-fluid plasma physics in TPM formulation and developed a linearized treatment
of plasma waves in analogy with the special relativistic formulation of Sakai & Kawata (1980).

In recent times, Sharif & Sheikh (2007) (SS) investigated the behavior of isothermal plasma waves in the vicinity
of the Schwarzschild black hole horizon. In this paper we apply TPM formalism of the GRMHD equations to study
the dynamical magnetosphere of the de Sitter (dS) space and investigate the nature of the waves.

Physicists have a growing interest in dS space over the last few decades. In the 1970s, the attention was due to
the large symmetry group of dS space, which made the field theory in dS space less ambiguous than, for example,
in the Schwarzschild spacetime. Researches in the 1980s focused the role it played during inflation-accelerated
expansion in the very early universe. The universe is currently asymptotic dS and approach a pure dS space.
Recent cosmological observations (Bahcall et al., 1999; Reiss et al., 1998; Permutter et al., 1999) suggest the
possibility of existing a positive cosmological constant (Λ > 0) in our universe and this possibility gives the picture,
among many others, of some features closely related to black holes: the existence of cosmological event horizons.
These causal horizons exist even in the absence of matter, namely in empty dS space, and hide all the events which
are not accessible for geodesic observers. In addition, the success of the ADS/CFT correspondence (Maldacena,
1998; Witten, 1998; Gubser, Klebanov & Polyakov, 1998; Aharony et al., 1999) has led to the intense study of dS
space in the context of the quantum gravity (Witten, 2001). The attention has been to obtain an analogue of the
ADS/CFT correspondence in dS space, i.e. dS/CFT correspondence (Strominger, 2001a,b; Klemm, 2002; Hull,
1998; Park, 1998, 1999) in the light of which there has been an extensive study of the semiclassical aspects of dS
and asymptotic dS spacetimes (Meldved, 2002; Parikh, 2002; Bousso, Maloney & Strominger, 2002). In view of
these reasons, it may be of special interest to investigate wave properties of isothermal plasma in the dS space.

This paper is arranged as follows. In section 2, we describe the de Sitter space and its planar analogue. Section 3
is furnished with the presentation of GRMHD equations for isothermal plasma. We obtain the dispersion relations
for the case of rotating magnetized background in section 4. In section 5, we present our study of non-magnetized
plasma in rotating background. Section 6 is assigned to the cases of non-rotating magnetized and non-magnetized
background. Lastly, we summarize and discuss the results. We use units G = c = 1.

II. DE SITTER SPACETIME AND ITS PLANAR ANALOGUE

In de sitter space, the simplest solution for the Einstein field equations with Tµν = 0 is written as

ds2 = gµνdxµdxν

= −
(

1 − r2

ℓ2

)
dt2 +

(
1 − r2

ℓ2

)−1

dr2 + r2dΩ2
2. (1)

Here, ℓ is the curvature radius of the dS space [Λ = 3
ℓ2 is the positive cosmological constant], dΩ2

2 represents a unit
2-sphere, and the nonangular coordinates range according to 0 ≤ r ≤ ℓ and −∞ < t < ∞. The boundary at r = ℓ

describes a cosmological horizon for an observer located at r = 0.
An absolute three-dimensional space defined by the hypersurfaces of constant universal time t is described by

the metric

ds2 = gijdxidxj =
(

1 − r2

ℓ2

)−1

dr2 + r2dΩ2
2. (2)
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The indices i, j range over 1, 2, 3 and refer to coordinates in absolute space. The Fiducial Observers (FIDO’s),
the observers remaining at rest with respect to this absolute space, measure their proper time τ using clocks that
they carry with them and make local measurements of physical quantities. Then all their measured quantities are
defined as FIDO locally measured quantities and all rates measured by them are measured using FIDO proper
time. The FIDO’s use a local Cartesian coordinate system with unit basis vectors tangent to the coordinate line

er̂ =
(

1 − r2

ℓ2

)1/2
∂

∂r
, eθ̂ =

1
r

∂

∂θ
, eφ̂ =

1
r sinθ

∂

∂φ
. (3)

For a spacetime viewpoint rather than a 3 + 1 split of spacetime, the set of orthonormal vectors also includes the
basis vector for the time coordinate given by

e0̂ =
d

dτ
=

1
α

∂

∂t
, (4)

where α is the lapse function (or redshift factor) defined by

α(r) ≡ dτ

dt
=

(
1 − r2

ℓ2

)1/2

. (5)

The gravitational acceleration felt by a FIDO is given by

a = ∇lnα = − 1
α

r

ℓ2
er̂, (6)

while the rate of change of any scalar physical quantity or any three-dimensional vector or tensor, as measured by
a FIDO, is defined by the convective derivative

D

Dτ
≡

(
1
α

∂

∂t
+ V · ∇

)
, (7)

V being the velocity of a fluid as measured locally by a FIDO.

