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The main aim of this work is to show that such a powerful optimizing tool like evolutionary algorithms (EAs) can be in reality used
for the simulation and optimization of a nonlinear system. A nonlinear mathematical model is required to describe the dynamic
behaviour of batch process; this justifies the use of evolutionary method of the EAs to deal with this process. Four algorithms
from the field of artificial intelligent—differential evolution (DE), self-organizing migrating algorithm (SOMA), genetic algorithm
(GA), and simulated annealing (SA)—are used in this investigation. The results show that EAs are used successfully in the process
optimization.

1. Introduction

Evolutionary computation (EC) techniques, which are based
on a powerful principle of evolution: survival of the fittest,
constitute an interesting category of heuristic search. Evo-
lutionary computation techniques are stochastic algorithms
whose search methods model some natural phenomena:
genetic inheritance and Darwinian strive for survival. The
best known algorithms in this class include genetic algo-
rithms, evolutionary programming, evolution strategies, and
genetic programming. There are also many hybrid systems
which incorporate various features of the above paradigms
and consequently are hard to classify; anyway, we refer to
them just as evolutionary computation methods [1].

In computer science, evolutionary computation is a
subfield of artificial intelligence that involves combinatorial
optimization problems.

Nowadays, Optimization is one of these words which is
used almost every day in different fields of human activities.
Everybody wants to maximize profit and minimize cost. This
means optimizing in every task of industry, transportation,
medicine, everywhere. For these purposes, we need to
have suitable tools which are able to solve very difficult

and complicated problems. As previous years proved, use
of artificial intelligence and soft computing contribute to
improvements in a lot of activities. One of such tools of soft
computing are evolutionary algorithms [2].

In this paper, the modeling of a dynamic chemical en-
gineering process is presented in a highly understandable
way using a unique combination of the simplified funda-
mental theory and direct hands-on computer simulation.
A nonlinear mathematical model is required to describe
the dynamic behaviour of batch process; this justifies the
use of evolutionary method of the EAs to deal with this
process, for static optimization of a chemical batch reactor.
Consequently, it is used to design geometry technique
equipments for chemical reaction. The method was used to
optimize the design of the growth chamber and was found to
be in good agreement with the observed growth rate results.

Here, EAs were used to investigative and optimize batch
reactor to improve its parameters. Consequently, EAs are
used to model the technical requirements for chemical re-
action. The optimized reactor was used in a simulation with
optimization by evolutionary algorithms, and the results are
presented in graphs.
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ṁFK, TFK, CFK
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Figure 1: Batch reactor.

Research on this work is concerned with the field of op-
timization of chemical engineering through EAs. The main
purposes and goals of the research can be summarized as
thus:

(i) description and analysis of the chosen dynamic sys-
tem more concretely those in the processes of a batch
reactor,

(ii) proposing a set of solving algorithms for the applica-
tion of stochastic optimization, which enhances con-
fidence in the optimization results, particularly in the
chemical reaction,

(iii) selecting and demonstrating EAs and practical meth-
od to optimize the chemical process, especially of
batch reactor,

(iv) demonstrating the use of designed algorithms for
global optimization of the chemical process and com-
parison between each selected algorithm, and

(v) presenting conclusions and suggesting further re-
search perspective.

2. Description of a Reactor

This work uses a mathematical model of a reactor shown in
Figure 1. The vessel with a double side for cooling medium is
further equipped with stirrer for mixing reaction mixtures.

Reactor includes two physical inputs. First input denoted
“input chemical FK” that substances into reaction with mass
flow rate ṁFK, temperature TFK, and specific heat cFK. Second
input denoted “input cooling medium” that water drain into
the reactor double side with mass flow rate ṁV , temperature
TVP, and specific heat cV . This coolant further traverses
among-jacketed through space of reaction, and its total
weight in this space is mVR. Coolant after that gets off the
exit reaction denoted “output cooling medium” about mass
flow rate ṁV , temperature TV , and specific heat cV . At the
beginning of the process, there is an initial batch inside the
reactor with parameter mass mP . Reaction mixture then has
total mass m, temperature T , and specific heat cR and stirs till
the time chemicals FK described by parameter concentration
aFK.

2.1. Nonlinear Model of Reactor. Description of the reactor
applies a system of four balance equations. The first one ex-
presses a mass balance of reaction mixture inside the reactor,
the second a mass balance of the chemical FK, and the last
two formulate enthalpic balances, namely, balances of reac-
tion mixture and cooling medium. Equation (1), which for
simplified notation of basic equations (2), is represented by
term “k” as follows:

ṁFK = m
′[t], (1)

ṁFK = m[t]a′FK[t] + km[t]aFK[t],

ṁFKcFKTFK + ∆Hrkm[t]aFK[t] = KS(T[t]− TV [t])

+m[t]cRT′[t],

ṁV cVTVP + KS(T[t]− TV [t]) = ṁV cVTV [t]

+mVRcVT
′
V [t],

k = Ae−E/RT[t].

