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ABSTRACT 

The rheology of oil well cement (OWC) slurries is generally more complicated than that of 

conventional cement paste. In order to contend with bottom hole conditions (wide range of 

pressure and temperature), a number of additives are usually used in the OWC slurries, which 

exhibit different characteristics depending on the combination of admixture used. The 

objective of this research is to develop a fundamental understanding of the important 

mechanisms that affect the rheology of OWC slurry incorporating various chemical and 

mineral admixtures. The partial replacement of OWC using different mineral admixtures, 

offers both environmental and economic benefits.  

The mechanisms underlying the effects of chemical admixtures on the rheology of OWC 

slurry were investigated at different temperatures using an advanced shear-stress/shear-strain 

controlled rheometer. The compatibility and interactions between the binder and chemical 

admixtures were explored. It was found that the rheological properties of OWC slurries are 

highly dependent on the temperature, water/cement ratio, and the admixture used. Coupled 

effects of temperature and chemical admixtures had a substantial effect on the flow properties of 

the slurries. The results indicated that current technical data for chemical admixtures need to 

be validated for oil well cementing; admixtures proven effective in normal cementing work 

at moderate temperature may become ineffective for oil well cementing at high temperature.  

The coupled effects of temperature and supplementary cementing materials (SCMs) on the 

rheology of OWC slurry were also investigated. Because of differences in their chemical 

compositions and the mechanisms by which they act, OWC slurries incorporating SCMs 

exhibit different rheological behaviour than those prepared with pure OWC. It was found that 

not all SCMs act in similar manner when used as partial replacement for cement. For 

example, fly ash, owing to its spherical particle shape, reduces the water demand when used. 

On the other hand, silica fume increased the water demand because of its higher surface area. 

Results suggested that new generation polycarboxylate-based high-range water reducing 

admixtures (PCH) improved the rheological properties of all slurries at all temperature tested. 

However, lower PCH dosage was found to be less efficient in reducing the yield stress or 

plastic viscosity of OWC slurries when metakaolin (MK) or rice husk ash (RHA) were used 
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as partial replacement for OWC. PCH was found to enhance the shear thickening behaviour 

of OWC slurries and the intensity of this behaviour varied with the type and amount of SCM. 

Such a phenomenon was amplified with metakaolin, reduced by SF, unchanged with FA and 

showed irregular behaviour with RHA. 

Furthermore, new equations were proposed using multiple regression analysis (MRA) and 

design of experiments (DOE) to predict the Bingham parameters (yield stress and plastic 

viscosity) of cement slurries prepared in combination with or without SCMs considering 

various parameters including the ambient temperature, chemical admixture type and dosage, 

and superplasticizer type and dosage. An artificial neural network (ANN) model was 

developed to predict the rheological properties of OWC slurries. The results indicated that 

the predicted rheological parameters for OWC slurries were in good agreement with 

corresponding experimental results. However, the ANN-based model performed better than 

the MRA-based model or DOE-based model in predicting the rheological properties of OWC 

slurries. 

 

Keywords: oil well cement, rheology, cement slurry, high temperature, superplasticizer, 

yield stress, viscosity, thixotropy, fly ash, metakaolin, silica fume, rice husk ask, multiple 

regression analysis, artificial neural network, design of experiment, modeling. 
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C h a p t e r  1 

INTRODUCTION 

1.1 Introduction 

Petroleum production and exploration has a paramount influence on the global economic 

structure. The world's oil consumption has been increasing day by day. It grew by 171% 

during the period from 1965 to 2008 (Yahaba, 2010). Over the last two decades, the amount 

of oil consumption per year has exceeded the amount of newly found oil reserves. Therefore, 

with time, the possibility of an ultimate decrease in oil production is becoming a realistic 

scenario. However, the exact amount of undiscovered oil reserves is not well known. Hence, 

it is difficult to predict when the ultimate decrease in oil production will initiate and affect 

the overall global economy. The human culture and modern technological society are very 

much dependent on the earth’s oil and chemical feedstock. A significant decrease in oil 

production may trigger substantial economic hardship, such as a recession or depression due 

to higher energy prices, unless cost-effective and competitive alternative energy sources will 

be put in place.  

Improper oil and gas well design and well cementing can jeopardise oil production. Oil spills 

such as the recent Gulf of Mexico deepwater horizon oil spill are some of the causes of oil 

loss from the global reserve. Besides economic losses, oil spills cause environmental 

disasters particularly in marine habitats because of toxic substances. The oil industry has 

been spending billions of dollars to invent more technologically advanced materials and 

equipment to improve oil extraction and to minimize loss of oil and gas. Nonetheless, the fact 

remains that it is virtually impossible to solve every new problem that may arise.  