For a good approximation near the horizon, we write the dS metric in the Rindler coordinate system as follows:

ds2 = −
(

1 − r2

ℓ2

)
dt2 + dx2 + dy2 + dz2, (8)

where

x = ℓ
(
θ − π

2

)
, y = ℓφ, z = 2ℓ

(
1 − r2

ℓ2

)1/2

. (9)

The standard lapse function in Rindler coordinates becomes α = (z/2rh), where rh = ℓ is the location of the
cosmological event horizon.

III. 3+1 PERFECT GRMHD EQUATIONS AROUND DE SITTER SPACETIME

Maxwell’s equations in 3+1 formalism take the following form:

∇ · B = 0, (10)

∇ · E = 4πρe, (11)
∂B
∂t

= −∇× (αE), (12)

∂E
∂t

= ∇× (αB) − 4παj, (13)
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where ρe and j are electric charge and current density, respectively. For the perfect MHD (i.e., MHD with perfectly
conducting) assumption there exists no electric field in the fluid’s rest frame, i.e.,

E + V × B = 0. (14)

Under this condition the equation for the evolution of magnetic field (12) becomes

∂B
∂t

= ∇× (αV × B)

= (B · ∇)(αV) − B∇ · (αV) − (αV · ∇)B. (15)

The conservation of mass, energy and momentum equations are written, respectively, as follows (Gubser, Klebanov
& Polyakov, 1998):

∂(ρoµ)
∂t

+ {(αV) · ∇}(ρoµ)

+ρoµγ2V · ∂V
∂t

+ ρoµγ2V · (αV · ∇)V + ρoµ{∇ · (αV)} = 0, (16)

{(
ρoµγ2 +

B2

4π

)
δij + ρoµγ4ViVj −

1
4π

BiBj

}
DV j

Dτ

+ρoµγ2Vi
Dµ

Dτ
−

(
B2

4π
δij −

1
4π

BiBj

)
V j

,kV k

= −ρoµγ2ai − p,i +
1
4π

(V × B)i∇ · (V × B) − 1
8πα2

(αB)2,i

+
1

4πα
(αBi),jB

j − 1
4πα

[B × {v × (∇× (αv × B))}]i, (17)

γ2 D(µρ0)
Dτ

− 1
α

∂p

∂t
+ 2ρ0µγ4V · DV

Dτ
+ 2ρ0µγ2(V · a) + ρ0µγ2(∇ · V)

+
1

4πα

[
(V × B) · (∇× (αB)) + (V × B) · ∂

∂t
(V × B)

]
= 0. (18)

Here a subscript i on a vector quantity refers to the i component of that vector. Equation (18) is derived by using
Thorne & Macdonald (1982)

ϵ = {µρ0 − p(1 − V2)}γ2, S = µρ0γ
2V,

←→
W= µρ0γ2V ⊗ V + p

↔
γ (19)

in Evans, Smarr & Wilson (1986)

dϵ

dτ
+ θϵ +

1
2α

W ij(£tγij ) = − 1
α2

∇ · (α2S) +
1
α

(∇β) :
←→
W +E · j. (20)

Here ϵ, S,
←→
W ,

↔
γ , θ, β, ⊗ and £t represent the mass energy density, energy flux, stress tensor, the three metric

in absolute space, the expansion rate of the FIDO’s four-velocity, the shift vector, the tensor product and the time
derivative along shifting congruence (Lie derivative with respect to global time in a standard style). d

dτ ≡ 1
α

∂
∂t

is the rate of change of a three-dimensional vector which lies in the absolute space according to the FIDO. The
µ ≡ (ρ+ p)/ρo is the specific enthalpy of the fluid, where ρ is the total density of mass-energy and p is the pressure
as seen in the fluid’s rest frame. The ρo is the fluid’s rest-mass density and γ ≡ (1−V2)−1/2 is the fluid’s Lorentz
factor as seen by the FIDO’s. Equations (15)-(18) are the perfect GRMHD equations for the dS black hole.