(2)

After modification into the standard form, the balance equa-
tions are obtained in the form (3):

m
′[t] = ṁFK,

a
′
FK[t] =

ṁFK

m[t]
− Ae−E/RT[t]

aFK[t],

T′[t] =
ṁFKcFKTFK

m[t]cR
+

Ae−E/RT[t]∆HraA[t]

cR

−
KST[t]

m[t]cR
+
KSTV [t]

m[t]cR
,

T
′
V [t] =

ṁVTVP

mVR
+
KST[t]

mVRcV
−

KSTV [t]

mVRcV
−

ṁVTV [t]

mVR
.

(3)

The design of the reactor was based on standard chemical-
technological methods and gives a proposal of reactor physi-
cal dimensions and parameters of chemical substances. These
values are called in this participation expert parameters. The
objective of this part of the work is to perform a simulation
and optimization of the given reactor.

Therefore, into system equations (3) were instated con-
stants:

A = 219,588 s−1, E = 29967,5087 J·mol−1, R =

8,314 J·mol−1·K−1, cFK = 4400 J·kg·K−1, cV = 4118 J·kg·K−1,
cR = 4500 J·kg·K−1, ∆Hr = 1392350 J·kg−1, K =

200 kg·s−3·K−1.
Next parameters, which are important for calculations, are

(i) geometric dimension of the reaction: r[m], h[m],

(ii) density of chemicals: ρP = 1203 kg·m−3, ρFK =

1050 kg·m−3,

(iii) stoichiometric rate chemical: mP = 2,82236·mFK.

2.2. Mathematical Problems. This optimization was found by
optimized parameters with one another linked, which in-
cludes heat transfer surface, volume, and mass mixtures of
reaction. Heat transfer surface S has the relation:

S = 2πrh + πr2, (4)
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where r is radius and h is height of the space reactor (see
Figure 1).

Volume of vessel of rector applies to the relation:

V = πr2
h. (5)

Total mass of mixtures in the reaction mass mP and mass
input chemical FK mFK, is:

m = mP + mFK. (6)

The stechiometric ratio is given by

mP = 2, 82236mFK. (7)

Total volume of mixtures in the reaction equals sum of
volume initial mixtures in the reaction and volume of FK:

V = VP + VFK =
mP

ρP
+
mFK

ρFK
. (8)

The relationship between the optimized volume of reactor
and the mass of added chemical FK is given by (8). Then
substituting to (7) gives the mass of the initial batch in the
reactor:

mFK =
ρPρFKV

2, 82236ρFK + ρP
. (9)

In this example, the optimization was then added parameter
thickness d of vessel, which has relation that is

mVR = ρVSd. (10)

To minimize the area arising as a difference between the re-
quired and real-temperature profile of the reaction mixture
in a selected time interval, which was the duration of a batch
cycle? The required temperature is 97◦C (370.15 K). The cost
function that is minimized gives:

fcos t =

t
∑

t=0

|w − T[t]|. (11)

3. Methods and Evolutionary Algorithms

3.1. Introduction and Using Evolutionary Algorithms. As the
history of the field suggests, there are many different variants
of evolutionary algorithms. The common underlying idea
behind all these techniques is the same: given a population
of individuals, the environmental pressure causes natural
selection (survival of the fittest) and this causes a rise in
the fitness of the population. Given a quality function to
be maximized, we can randomly create a set of candidate
solutions, that is, elements of the function’s domain, and
apply the quality function as an abstract fitness measure—
the higher the better. Based on this fitness, some of the better
candidates are chosen to seed the next generation by applying
recombination and/or mutation to them. Recombination is
an operator applied to two or more selected candidates (the
so-called parents) and results in one or more new candidates

(the children). Mutation is applied to one candidate and
results in one new candidate. Executing recombination and
mutation leads to a set of new candidates (the offspring) that
compete—based on their fitness (and possibly age)—with
the old ones for a place in the next generation. This process
can be iterated until a candidate with sufficient quality (a
solution) is found or a previously set computational limit is
reached. In this process there are two fundamental forces that
form the basis of evolutionary systems.

Variation operators (recombination and mutation) cre-
ate the necessary diversity, and thereby, facilitate novelty,
while Selection acts as a force pushing quality.

The combined application of variation and selection gen-
erally leads to improving fitness values in consecutive pop-
ulations. It is easy (although some-what misleading) to see
such a process as if the evolution is optimising, or at least
“approximising,” by approaching optimal values closer and
closer over its course. Alternatively, evolution is often seen as
a process of adaptation. From this perspective, the fitness is
not seen as an objective function to be optimised, but as an
expression of environmental requirements. Matching these
requirements more closely implies an increased viability,
reflected in a higher number of offspring. The evolutionary
process makes the population adapt to the environment
better and better.