Well cementing is the process of placing a cement slurry in the annulus space between the 

well casing and the geological formations surrounding the well bore in order to provide zonal 

isolation in oil, gas, and water wells. The goal is to exclude fluids such as water or gas to 

move from one zone to another zone in the well. Incomplete zonal isolation and/or a weak 

hydraulic seal between the casing and the cement and between the cement and the 

formations, may cause oil spills and the well may never run at its full producing potential 
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(Calvert, 2006). The appropriate cement slurry design for well cementing is a function of 

various parameters, including the well bore geometry, casing hardware, formation integrity, 

drilling mud characteristics, presence of spacers and washers, and mixing conditions. The 

rheological behaviour of oil well cement (OWC) slurries must be optimized to achieve an 

effective well cementing operation.  

Over the last few decades, several types of new chemical admixtures such as 

superplasticizers, retarders, viscosity modifying admixtures, etc. have been introduced to 

optimize the flow properties of cement-based products. Early age and hardened properties of 

cement based systems are highly depended on the type and dosage of chemical admixtures 

used. The proper selection of chemical admixtures is mainly based on a trial and error 

procedure using tests such as the Marsh cone flow, mini slump test, and other rheological 

tests. The performance of chemical admixtures is strongly influenced by the chemical and 

physical properties of the cement. Most of the commercial chemical admixtures have been 

used with Ordinary Portland cement and for general purpose use. Therefore, the technical 

data sheets provided by the manufacturers are not generally applicable for oil well 

cementing. In order to contend with bottom hole conditions (wide range of pressure and 

temperature), a special class of cements called OWCs, specified by the American Petroleum 

Institute (API) (API Specification 10A, 2002) are usually used in the slurry composition. The 

interactions of OWC with different types of admixtures and the associated cement-admixture 

compatibility at high temperature are still largely unexplored.  

This high cement production to meet the needs of modern urbanization and other industrial 

purposes is both an ecological and economic concern. The production of one ton of cement 

releases about one ton of CO2 into the atmosphere and consumes a substantial amount of 

energy. In the wake of a potential energy crisis, the threat of global warming, and the 

increasing cement consumption of a rapidly growing world population, the uses of 

supplementary cementitious materials (SCMs) are being encouraged considering their 

significant environmental and economic benefit and their potential as a sustainable solution. 

Most of these SCMs are recycled industrial by-products that save fossil fuels, preserve 

cement raw materials, and reduce hazardous emissions into the atmosphere due to cement 

production. Moreover, some of these materials impart to the cement-based systems improved 

early age behaviour, superior workability, strength, and durability. The mechanisms 



 3

underlying these improvements imparted by SCMs are still a matter of controversy. Over the 

last few decades, a number of researches have been conducted to characterize the influence 

of SCMs in ordinary concrete. However, very scant information can be found on the 

rheological properties of oil well cement slurries when SCMs are used as partial replacement 

for oil well cement. 

The rheological properties of cement-based materials determine the quality of the hardened 

cementitious matrix and help predicting its end use performance and its physical properties 

during and after processing. Measuring the rheological properties of cement-based materials 

in the laboratory remains a challenging task. The rheological properties are affected by 

numerous factors including the water-to-cement ratio (w/c), size and shape of cement grains, 

chemical composition of the cement and the relative distribution of its components at the 

surface of grains, presence and type of additives, compatibility between cement and chemical 

admixtures, mixing and testing procedures, etc. Moreover, slip at the slurry-shearing surface 

interface during rheological tests, particle-particle interactions, chemical reactions, non-

homogeneous flow fields, and human errors can make the rheological experiments difficult 

to reproduce. Above all, the equipment used to properly quantify the rheological properties 

of cement-based materials is relatively expensive, difficult to operate, and may not be 

suitable for use in construction sites because of its large size and/or complicated set up.  

1.2 Objective and Scope of the Study 

Cement slurry can be considered as a composite suspension of cement and supplementary 

cementitious materials in water, one or multiple chemical admixtures, fillers, etc. Oil well 

cement (OWC) slurries are pumped between the well bore and the steel casing inserted in the 

well to seal off all strata of the formation, except those that have oil so that gases and water 

do not contaminate the oil bearing strata. OWCs are sometimes pumped to depths in excess 

of 6000 m (20000 ft). At such depths, the temperature may rise up to 205
o
C (400°F), but is 

normally reduced by the circulation of cooler drilling mud (Orchard, 1962).  The cement 

slurry may also be subjected to very high pressures reaching over 200 MPa (30000 psi) 