We consider for ease the “isothermal plasma”(consider the existence of pressure), for which the equation of state
can be expressed as

µ =
ρ + p

ρ0
= constant. (21)
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Using (21) in (15)-(18) we get the perfect GRMHD for isothermal plasma close to the event horizon of dS black
hole. We characterize the perturbed flow in the magnetosphere by its velocity V and magnetic field B as measured
by the FIDO’s, pressure of the fluid p and the fluid’s density ρ. The first order perturbations in these quantities
are denoted by δV, δB, δp and δρ. Accordingly, the perturbed variables take the following form:

B = Bo + δB = Bo + Bb, V = Vo + δV = Vo + v, ρ = ρo + δρ = ρo + ρρ̃, p = po + δp = po + pp̃ (22)

where Bo, Vo, po and ρo are unperturbed quantities. The waves can propagate in z-direction due to gravitation
with respect to time t and thus perturbed quantities must depend on z and t.

IV. ROTATING MAGNETIZED SURROUNDINGS

We use the linear perturbation and Fourier analyze techniques to reduce GRMHD equations to ordinary dif-
ferential equations. The magnetosphere has the perturbed flow along x-z plane in this surroundings. The FIDO-
measured fluid four-velocity can be described in this plane by

V = V (z)ex + u(z)ez, (23)

while the Lorentz factor γ takes the form

γ =
1√

1 − u2 − V 2
. (24)

The rotating magnetic field can be expressed in the x-z plane as

B = B[λ(z)ex + ez]. (25)

The variables λ , u and V are related by

V =
VF

α
+ λu, (26)

where VF is an integration constant.
We use the perturbation variables which are defined as

ρ̃(t, z) = c1e
−i(ωt−kz), p̃(t, z) = c2e

−i(ωt−kz), vz(t, z) = c3e
−i(ωt−kz),

vx(t, z) = c4e
−i(ωt−kz), bz(t, z) = c5e

−i(ωt−kz), bx(t, z) = c6e
−i(ωt−kz) (27)

where c1, c2, c3, c4, c5 and c6 are arbitrary constants. Here k and ω are defined as the wave number and angular
frequency of the wave respectively.
Using linear perturbation (22), we write down the GRMHD equations (15)-(18) with the help of (21) in the following
form:

∂(δB)
∂t

= ∇× (αv × B) + ∇× (αV × δB), (28)

∇ · (δB) = 0, (29)

{(αV · ∇) + ∇ · (αV) + γ2V · (αV · ∇)V}(δρ + δp) + (ρ + p)γ2V · ∂v
∂t

−α(ρ + p)v · ∇lnu + α(ρ + p)(∇ · v) + 2(ρ + p)γ2(V · v)(αV · ∇)lnγ

+(ρ + p)γ2(αV · ∇V) · v + (ρ + p)γ2V · (αV · ∇)v +
∂(δρ + δp)

∂t
= 0, (30)
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{((ρ + p)γ2 +
B2

4π
)δij + (ρ + p)γ4ViVj −

1
4π

BiBj}
1
α

∂vj

∂t
+

1
4π

[B × {V × 1
α

∂(δB)
∂t

}]i

+(ρ + p)γ2vi,jV
j + (ρ + p)γ4ViV

jV kvj,k − 1
4πα

{(αδBi),j − (αδBj),i}Bj

= −γ2{(δp + δρ) + 2(ρ + p)γ2(V · v)}ai − (δp),i +
1

4πα
{(αBi),j − (αBj),i}δBj

−(ρ + p)γ4(viV
j + vjVi)Vk,jV

k − γ2{(δρ + δp)V j + 2(ρ + p)γ2(V · v)V j

+(ρ + p)vj}Vi,j − γ4Vi{(δρ + δp)V j + 4(ρ + p)γ2(V · v)V j + (ρ + p)vj}Vj,kV k, (31)

2
α

(ρ + p)γ4V · ∂v
∂t

− 2(ρ + p)γ4(V · v)(V · ∇)lnu + 6(ρ + p)γ6(V · v){V · (V · ∇)V}

+(ρ + p)γ4V · (v · ∇)V + 2(ρ + p)γ4V · (V · ∇)v + 2(δρ + δp)γ2V · a
+2(ρ + p)(V · v)(V · a) + (ρ + p)γ2(∇ · v) + (ρ + p)γ2v · a + γ2(V · ∇)(δρ + δp)

− 1
α

∂(δp)
∂t

− (ρ + p)γ2(v · ∇) lnu +
γ2

α

∂(δρ + δp)
∂t

+ 2(δρ + δp)γ4V · (V · ∇)V

+(δρ + δp)γ2(∇ · V) + 2(ρ + p)γ4(V · v)(∇ · V) +
1

4πα
[(V × B) · (∇× (αδB))