Let us note that many components of such an evolution-
ary process are stochastic. During selection fitter individuals
have a higher chance to be selected than less fit ones, but
typically even the weak individuals have a chance to become
a parent or to survive. For recombination of individuals
the choice of which pieces will be recombined is random.
Similarly, for mutation, the pieces that will be mutated within
a candidate solution, and the new pieces replacing them, are
chosen randomly. The general scheme of an evolutionary
algorithm is given in Pseudocode 1 in a pseudocode fashion
[3, 4].

Evolutionary algorithms are a group of algorithms which
use their special operators as mutation, crossover, and others
to find an ideal solution. Possible candidates are defined
by a cost function in which arguments are values of each
solution. The best one is in the global extreme—maximum
or minimum [2].

These evolutionary algorithms have been known for dec-
ades and live through the advancement from the weaker
ones to more robust ones which are used with success in
a lot of tasks nowadays. Since their first appearance, there
is quite long queue of representatives: genetic algorithms,
differential evolution, self-organizing migrating algorithm,
particle swarm intelligence, ant Colony optimization, and
artificial immune system. In optimization, algorithms belong
also to some stochastic and deterministic ones: hill climbing,
simulated annealing, Monte Carlo, and a lot of others or their
mutations. These techniques promise fast optimization com-
pared to classical mathematical approach. On the other hand,
also between these optimization techniques it is possible to
find better and worse. Their behaviour was described in a lot
of references. And the research in this area is still full of white
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BEGIN

INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

END

Pseudocode 1: The general scheme of an evolutionary algorithm in pseudocode.

places. There is wide field of possible applications as tuning
of parameters, making of comparisons, trying to find new
ones somehow [5].

Optimization algorithms—mainly evolutionary algo-
rithms—are a necessary part of the above-described tools
and can be used independently. Here, an overview only of
algorithms, which were used in further simulations, will be
given.

Division of optimization algorithms might be as follows
(Figure 2). This is not the only one point of view on that [2].

3.2. A Brief Survey of Scoping and Screening Chemical Reac-
tion Networks Using Stochastic Optimization. Many methods
were adapted for the so-called optimal chemical reactor.
From the research article of Marcoulaki and Kokossis [6]
introduced about a brief survey of scoping and screening
chemical reaction networks using stochastic optimization.
The new methods focus on a systematic and thorough con-
sideration of the available options and employ technology in
the form of superstructures, optimization techniques, and a
variety of graphical methods.

The importance of mathematical methods in optimiz-
ing reactor has been exemplified early enough with the
application of dynamic programming for the estimation of
optimal operating conditions in CSTR cascades [7] and the
development of graphical techniques for single reversible
reactions in PFRs (1961).

Around the same time, a set of brilliant contributions by
Horn [8] provided the basis of material that later emerged
as attainable-region (AR) approaches. Dyson and Horn
[9] developed graphical tools for optimal temperature
control schemes, feed distribution profiles along a PFR,
and catalyst minimization problems [10]. In these early
days, separate groups made attempts to consolidate options
and alternatives within comprehensive reactor structures
[11–13]. Optimization approaches initially addressed fixed
reactor structures. Examples include the work of Paynter
and Haskins [14] and Chitra and Govind [15–17]. The first
studies of comprehensive structures should be attributed

to Achenie and Biegler [18–20], who employed existing
representations [11, 12] to launch optimization techniques
in the form of NLP methods.

Kokossis and Floudas [21–23] first introduced the idea
of a reactor network superstructure modeled and optimized
as an MINLP formulation. Though general and inclusive,
their representation did not follow previous developments,
but made an effort to facilitate the functionalities of the
MINLP technology with the synthesis objectives. Mainly to
scope, optimize, and analyze the reaction process, Kokossis
and Floudas replaced detailed models with simple though
generic structures, enough to screen for design options and
estimate the limiting performance of the reaction system. In
the same vane, dynamic components have been replaced by
CSTR cascades. A superstructure of generic elements (ideal
CSTRs and PFRs) was postulated to account for all possible
interconnections among the units. The representation was
modeled and optimized as a MINLP model.

Though fundamental limitations appear evident, persis-
tent efforts to extend the graphical methods have appeared in
the literature [24–30].

A more promising direction has been pursued by Biegler
and coworkers. The motivation has been to instill better
guarantees in the optimization efforts by exploiting ideas and
rules established in the construction of the AR. Applications
presented in this area include the work by Balakrishna
and Biegler [31, 32] and Lakshmanan and Biegler [33–35]
and involved mathematical programming applications in the
form of NLP and MINLP formulations. Optimal control
formulation has been presented by Rojnuckarin et al. [36]
and Schweiger and Floudas [37]. Hildebrandt and Biegler
[38] presented a review of the attainable region approaches
and suggested areas for future development of the concept.

Especially in recent years, the methods of artificial in-
telligence, namely, the evolutionary algorithms, were used
to optimise successfully chemical processes. Evolutionary
algorithms have been applied to the solution of NLP in
many engineering applications. The best-known algorithms
in this class include genetic algorithms (GA), evolutionary
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programming (EP), evolution strategies (ES), and genetic
programming (GP). There are many hybrid systems, which
incorporate various features of the above paradigms and
consequently are hard to classify, which can be referred just
as EC methods, Dasgupta and Michalewicz [39]. They differ
from the conventional algorithms since, in general, only the
information regarding the objective function is required.