(Joshi and Lohita, 1997) depending on the height and density of the column of material 

above it. Thus, oil/gas well cementing operations face additional challenges in contrast to 

common cementing work above ground. In addition to the high pressure and temperature, the 



 4

OWC must be able to contend with weak or porous formations, corrosive fluids, etc. A 

number of additives have been used to alter the chemical and physical properties of the OWC 

slurry as required for flow-ability and stability of the slurry and the long term performance of 

wells. The conventional admixtures which have been developed in countries with mild 

climates for cementing jobs above ground, may lead to inadequate results when exposed to 

high temperatures. Likewise, there is still a lack of information in the open literature 

regarding the effects of various chemical admixtures, such as new generation 

superplasticizers, on the rheological properties of cement-based materials at high 

temperature. Hence, this research investigates the effects of a number of conventional 

chemical admixtures along with new-generation chemical admixtures on the rheology of oil 

well cement slurries.  

Mineral and chemical admixtures play an important role in controlling the physical and 

chemical properties of cement slurries and hardened cementitious systems. However, not all 

minerals and supplementary cementitious materials act in the same way on the rheological 

properties, primarily because of their different physical and chemical properties. Typically, 

published research has been conducted on ordinary portland cement. There is still a lack of 

information regarding the coupled effects of chemical and mineral admixtures at high 

temperature on the rheology of oil well cement slurries.  

The present study attempts to develop a better understanding of the important mechanisms 

that controls the rheology of OWC slurry subjected to severe conditions such as high 

temperature, and to investigate the performance of various chemical admixtures in 

controlling the rheological behaviour of oil well cement slurries.  

The present study also undertakes the task of clarifying the mechanisms of various SCMs in 

controlling the OWC slurry rheology at high temperature. The knowledge thus gained could 

ultimately allow the optimization of blended oil well cements, leading both to ecological and 

economic benefits.  

The specific objectives of this study are provided below: 

1. Develop an improved understanding of the effects of temperature on the rheological 

properties of oil well cement slurries incorporating various chemical admixtures. 
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2. Investigate the coupled effects of supplementary cementitious materials and new 

generation chemical admixtures on the rheological properties of oil well cement 

slurries. 

3. Develop a versatile model to predict the Bingham parameters of oil well cement 

slurries incorporating various chemical admixtures and subjected to various 

temperatures.  

4. Develop a design chart to identify the influence of adjusting oil well cement slurry 

mixture variables, such as the type of dosage of chemical and mineral admixture, on 

rheological properties, such as yield stress and plastic viscosity, and to simplify the 

test protocol and number of experiments required to achieve an optimum balance 

amongst various parameters involved in slurry rheology tailoring.  

1.3 Organization of Dissertation 

This thesis has been prepared according to the guidelines specified by the Faculty of 

Graduate Studies at the University of Western Ontario for an Integrated Article (formerly 

Manuscript) format. It has been divided into nine chapters, six of which have been written as 

self-contained documents and have been either accepted or submitted for possible publication 

in various peer-reviewed technical journals and international conferences. Related literature 

and necessary background to each subject have been included in each corresponding chapter. 

The subsequent sections provide in sequence a concise description of the contents of each 

chapter in order to address the objectives of the study presented in Section 1.2. 

Chapter 2 

In Chapter 2, the basic concepts involved in oil well cementing, the chemical and physical 

properties of oil well cements and the role of related additives and chemical admixtures are 

discussed. Although mechanical properties and durability aspects are not a part of the present 

investigation, the chapter provides a review on the mechanical properties of hydrated OWC 

slurries and their durability, and critically examines state-of-the-art practice, and identifies 

future research directions and technology development needs.  
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Chapter 3 

Chapter 3 is divided in to two parts. The first part presents a brief theoretical background on 

the rheology and rheological parameters used to characterize materials. The second part 

presents the rheology of oil well cement slurries, time-independent rheological models, the 

effect of time and temperature, and the current practice for rheological tests and equipment.  

Chapter 4 

In this chapter, the rheological properties, including yield stress, plastic viscosity, thixotropy 

and gel strength of Class G API oil well cement slurries having w/c of 0.35, 0.44, and 0.50 

were investigated at different temperatures in the range of 23 to 60ºC using an advanced 

shear-stress/shear-strain controlled rheometer. The interactions of Class G OWC with 

different types of admixtures such as a new generation polycarboxylate-based high-range 

water reducing admixture (PCH), lignosulphonate-based mid-range water reducing 

admixture (LSM), polycarboxlate-based mid-range water reducing admixture (PCM), 

phosphonate-based set retarding admixture (SRA), hydroxylated carboxylic acid-based 

retarding admixture (HCR) and a rheoplastic solid admixture (RA) have been investigated 

and discussed.  