+(v × B) · (∇× (αB)) + (V × δB) · (∇× (αB)) + (V × B) ·
(
V × ∂(δB)

∂t

)
+(V × B) · (∂v

∂t
× B)] + 2(ρ + p)γ4v · (V · ∇)V = 0. (32)

The component form of (28)-(32) can be written as follows

∂bx

∂t
+ αubx,z = α′(vx − λvz + V bz − ubx)

+α(vx,z − λvz,z − λ′vz + V ′bz + V bz,z − u′bx), (33)

∂bz

∂t
+ αubz,z = 0, (34)

bz,z = 0, (35)

ρ
∂ρ̃

∂t
+ p

∂p̃

∂t
+ (ρ + p)(V

∂vx

∂t
+ u

∂vz

∂t
) + αuρρ̃,z + αupp̃,z + α(ρ + p){γ2V uvx,z

+(1 + γ2u2)vz,z} −
1
γ

(ρ̃ − p̃)(αuγp),z + α(ρ + p)γ2u{(1 + 2γ2V 2)V ′

+2γ2uV u′}vx − α(ρ + p){(1 − 2γ2u2)(1 + γ2u2)
u′

u
− 2γ4u2V V ′}vz = 0, (36)

{(ρ + p)γ2(1 + γ2V 2) +
B2

4π
} 1
α

∂vx

∂t
+ {(ρ + p)γ4uV − λB2

4π
} 1
α

∂vz

∂t

+{(ρ + p)γ2(1 + γ2V 2) − B2

4π
}uvx,z + {(ρ + p)γ4uV +

λB2

4π
}uvz,z

− B2

4πα
bx{α′(1 − u2) − αuu′} + (ρρ̃ + pp̃)γ2u{(1 + γ2V 2)V ′ + γ2uV u′}

+[(ρ + p)γ4u{(1 + 4γ2V 2)uu′ + 4V V ′(1 + γ2V 2)} +
B2uα′

4πα
]vx

+
[
(ρ + p)γ2[{(1 + 2γ2u2)(1 + 2γ2V 2) − γ2V 2}V ′

+2γ2(1 + 2γ2u2)uV u′] +
B2u

4πα
(λα)′

]
vz −

B2

4π
(1 − u2)bx,z = 0, (37)
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{(ρ + p)γ2(1 + γ2u2) +
λ2B2

4π
} 1
α

∂vz

∂t
+ {(ρ + p)γ4uV − λB2

4π
} 1
α

∂vx

∂t
+ {(ρ + p)

γ2(1 + γ2u2) − λ2B2

4π
}uvz,z + {(ρ + p)γ4uV +

λB2

4π
}uvx,z +

λB2

4π
(1 − u2)bx,z

+
B2

4πα
{−(αλ)′ + α′λ − uλ(αu)′}bx + (ρρ̃ + pp̃)γ2[az + u{(1 + γ2u2)u′ + γ2uV V ′}]

+[(ρ + p)γ4{u2V ′(1 + 4γ2V 2) + 2V (az + (1 + 2γ2u2))} +
λB2α′u

4πα
]vx + [(ρ + p)γ2

×{u′(1 + γ2u2)(1 + 4γ2u2) + 2uγ2{az + (1 + 2γ2u2)V V ′}} − λB2u

4πα
(αλ)′]vz = 0, (38)

γ2 ρ

α

∂ρ̃

∂t
+ (γ2 − 1)

p

α

∂p̃

∂t
+

B2

4πα
(uλ − V )(u

∂bx

∂t
− V

∂bz

∂t
+ λ

∂vz

∂t
− ∂vx

∂t
)

+(ρ + p)γ2[γ2 2
α

(V
∂vx

∂t
+ u

∂vz

∂t
) + 2γ2uV vx,z + (1 + 2γ2u2)vz,z]

+vz[(ρ + p)γ2{6γ2u2(uu′ + V V ′) + γ2(uu′ + V V ′) + az(1 + 2γ2u2)

−u′

u
+ 2γ2uu′} +

λB2

4πα
(αλ)′] + vx[(r + p)γ4{2uV az + 6γ2uV (uu′ + V V ′)

+2uV ′} − B2

4πα
(αλ)′] + ρ̃γ2[2pu{az + γ2(uu′ + V V ′)} + ρ′u + ρu′]

+p̃γ2[2ρu{az + γ2(uu′ + V V ′)} + p′u + pu′] + γ2u(ρρ̃,z + pp̃,z)