In recent years, EC methods have been applied to a broad
range of activities in process system engineering including
modeling, optimization, and control. See, for example, real-
time control of plasma reactor [40–42], optimization of re-
active distillation processes using self-organizing migrating
algorithm and differential evolution strategies [43], using
method of artificial intelligence to optimise and control
chemical reactor [44], investigation on optimization of proc-
ess parameters and chemical reactor geometry by evolution-
ary algorithms [44], or an optimum solution for a process
control problem (continuous stirred tank reactor) using a
hybrid neural network [45].

4. Select Evolutionary Algorithms

For the experiments described here, stochastic optimisation
algorithms, such as differential evolution (DE) [46], self-
organizing migrating algorithm (SOMA) [47, 48], genetic
algorithms (GA) [49], and simulated annealing (SA) [50,
51] were selected. Main reason why DE, SOMA, GA, and
SA have been seed comes from contemporary state in
chemical engineering and EAs use. Since now has been done
some research with attention on use of EAs in chemical
engineering optimization, including DE. This participation
has to show that applicability of relatively new algorithms
is also positive and can lead to applicable results, as was
shown, for example, in Zelinka [2], which has been done
under the 5th EU project RESTORM (acronym of Rad-
ically Environmentally Sustainable Tannery Operation by
Resource Management), and main aim was to use EAs in
chemical engineering processes. True is also that there is a
plenty of other heuristic like particle swarm [52], scatter
search [53], memetic algorithms, simulated annealing [50],
and according to no free lunch theorem [54] is clear that
each heuristic would be less or more applicable on example
presented here. SOMA is a stochastic optimization algorithm
that is modelled on the social behaviour of cooperating
individuals [47, 48]. It was chosen because it has been proved
that the algorithm has the ability to converge towards the
global optimum [47, 48]. GA is one of the most modern
paradigms for general problem solving. Genetic algorithms
are more robust than existing directed search methods.
Another important property of GA-based search methods
is that they maintain population of potential solutions—all
other methods process a single point of the search space like
hill climbing method. Hill climbing methods provide local
optimum values, and these values depend on the selection of
the starting point. Also there is no information available on
the relative error with respect to global optimum. To increase
the success rate in the hill climbing method, it is executed for
large number of randomly selected different starting points.

On the other hand, GA is a multidirectional search maintain-
ing a population of potential solutions and encourages infor-
mation formation and exchange between these directions.
Furthermore, SA is a generic probabilistic meta-algorithm
for the global optimization problem, namely, locating a good
approximation to the global optimum of a given function in a
large search space. SA has been used in various combinatorial
optimization problems and has been particularly successful
in circuit design problems (see [50]).

4.1. Differential Evolution (DE). Differential evolution [46]
is a population-based optimization method that works on
real-number-coded individuals. For each individual xi,G in
the current generation G, DE generates a new trial individual
x′i,G by adding the weighted difference between two randomly
selected individuals xr1,G and xr2,G to a third randomly
selected individual xr3,G. The resulting individual x′i,G is
crossed over with the original individual xi,G. The fitness
of the resulting individual, referred to as perturbated vector
ui,G+1, is then compared with the fitness of xi,G. If the fitness
of ui,G+1 is greater than the fitness of xi,G, xi,G is replaced with
ui,G+1; otherwise, xi,G remains in the population as xi,G+1.
Deferential evolution is robust, fast, and effective with global
optimization ability. It does not require that the objective
function is differentiable, and it works with noisy, epistatic,
and time-dependent objective functions (see Pseudocode 2).

There are some versions for optimization by mean dif-
ferential evolution, and two standard versions of DE, con-
cretely DERand1Bin, and DERand2Bin were chosen for op-
timization of chemical reactor.

4.2. Self-Organizing Migrating Algorithm (SOMA). SOMA is
a stochastic optimization algorithm that is modelled on the
social behaviour of co-operating individuals [47, 48]. It was
chosen because it has been proved that the algorithm has
the ability to converge towards the global optimum [47, 48].
SOMA works on a population of candidate solutions in
loops called migration loops. The population is initialized
randomly distributed over the search space at the beginning
of the search. In each loop, the population is evaluated, and
the solution with the highest fitness becomes the leader L.
Apart from the leader, in one migration loop, all individ-
uals will traverse the input space in the direction of the
leader. Mutation, the random perturbation of individuals,
is an important operation for evolutionary strategies (ES).
It ensures the diversity amongst the individuals, and it
also provides the means to restore lost information in a
population. Mutation is different in SOMA compared with
other ES strategies. SOMA uses a parameter called PRT to
achieve perturbation. This parameter has the same effect for
SOMA as mutation has for GA. The PRT vector defines the
final movement of an active individual in search space.