Chapter 5 

In this chapter, the interactions of Class G oil well cement and four different types of SCMs 

including metakaolin (MK), silica fume (SF), rice husk ash (RHA), and class F fly ash (FA) 

on the rheological properties of oil well cement slurries have been investigated. The flow 

properties of Class G oil well cement slurries at w/c=0.44 and incorporating those SCMs 

along with a new generation polycarboxylate-based high-range water-reducing admixture 

were tested at different test temperatures (23, 45 and 60°C). A series of flow tests using an 

advanced rheometer were carried out to determine optimum dosage of admixture. 

Chapter 6 

This chapter is divided into two parts. In the first part, an artificial neural networks (ANN)-

model was developed to predict the shear stress versus shear rate flow curves for OWC 

slurries. The slurries were prepared using class G oil well cement with a water-cement ratio 
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(w/c) of 0.44, and incorporating three different chemical admixtures, namely a new 

generation polycarboxylate-based high-range water reducing admixture, polycarboxlate-

based mid-range water reducing admixture, and a lingosulphonate-based mid-range water 

reducing admixture. The flow curves developed using the ANN-model have been employed 

to predict the Bingham parameters (yield stress and plastic viscosity) of OWC slurries. A 

parametric study was performed to evaluate the performance of the ANN-model in predicting 

the rheological behaviour of OWC slurries with variation of temperature and type and dosage 

of the admixture. 

In the second part, multiple regression analysis (MRA) was employed to develop equations 

for the shear stress of OWC slurries as a function of the shear rate, dosage of chemical 

admixture, and temperature. Subsequently, the Bingham model was used to determine the 

rheological properties including yield stress and plastic viscosity. A parametric study was 

conducted to evaluate the ability of the MRA equations thus developed to capture the effects 

of test parameters on the yield stress and plastic viscosity. Finally, the performance of both 

the ANN and MRA models was compared. 

Chapter 7 

In chapter 7, the shear stress versus shear rate curves for OWC slurries incorporating the 

various supplementary cementitious materials (metakaolin, silica fume, rice husk ask and fly 

ash) and a new generation polycarboxylate-based high-range water reducing admixture 

(PCH) at various temperatures were predicted using an artificial neural network model. A 

sensitivity analysis was performed to evaluate the effects of mixture variables, such as 

dosage of PCH, type and dosage of SCM, and test variables such as time, on the predicted 

yield stress and plastic viscosity of oil well cement slurries. Model predictions were validated 

using experimental data. 

Chapter 8 

In this chapter, a second order 2
k
 central composite response surface model was developed to 

evaluate the effects of temperature, superplasticizer dosage, and dosage of SCM on the 

rheological properties of OWC slurries using a statistical design approach and design of 
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experiments. This model was used to evaluate the two-way interaction of parameters that had 

a significant influence on the rheological properties of OWC slurries.  

Chapter 9 

Chapter 9 presents a summary of the study along with the main conclusions obtained based 

on the research program undertaken. A few recommendations for future research have also 

been formulated. 

 

1.4 Original Contributions of Thesis 

This thesis provides a comprehensive study on the effects of conventional chemical 

admixture and supplementary cementitious materials on the rheological properties of oil well 

cement slurries subjected to high temperature. This work is a step towards formulating 

guidelines and specifications for using these admixtures in oil well cementing.   

The main contributions of the current study can be summarised as follows: 

1. The study explored the effects of conventional chemical admixtures which have been 

developed in countries with moderate temperatures for cementing jobs above ground. 

The results of this study reveal that not all the admixtures tested may be suitable for 

oil well cementing work because they may lead to disappointing results when 

exposed to high temperature. However, a new generation polycarboxylate-based high-

range water-reducing admixture, a polycarboxylate-based mid-range water reducing 

admixture and hydroxylated carboxylic acid-based retarding admixture improved OWC 

slurry fluidity at all temperatures tested. Likewise, the results of this thesis indicate that 

technical data for chemical admixtures need to be revised for oil well cementing 

applications considering the extreme down-hole environment.  

2. This study explored the effects of supplementary cementitious materials, such as 

metakaolin (MK), silica fume (SF), rice husk ash (RHA) and fly ash (FA) in tailoring 

the rheological properties of OWC slurries. This work is a contribution towards a 

more fundamental understanding of the mechanism of the tested SCMs in changing 

the rheology of oil well cement slurries at high temperature, which should help in 
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selecting adequate admixtures and their effective dosages to overcome difficulties 

encountered during the construction of oil and gas wells.  