+
B2

4πα
{−(αλ)′bzV + (αλ)′bxu + (uλ − V )(αbx,z + α′bx)} = 0. (39)

From the Fourier analyzed of (33)-(39) with (27) we obtain

−c3{(αλ)′ + ikαλ} + c4(α′ + ikα) − c6{(αu)′ − iω + ikαu} = 0, (40)

c5(−
iω

α
+ iku) = 0, (41)

ikc5 = 0, (42)

c1{ρ(−iω + ikuα) − α′up − αu′p − αup′ − αupγ2(uu′ + V V ′)}
+c2{ρ(−iω + ikuα) + α′up + αu′p + αup′ + αupγ2(uu′ + V V ′)} + c3(ρ + p)

×
[
−iωγ2u + ikα(1 + γ2u2) − α{(1 − 2γ2u2)(1 + γ2u2)

u′

u
− 2γ4u2V V ′}

]
+c4(ρ + p)γ2[(−iω + ikαu)V + αu{(1 + 2γ2V 2)V ′ + 2γ2uV u′}] = 0, (43)

c1ργ2u{(1 + γ2V 2)V ′ + γ2uV u′} + c2pγ2u{(1 + γ2V 2)V ′ + γ2uV u′}

+c3[−{(ρ + p)γ4uV − λB2

4π
} iω

α
+ iku{(ρ + p)γ4uV +

λB2

4π
} + (ρ + p)γ2

{{(1 + 2γ2u2)(1 + 2γ2V 2) − γ2V 2}V ′ + 2γ2(1 + 2γ2u2)uV u′} +
B2u

4πα
(αλ)′]

+c4[−{(ρ + p)γ2(1 + γ2V 2) +
B2

4π
} iω

α
+ iku{(ρ + p)γ2(1 + γ2V 2) − B2

4π
}

+(ρ + p)γ4u{(1 + 4γ2V 2)uu′ + 4(1 + γ2V 2)V V ′} − B2uα′

4πα
]

−c6
B2

4π
{ik(1 − u2) + (1 − u2)

α′

α
− uu′} = 0, (44)
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c1γ
2ρ[az + u{(1 + γ2u2)u′ + γ2V uV ′}] + c2[γ2p{az + u{(1 + γ2u2)u′ + γ2uV V ′}}

+ikp + p′] + c3[−
iω

α
{(ρ + p)γ2(1 + γ2u2) +

λ2B2

4π
} + iku{(ρ + p)γ2(1 + γ2V 2)

−λ2B2

4π
} + {(ρ + p)γ2{u′(1 + γ2u2)(1 + 4γ2u2) + 2uγ2{(1 + 2γ2u2)V V ′ + az}}

−(αλ)′
λB2u

4πα
}] + c4[−

iω

α
{(ρ + p)γ4uV − λB2

4π
} + iku{(ρ + p)γ4uV +

λB2

4π
}

+{γ4(ρ + p){u2V ′(1 + 4γ2V 2) + 2V {az + uu′(1 + 2γ2u2)}} +
λB2α′u

4πα
}]

+c6
B2

4π
{ikλ(1 − u2) + λ(1 − u2)

α′

α
− λuu′ +

(αλ)′

α
} = 0, (45)

c1γ
2[ρ(− iω

α
+ iku) + 2ρu{az + γ2(uu′ + V V ′)} + ρu′ + ρ′u]

+c2[p{
−iω

α
(γ2 − 1) + ikγ2u} + 2ργ2u{az + γ2(uu′ + V V ′)} + pγ2u′ + p′γ2u]

+c3[(ρ + p){−2γ4u
iω

α
+ ikγ2(1 + 2γ2u2) − γ2 u′

u
+ 6γ6u2(uu′ + V V ′)

+γ4(uu′ + V V ′) + 2γ4uu′ + γ2az(1 + 2γ2u2)} +
B2

4πα
{λ(αλ)′ − u(αλ)′(uλ − V )

−iλ(uλ − V )(ω + kuα)}] + c4[2γ4(ρ + p){V (− iω

α
+ iku)

+{3γ2uV (uu′ + V V ′) + uV ′ + uV az}} +
B2

4πα
{−(αλ)′ + α′u(uλ − V ) + i(ω + kuα)

×(uλ − V )}] + B2

4πα
c6[u(αλ)′ + {α′ − u(αu)′ + ik(1 − u2)}(uλ − V )] = 0. (46)