The randomly generated binary perturbation vector con-
trols the allowed dimensions for an individual. If an element
of the perturbation vector is set to zero, then the individual
is not allowed to change its position in the corresponding
dimension. An individual will travel a certain distance (called
the path length) towards the leader in n steps of defined



6 Modelling and Simulation in Engineering

1. Input: D,Gmax,NP ≥ 4,F ∈ (0, 1+),CR ∈ [0, 1], and initial bounds: �x(lo),�x(hi).

2. Initialize:

{

∀i ≤ NP ∧∀ j ≤ D : xi, j,G=0 = x
(lo)
j + rand j[0, 1] • (x

(hi)
j − x

(lo)
j )

i = {1, 2, . . . ,NP}, j = {1, 2, . . . ,D}, G = 0, rand j[0, 1] ∈ [0, 1]
⎧

⎪

⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎩

3. While G < Gmax

∀i ≤ NP

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

4. Mutate and recombine :
4.1 r1, r2, r3 ∈ {1, 2, ....,NP}, randomly selected, except : r1 /= r2 /= r3 /= i
4.2 jrand ∈ {1, 2, . . . ,D}, randomly selected once each i

4.3 ∀ j ≤ D,u j,i,G+1 =

⎧

⎪

⎨

⎪

⎩

x j,r3 ,G + F · (x j,r1 ,G − x j,r2 ,G)
if (rand j[0, 1] < CR∨ j = jrand)

x j,i,G otherwise
5. Select

�xi,G+1 =

{

�ui,G+1 if f (�ui,G+1) ≤ f (�xi,G)
�xi,G otherwise

G = G + 1

Pseudocode 2: Pseudocode of DE.

Input: N, Migrations, PopSize ≥ 2, PRT ∈ [0, 1], Step ∈ (0, 1], MinDiv ∈ (0, 1],

Path Length ∈ (0,5], Specimen with upper and lower bound x
(hi)
j , x

(lo)
j

Inicialization:

{

∀i ≤ PopSize ∧∀ j ≤ N : xi, j,Migrations=0 = x
(lo)
j + rand j[0, 1] • (x

(hi)
j − x

(lo)
j )

i = {1, 2, ...,Migrations}, j = {1, 2, ...,N},Migrations = 0, rand j[0, 1] ∈ [0, 1]
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

While Migrations < Migrationsmax

∀i ≤ PopSize

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

While t ≤ PathLength
i f rnd j < PRT pak PRTVector j = 1 else 0, j = 1, . . . ,N
xML+1
i, j = xML

i, j,start + (xML
L, j − xML

i, j,start) t PRTVector j
f (xML+1

i, j ) = if f (xML
i, j ) ≤ f (xML

i, j,start) else f (xML
i, j,start)

t = t + Step
Migrations =Migrations + 1

Pseudocode 3: Pseudocode of SOMA.

length. If the path length is chosen to be greater than one,
then the individual will overshoot the leader. This path is
perturbed randomly. For an exact description of use of the
algorithms see [47, 48] for SOMA. Pseudocode of SOMA is
(as shows in Pseudocode 3).

Now a day, there are some version of algorithm SOMA.
In this work I have used two strategies of SOMA for op-
timization and predictive control of a chemical reactor. They
are “All to One” (SOMAATO), that is, the worst version and
“All to One Random” (SOMAATOR), that is, the best version
of SOMA.

There are some version of algorithm SOMA. In this work
I have used two strategies of SOMA for optimization and
predictive control of a chemical reactor. They are “All to
One” (SOMAATO), that is, the worst version, and “All to One
Random” (SOMAATOR), that is, the best version of SOMA
as follow.

(i) All to one—this strategy was described in previous
section. “All to one” means that all subjects in pop-
ulation migrate to the leader (except leader itself).

(ii) All to one random is strategies, in which all individuals
move back to one individual (leader), which is not
the deepest position on the hyperplane, but it is
on the migration of individuals of each randomly

Table 1: SOMA parameter setting.

A

PathLength 3

Step 0.41

PRT 0.1

PopSize 20

Migrations 50

MinDiv −1

Individual Length 6

CF Evaluations 6951

selected from the population. Here emerged possible
modification of this strategy, such that the individuals
do not select randomly, but as appropriate, as is the
case of genetic algorithms.

4.3. Genetic Algorithm (GA). Genetic algorithms (GA) imi-
tate the evolutionary processes with emphasis on genotype-
based operators (genotype/phenotype dualism). The GA
works on a population of artificial chromosomes, referred to
as individuals. Each individual is represented by a string of L
bits. Each segment of this string corresponds to a variable of
the optimizing problem in a binary encoded form.
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Table 2: DE parameter setting.

A

NP 20

F 0.9

CR 0.2

Generations 200

Individual Length 6

CF Evaluations 4000

Table 3: GA parameter setting.

A

PopSize 20

MutationCostant 0.2

Generations 200

Individual Length 6

CF Evaluations 4000

Table 4: SA parameter setting.