From (41) or (42) we obtain c5 is zero which gives bz = 0. Equating the determinant of the coefficients of c1, c2,
c3, c4 and c6 of (40), (43)-(46) to zero, we get a complex dispersion relation of the form

A1(z, ω)k4 + B1(z, ω)k3 + C1(z, ω)k2 + D1(z, ω)k + E1(z, ω) + i{A2(z, ω)k5

+B2(z, ω)k4 + C2(z, ω)k3 + D2(z, ω)k2 + E2(z, ω)k + F2(z, ω)} = 0 (47)

We investigate the different types of modes of waves when B > 0 and the wave number is in arbitrary direction

to B. We use the lapse function α = z
2rh

where rh = ℓ(=
√

3
Λ ), Λ is a positive constant (Rahman & Al, 2008). Here

we consider a black hole of mass M ∼ 1M⊙ (Buzzi, Hines & Treumann, 1995a). From the mass conservation law
in three-dimensions we get u = 1√

2+z2 . For simplicity, we also assume that u = V , ρ = 1 and B2 = 8π. We obtain

λ = 1 −
√

2+z2

z by taking VF = 1 from (26), which shows that the magnetic field diverges close to the horizon.
Using these values in the dispersion relation we get values for k, from which we plot surfaces for the wave number

k, the phase velocity vp ≡ ω
k , group velocity vg ≡ (n + ω dn

dω )−1 (n(= 1/vp) is the refractive index), and dn
dω , which

determines whether the dispersion is normal or not.
We get four real values of k from the real part of (47). Out of these two are real and interesting. The other two

values are not interesting in the judgment that these turn out to be imaginary in the whole region. The imaginary
part of (47) gives five values of k, out of which one is real but not interesting and others are complex conjugate.
The two dispersion relations obtained from the real part are shown in the Fig. 1 and Fig. 2.

The Fig. 1 implies that the wave number is infinite at the event horizon (z = 0) due to immense gravitational
field and the wave number takes also negative values. The wave number decreases as we go away from the horizon.
Hence we observe the damping modes in that direction. The phase and group velocities are also negative (for some
values of z and ω) and the phase velocity is greater than the group velocity for some region. Since dn

dω < 0 and k,
vp, vg are negative, the region is of anomalous dispersion and the medium has the properties of metamaterials.
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We see from Fig. 2 that the waves gain energy with the increase in angular frequency but lose when we move
from the horizon and hence damping modes arise in this direction. But in the vicinity of the horizon the wave
number is very large because of strong gravitational field, so no wave exists there. The phase and group velocities
increase as we depart from the horizon. The group velocity is greater than the phase velocity. The group velocity
is negative in some region. Since dn

dω ≤ 0 in most region, the dispersion is anomalous here.

V. ROTATING NON-MAGNETIZED SURROUNDINGS

In non-magnetized surroundings B = 0. Then (40)-(46) reduce to

c1{(−iω + iαku)ρ − α′up − αu′p − αup′ − αγ2up(V V ′ + uu′)}
+c2{(−iω + iαku)p + α′up + αu′p + αup′ + αγ2up(V V ′ + uu′)}

+c3(ρ + p)
[
−iωγ2u + ikα(1 + γ2u2) − α{(1 − 2γ2u2)(1 + γ2u2)

u′

u
− 2γ4u2V V ′}

]
+c4(ρ + p)

[
iγ2V (−ω + kαu) + αγ2u{(1 + 2γ2V 2)V ′ + 2γ2uV u′}

]
= 0, (48)
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Fig. 1.— The region shows anomalous dispersion. k, vp, vg and dn
dω < 0, the medium has the properties of metama-

terials

c1ργ2u{(1 + γ2V 2)V ′ + γ2uV u′} + c2pγ2u{(1 + γ2V 2)V ′ + γ2uV u′}

+c3(ρ + p)γ2

[
γ2uV (

−iω

α
+ iku) + {(1 + 2γ2V 2)(1 + 2γ2u2)
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−γ2V 2}V ′ + 2γ2uV u′(1 + 2γ2u2)
]
+ c4(ρ + p)γ2[

(1 + γ2V 2)(
−iω

α
+ iku) + γ2u{(1 + 4γ2u2)uu′ + 4(1 + γ2V 2)V V ′}

]
= 0, (49)

c1ργ2{az + uu′(1 + γ2u2) + γ2u2V V ′} + c2[ργ2{az + uu′(1 + γ2u2) + γ2u2V V ′}

+p′ + ikp] + c3(ρ + p)γ2

[
(1 + γ2u2)(− iω

α
+ iku) + u′(1 + γ2u2)(1 + 4γ2u2)

+2uγ2{(1 + 2γ2u2)V V ′ + az}
]
+ c4(ρ + p)γ4

[
iuV (−ω

α
+ ku)

+u2V ′(1 + 4γ2u2) + 2V {(1 + 2γ2u2)uu′ + az}
]

= 0, (50)

c1

[
iργ2(−ω

α
+ ku) + 2ργ2u{az + γ2(uu′ + V V ′)} + ργ2u′ + ρ′γ2u

]
+c2

[
p{−iω

α
(γ2 − 1) + ikγ2u} + 2pγ2u{az + γ2(uu′ + V V ′)} + pγ2u′ + p′γ2u

]
+c3(ρ + p){−2γ4u

iω

α
+ iγ2k(1 + 2γ2u2) − γ2 u′

u
+ 6γ6u2(uu′ + V V ′)

+γ4(uu′ + V V ′) + 2γ4uu′ + γ2az(1 + 2γ2u2)} + c4(ρ + p)

×
[
2iγ4V (−ω

α
+ ku) + 2γ4{3γ2uV (uu′ + V V ′) + uV ′ + uV az}

]
= 0. (51)

where the FIDO-measured fluid four-velocity V, Lorentz factor γ are given by (23) and (24) respectively. The
determinant of the coefficients of c1, c2, c3 and c4 in (48)-(51) yields a complex dispersion relation of the form

A1(z, ω)k4 + B1(z, ω)k3 + C1(z, ω)k2 + D1(z, ω)k + E1(z, ω)

+i[A2(z, ω)k3 + B2(z, ω)k2 + C2(z, ω)k + D2(z, ω)] = 0 (52)

To analyze the numerical solution mode we take the same assumption as previous case. From the real part of
(52) we get only two real values of k which are shown in the Fig. 3 and Fig. 4. The imaginary part gives only one
real value of k shown in Fig. 5.

We see from the Fig. 3 that the wave number is huge large close to the event horizon and the waves lose energy
as we go away from the event horizon of dS black hole. This shows that the increase in ω increases k and the waves
are in growing mode as z decreases. The group and phase velocities admit the same pattern. Since dn

dω < 0, the
region is not of normal dispersion.

The Fig. 4 shows that the wave number k decreases as z increases i.e. the waves are growing energy with
increase in ω and decrease in z but damping occurs when z raises. So waves drop energy when we depart from
event horizon. At the event horizon , we see that the wave number turns into infinite which means that the waves
disappear due to the effect of immense gravity. The phase velocity is greater than the group velocity and these are
negative in some region. Since k, vp, vg < 0 and dn

dω ≤ 0 for some region, the dispersion is not normal.
We see from Fig. 5 that the wave number is directly proportional to angular frequency but inversely proportional

to the distance from the event horizon. The waves gain energy with the increase in angular frequency but lose when
we move from the horizon and hence damping modes occur in this direction. But in the vicinity of the horizon,
the wave number is very large due to strong gravitational field, so no real wave exists there. The phase and group
velocities admit the same behavior excepts for a few point. Since dn

dω ≤ 0, the dispersion is not normal in this
region.

VI. NON-ROTATING MAGNETIZED/NON-MAGNETIZED SURROUNDINGS

The magnetosphere has the perturbed flow only along z-axis in non-rotating surroundings. For this case, (40)-
(46) reduce to

− iω

α
c5 = 0 (53)
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Fig. 2.— The region shows anomalous dispersion. vp < vg and dn
dω ≤ 0 in most region

−ikc5 = 0 (54)

c1{−iρω + ikραu + (uαp)′ − αu2γ2pu′} + c2{−ipω + ikpαu − (uαp)′ + αu2γ2pu′}

+c3(ρ + p)
{

ikα(1 + γ2u2) − α(1 − 2γ2u2)(1 + γ2u2)
u′

u
− iωγ2u

}
= 0, (55)

c1ργ2{az + uu′(1 + γ2u2)} + c2[ργ2{az + uu′(1 + γ2u2)} + ikp + p′] + c3(ρ + p)γ2

×
[
(1 + γ2u2)