A

PocetCastic 2

Diameter 0.5

kmax 66

Tmin 0.0001

Tmax 1000

alfa (cooling factor) 0.8

Table 5: Optimized reactor parameters and their range inside
which optimization has been done.

Parameter Range

ṁFK [kg·s−1] 0–500

r [m] 0.3–3.0

h [m] 0.5–3.5

TVP [K] 273.15–323.15

ṁV [kg·s−1] 0–10

d [m] 0.03–0.1

Table 6: The best values of optimized parameters by SOMA, DE.

Parameter SOMAATO SOMAATA DERan1Bin DERan2Bin

ṁFK [kg·s−1] 0.0226579 0.042049 0.225063 0.135087

r [m] 0.302427 0.543594 0.195776 2.50725

h [m] 3.12646 1.86628 0.83969 0.715263

TVP [K] 319.286 294.718 296.179 318.115

ṁV [kg·s−1] 5.58697 9.94168 9.35465 9.431

d [m] 0.0474563 0.0563635 0.030377 0.0583956

The population is evolved in the optimization process
mainly by cross-over operations. This operation recombines
the bit strings of individuals in the population with a certain
probability Pc. Mutation is secondarily in most applications
of a GA. It is responsible to ensure that some bits are
changed, thus, allowing the GA to explore the complete

Table 7: The best values of optimized parameters by GA, SA.

Parameter GA SA Elitism SA NoElitism

ṁFK [kg·s−1] 0.00417218 0.187008 0.519387

r [m] 2.58293 2.51294 2.84268

h [m] 3.40438 0.858557 2.76458

TVP [K] 310.944 314.657 319.494

ṁV [kg·s−1] 5.09912 9.02945 6.56782

d [m] 0.0315134 0.0597223 0.0918064

Table 8: Estimated parameters for DERand1Bin.

Parameter Min. Avg. Max.

ṁFK [kg·s−1] 0.00732026 0.157858 0.467508

r [m] 0.360715 1.80667 2.97025

h [m] 0.506418 1.79237 3.47477

TVP [K] 293.29 306.98 322.669

ṁV [kg·s−1] 5.32214 9.31932 9.99522

d [m] 0.0300719 0.0391487 0.078392

Table 9: Estimated parameters for DERand2Bin.

Parameter Min. Avg. Max.

ṁFK [kg·s−1] 0.00985924 0.133546 0.551649

r [m] 0.328569 1.48296 2.99652

h [m] 0.527274 1.96553 3.48392

TVP [K] 293.185 306.886 323.001

ṁV [kg·s−1] 0.382172 8.31582 9.99879

d [m] 0.0300549 0.0440286 0.0941844

Table 10: Estimated parameters for SOMAATO.

Parameter Min. Avg. Max.

ṁFK [kg·s−1] 0.0064630 0.0290028 0.126721

r [m] 0.3 0.719769 2.38758

h [m] 0.500022 1.22914 3.29516

TVP [K] 293.52 308.434 322.923

ṁV [kg·s−1] 2.91889 8.84481 9.99993

d [m] 0.0304519 0.0558279 0.0987916

Table 11: Estimated parameters for SOMAATOR.

Parameter Min. Avg. Max.

ṁFK [kg·s−1] 0.0159922 0.0927306 0.378352

r [m] 0.321836 1.28136 2.88948

h [m] 0.501199 1.76971 3.47737

TVP [K] 293.444 303.046 322.487

ṁV [kg·s−1] 1.66669 9.53494 9.99987

d [m] 0.0301466 0.0386274 0.093981

search space even if necessary alleles are temporarily lost due
to convergence.

Pseudocode 4 describes the general principle of a genetic
algorithm.
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t = 0;
initialize(p(t=0));
evaluatae(P(t=0));
While is NotTerminated() do

Pc(t) = reproduction(Pp);
mutace(Pc(t));
evaluate(Pc(t));
P(t+1) = buildNextGenerationForm(Pc(t),
P(t));
t=t+1;

end

Pseudocode 4: Pseudocode of GA.

Table 12: Estimated parameters for GA.

Parameter Min. Avg. Max.

ṁFK [kg·s−1] 0.0041721 0.362735 1.4908

r [m] 0.308429 2.20758 2.98134

h [m] 0.673105 2.2323 3.48275

TVP [K] 293.253 308.797 323.114

ṁV [kg·s−1] 0.234471 5.14055 9.96397

d [m] 0.0303933 0.0652728 0.0995752

Table 13: Estimated parameters for SA Elitism.

Parameter Min. Avg. Max.

ṁFK [kg·s−1] 0.0234063 0.25735 0.978476

r [m] 0.382136 2.12841 2.9857

h [m] 0.570715 2.25282 3.47805

TVP [K] 293.557 309.318 322.894

ṁV [kg·s−1] 0.0981996 5.77572 9.99886

d [m] 0.0303382 0.0661099 0.0994636

Table 14: Estimated parameters for SA NoElitism.