(
− iω

α
+ iuk

)
+ {u′(1 + γ2u2)(1 + 4γ2u2) + 2γ2uaz}

]
= 0, (56)

c1

{
iργ2

(
−ω

α
+ uk

)
+ γ2uρ′ + 2ργ2uaz + ρ(1 + γ2u2)γ2u′

}
+c2

{
− iω

α
p(γ2 − 1) + ikγ2up + γ2up′ + 2γ2upaz + p(1 + 2γ2u2)γ2u′

}
+c3(ρ + p)γ2

{
−2iω

α
γ2u + (ik + 3γ2uu′ + az)(1 + 2γ2u2) − u′

u

}
= 0 (57)

where FIDO-measured fluid four-velocity V = u(z)ez, Lorentz factor γ = 1√
1−u2 and FIDO-measured magnetic

field B = B(z)ez.
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Fig. 3.— The region shows not normal dispersion. Phase and group velocities are same and dn
dω < 0

It follows from (53) or (54) that c5 is zero; hence, there is no perturbation occurring in magnetic field of the
fluid. Therefore we also get the same equations for non-rotating non-magnetized surroundings. The determinant
of the coefficients of c1, c2 and c3 in (55)-(57) we get a dispersion relation of form

A1(z, ω)k2 + B1(z, ω)k + C1(z, ω) + i[A2(z, ω)k3 + B2(z, ω)k2 + C2(z, ω)k + D2(z, ω)] = 0 (58)

Now we analyze the numerical solution mode for this case. We investigate the longitudinal waves propagating
parallel to the magnetic field B. From the mass conservation law we get u = 1/

√
1 + z2. From the real part of (58)

we get only one distinct real value of k which is shown in the Fig. 6. The imaginary part gives only one real of k

shown in Fig. 7.
We observe from the Fig. 6 that the wave number is infinite at z = 0 and hence no wave exists there. The wave

number decreases as we depart from the event horizon. The waves show damping modes for increasing z. The
increase in ω increases k. The phase and group velocities have almost same behavior in this region. Since dn

dω < 0,
the region is not of normal dispersion.

Fig. 7 shows that the wave number becomes very large and hence there exists no real wave very close to event
horizon. The waves are gaining energy with the increase in ω but losing with the increase of the distance from the
event horizon. Here phase velocity is greater than the group velocity and group velocity is negative for some values
of z and ω. Since dn

dω < 0 for most region, the region is not of normal dispersion.
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Fig. 4.— The region shows not normal dispersion for dn
dω ≤ 0 and phase velocity is greater than group velocity. k,

vp and vg are negative for some region

VII. OUTLOOK AND DISCUSSIONS

This study is dedicated completely to analyze wave properties of the isothermal plasma in the dS black-hole’s
magnetosphere by using the TPM 3 + 1 formalism. To do this we derive the GRMHD equations considering
linear perturbations in perfect MHD flow with its planar analogue. These equations are then explicitly written in
component form and then Fourier analyzed for simple harmonic waves. We considered non-rotating and rotating
surroundings (either non-magnetized or magnetized).

From the determinants of the coefficients of Fourier analyzed equations we get wave numbers by solving the
complex dispersion relations. The properties of plasma are concluded on the basis of the wave number and the
relevant quantities are obtained in graphical form. For all the cases we find out that, the wave number becomes
very large at the event horizon and consequently no wave is present there due to immense gravitational field. But
when we depart from horizon, the waves lose energy. For most cases the waves are in damping mode as we go away
from the horizon and in growing mode as we go close to the horizon.

For rotating magnetized surroundings, we also find region with negative wave number, phase velocity, group
velocity, and dn

dω which implies that the region has all the characteristics of metamaterials (Fig.1). But Fig. 2
shows anomalous dispersion. In the case of rotating non-magnetized surroundings we find the cases which are not
normally dispersive shown in Figs. 3, 4, 5. Our outcomes comply with the result of Mackay et al. (Buzzi, Hines
& Treumann, 1995b) according to which negative phase velocity exists for the case of rotating surroundings. For
non-rotating surroundings, we observe that the magnetospheric fluid does not disperse normally (Figs. 6, 7). This
implies that the surroundings pressure ceases normal dispersion of waves.
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Fig. 5.— The region shows not normal dispersion. Phase and group velocities are same excepts for a few points,
dn
dω < 0

We do not discuss the complex solutions of the dispersion relation since these show little significance compared
to those which have been discussed. Our derived dispersion relations are dissimilar with the usual MHD dispersion
relations because we use the 3+1 TPM formalism and the factor of acceleration (depend on lapse function and
equals to −g)

According to recent astronomical observations, it has been suggested that our universe will asymptotically
approach a de Sitter space (Sakai & Kawata, 1980). Hence, aspects of the de Sitter space might be of interest in a
broader context. We feel that our study of dispersion of isothermal plasma in the de Sitter space is well encouraged.
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