Parameter Min. Avg. Max.

ṁFK [kg·s−1] 0.0176978 0.315186 1.19071

r [m] 0.506012 2.1492 2.99712

h [m] 0.513602 2.30953 3.49055

TVP [K] 293.282 306.615 322.332

ṁV [kg·s−1] 0.0015723 5.27791 9.90747

d [m] 0.0300534 0.0630213 0.0994389

4.4. Simulated Annealing (SA). Simulated annealing (SA) is
based on the similarity between the solid annealing process
and solving combinatorial optimization problems [50]. SA
consists of several decreasing temperatures. Each tempera-
ture has a few iterations. First, the beginning temperature
is selected, and an initial solution is randomly chosen. The
value of the cost function based on the current solution (i.e.,
the initial solution in this case) will then be calculated. The
goal is to minimize the cost function. Afterwards, a new
solution from the neighborhood of the current solution will
be generated. The new value of the cost function based on

the new solution will be calculated and compared to the
current cost function value. If the new cost function value
is less than the current value, it will be accepted. Otherwise,
the new value would be accepted only when the Metropolis’s
criterion [55], which is based on Boltzmann’s probability,
is met. According to Metropolis’s criterion, if the difference
between the cost function values of the current and the newly
generated solutions (∆E) is equal to or larger than zero, a
random number δ in [0, 1] is generated from a uniform
distribution. If (12) is met, the newly generated solution is
accepted as the current solution:

δ ≤ e

(

−
∆E

T

)

. (12)

The number of new solutions generated at each temperature
is the same as the iteration number at the temperature
which is constrained by the termination condition. The
termination condition could be as simple as a certain
number of iterations. After all the iterations at a temperature
complete, the temperature would be lowered based on the
temperature-updating rule. At the updated (and lowered)
temperature, all required iterations will have to be completed
before moving to the next temperature. This process would
repeat until the halting criterion is met. The halting criterion
could be “reaching the pre-set minimum temperature.” The
result of simulated annealing (SA) is related to the number
of iterations at each temperature and the speed of reducing
temperature. The temperature updating rule proposed in this
paper is shown:

Temperature = Te(−rt), (13)

where T is the initial temperature, r the cooling ratio, and t
the number of times the temperature has been lowered. The
cooling ratio controls the speed of cooling. The higher the
cooling ratio, the faster the temperature cools down.

In this work I have chosen two versions of SA algo-
rithms: SA elitism (SA Elitism) and SA without elitism
(SA NoElitism) for investigation on optimization of a chem-
ical reactor.

4.5. Usage of Elitism. It uses synchronization at the end of
temperature phase; otherwise, the communication proceeds
asynchronous after each iteration.

(i) Disadvantage: of this approach lies in excessive com-
munication, which results in computation time in-
crease.

(ii) Advantage: elitism removes problem with the accep-
tance of worse solutions at low temperature phase.

5. Static Optimization of Reactor

The above-described reactor, in the original setup, gives un-
satisfactory results. To improve reactor behavior, static op-
timization was performed using the algorithms SOMA, DE,
GA, SA. In this work the optimization was performed by the
following optimization of batching-value reactor’s parameter
geometry.
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Memetic algorithms

Scatter search and path relinking

Particle swarm

Genetic algorithms

Differential algorithms
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Simulated annealing

Tabu search

Evolutionary computation

Stochastic hill climbing

Optimization algorithms

Enumerative

Stochastics

Deterministic

Mixed

Hill climbing

Greedy

Branch and bound

Calculus based

Monte Carlo

Mathematical programming

Depth first

Breadth first

Best first

Figure 2: Division of evolutionary algorithms, taken from [2].

5.1. The Cost Function (CF). In this optimization the point
was to minimize the area arising as a difference between the
required and real temperature profile of the reaction mixture
in a selected time interval, which was the duration of a batch
cycle. The required temperature was 97◦C (370.15 K). The
cost function that was minimized is given in:

fcos t =

t
∑

t=0

|w − T[t]|, (14)

where: w: control point, T : temperature.
The CF has been calculated in general from the distance

between desired state and actual system output.

5.2. Parameter Settings. The parameter settings have been
found empirically and are given in Table 1 (SOMA) and
Table 2 (DE). In Tables 3 and 4 are parameters’ setting for
GA and SA. The main criterion for this setting was to keep
the same setting of parameters as much as possible and of
course the same number of cost function evaluations as well
as population size (parameter PopSize for SOMA, GA, and
NP for DE). Number of optimized reactor parameters and
their range inside represents in Table 5.

6. Experimental Results

Due to the fact that EAs are partly of stochastic nature,
a large set of simulations has to be done in order to get
data for statistical data processing. Four algorithms (SOMA,
DE, GA, and SA) have been applied 100 times in order to
find the optimum of process parameters and the reactor
geometry. All important data has been visualized directly

and/or processed for graphs demonstrating performance of
four algorithms. Estimated parameters and their diversity
(minimum, maximum, and average) are depicted in Figures
3 and 4. From those pictures it is visible that results from
four algorithms are comparable. For the demonstration are
graphically the best solutions shown in the subfigures (b),
(d), (f), and (h) of Figures 5–11. There is shown time
dependence of process parameters from four algorithms. The
best values of parameter setting are recorded in Tables 6
and 7. All one hundred simulations diversity (minimum,
maximum and average) were described from Tables 8–14 for
each version of four algorithms. On Figures 5–11 are, for
example, shown records of all 100 simulations and the best
solutions of all 100 simulations (Figures 5 and 6 for SOMA,
Figures 6 and 7 for DE, Figure 8 for GA, and Figures 9 and 10
for SA).

6.1. Parameter Diversity for Repeated 100 Times Simulations.
See Tables 8–14.

6.2. Graphics Results. See Figures 3–11.

7. Discussion to the Result Optimization

This work has presented a systematic procedure to derive a
solution model for operation of a dynamic chemical reactor
process. The results produced by the optimizations depend
not only on the problem being solved but also on the way of
how to define a given function. All simulations were repeated
100 times for each EA with the same initial conditions for
each simulation.
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Figure 3: Parameter variation of SOMA and DE.

The differences between four methods SOMA, DE, GA,
and SA are best seen in Tables 5, 6, and 7. The first part
shows the parameters of batch reactor designed by an expert,
and the second part shows the parameters obtained through
static optimization.

Calculation was 100 times repeated and the best,
worst, and average results (individual) were recorded from
the last population in each simulation. All one hundred
triplets (best, worst, average) were used to create Figures 3
and 4.
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Figure 4: Parameter variation of GA and SA.

Four algorithms (SOMA, DE, GA, SA) have been applied
100 times in order to find the optimum of process param-
eters and the reactor geometry. The primary aim of this
comparative study is not to show which algorithm is better
or worse, but to show from the outputs of all simulations
depicted in Figures 5–11 that evolution SOMA represents
the best solution from actual simulation more than DE,
GA, and SA. Based on data from all simulations, four com-
parisons can be done. From parameter variation of view, the
estimated parameters depicted in Figures 3 and 4 show that
four algorithms are comparable in performance (with small
deviations).

From the graphs, it is evident that the courses of SOMA
algorithm are more densities in thin spectra and not far from
the start of mass axis (see Figure 5(a)). Only few values
drift out of the spectra. The results of the DE algorithm

are faster in the weight spectra. From these results we may
conclude that SOMA has much better convergence than DE,
GA, SA algorithms (see Figures 5–11). For better overview of
comparison between four algorithms, I have chosen process
temperature of reaction mixture T , shown in Figure 12.

In Figure 12 we can see the process parameter tempera-
ture T simulation by SOMA were of more stability than other
algorithms (concretely, in this experimental problem of batch
reactor).

From the obtained results, it is possible to say that all
simulations give satisfactory results, and; thus, evolutionary
algorithms are capable of solving this class of difficult problems
and the quality of results does not depend only on the problem
being solved, but they are extremely sensitive for the proper
definition of the cost function, selection of parameter setting of
evolutionary algorithms.
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Figure 5: Processes parameters for 100 simulations of SOMA—version SOMAATO.
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Figure 6: Processes parameters for 100 simulations of SOMA—version SOMAATR.
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Figure 7: Processes parameters for 100 simulations of DE—version DERan1Bin.
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Figure 8: Processes parameters for 100 simulations of DE—version DERan2Bin.
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8. General Conclusion and Further
Research Perspective

In this paper, evolutionary algorithms were used for static
optimization of chemical reactor in order to improve the
quality of this behaviour in the uncontrolled state. The
optimization tool has been described and selected four EAs
(SOMA, DE, SA, GA), especially for a certified high robust-
ness and ability to successfully solve complex optimization
problems, especially of chemical reactor.

In fact, using the methods of article intelligence, mainly,
the evolutionary computation techniques, can be used in
such a difficult task which is analyzed and optimized of a
nonlinear system, especially of given chemical reactor. The
main aim of paper was focused on the examples of EAs
implementation to methods for chemical reaction for the
purpose of obtaining better results, which means faster
reaching of desired stable state and superior stabilization and
could be robust and effective to optimize difficult problems
in the fields of chemical engineering.

Basic optimization process presented here was based on
a relatively simple function. Unless the experiment is limited
by technical issues when searching for optimal parameters,
there is no problem in defining more complex functional
including as subcriteria, for example, stability, costs, time-
optimal criteria, controllability, or their arbitrary combina-
tions.

Future research of evolutionary algorithms SOMA, DE,
GA, SA is still open. According to all results obtained during

this research, it is planned that the main activities would be
focused on the expanding of this study for other chemical
dynamic systems.

From the results of paper, we can conclude that EAs have
shown great potential and ability to solve complex problems
of optimization, not only at the field of chemical engineering
process but also in diverse industrial fields.
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