3. A versatile model has been developed to learn the relationships between different 

shear flow parameters for various OWC slurries using artificial intelligence. The 

model can successfully predict the rheological properties of OWC slurries within the 

range of tested admixture dosages and temperatures investigated. 

4. A set of empirical equations using multiple regression analysis has been developed to 

predict the shear flow behaviour of OWC slurries prepared using chemical and 

mineral admixtures and subjected to high temperature. 

5. Isoresponse curves and contour charts have been created, which can simplify the test 

protocol and reduce the number of experimental tests required to achieve an optimum 

balance amongst the various parameters involved and to gain a better understanding 

of trade-offs between key mixture parameters such as the superplasticizer dosage and 

type and content of supplementary cementitious materials.  
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C h a p t e r  2 

STATE-OF-THE-ART REVIEW ON OIL WELL CEMENTS 

2.1 Introduction  

Oil well cementing is the process of placing a cement slurry in the annulus space between the 

well casing and the geological formations surrounding to the well bore. When a certain 

section of the depth of an oil or gas well has been drilled successfully, the drilling fluid 

cannot permanently prevent the well bore from collapsing. Therefore, oil well cementing was 

introduced in the late 1920s (Joshi and Lohita, 1997) with a number of objectives: (i) 

protecting oil producing zones from salt water flow, (ii) protecting the well casing from 

collapse under pressure, (iii) protecting well casings from corrosion, (iv) reducing the risk of 

ground water contamination by oil, gas or salt water, (v) bonding and supporting the casing, 

and (vi) providing zonal isolation of different subterranean formations in order to prevent 

exchange of gas or fluids among different geological formations. In addition to their 

exposure to severe temperature and pressure, oil well cements (OWCs) are often designed to 

cope with weak or porous formations, corrosive fluids, and over-pressured formations.  

The appropriate cement slurry design for well cementing is a function of various parameters, 

including the well bore geometry, casing hardware, formation integrity, drilling mud 

characteristics, presence of spacers and washers, and mixing conditions. The rheological 

behaviour of OWC slurries must be optimized to achieve effective well cementing operation.  

Strict control of the hardened cement mechanical properties and durability during the service 

life of the well are very important criteria, especially under such severe environments. Thus, 

a special class of cements called oil well cements (OWCs), has emerged and is specified by 

the American Petroleum Institute (API) (API Specification 10A, 2002). A number of 

additives have also been used to alter the chemical and physical properties of the OWC 

slurries as required for the flowability, and stability of the slurry and long term performance 

of wells. 
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Substantial research has been conducted to improve the efficiency of oil well production by 

improving the physical and mechanical properties of OWC slurries. This chapter discusses 

the basic concepts involved in oil well cementing, the different types of OWCs, and their 

chemical and physical properties. An insight into the additives that can modify the behaviour 

of the OWC systems and allow successful slurry placement between the casing and the 

formation, rapid compressive strength development, and adequate zonal isolation during the 

lifetime of the well is also provided. Furthermore, research on the rheology, mechanical 

properties and durability of OWCs under severe environmental exposure is critically 

examined, and technology development needs and future research directions are identified. 

This critical review paper should provide a concise yet in-depth source of information to 

assist professionals understanding oil-well cementing projects.  

2.2 Basic Cementing Process 

A typical oil/gas well can be several thousand meters in depth, less than a meter in diameter 

(Lafarge, 2009), and is usually constructed using a metal casing surrounded by a special 

cement slurry mix that fills the annulus space between the outer face of the tubing and the 

wall formation of the hole. OWCs are sometimes pumped to depths in excess of 6000 m 

(20000 ft). At such depth the temperature may rise up to 205
o
C (400°F), but is normally 

reduced by the circulation of cooler drilling mud (Orchard, 1962). The cement slurry may 

also be subjected to very high pressures reaching over 200 MPa (30000 psi) (Joshi and 

Lohita, 1997) depending on the height and density of the column of material above it. Thus, 

oil/gas well cementing operations face additional challenges in contrast to common 

cementing work above ground. Contaminations from the formations can pose additional 

problems. Thus, OWC slurries are pumped between the well bore and the steel casing 

inserted in the well to seal off all strata of the formation, except those that have oil so that 

gases and water do not contaminate the oil bearing strata.  

After drilling the well to the desired depth, the drill pipe is removed and a longer string of 

casing is run into the well until it reaches its bottom. The circulatable completion fluids such 

as drilling mud must be removed and replaced with a hardened cement to ensure intimate 

contact and bonding of the cement with the casing and formation surfaces. Sufficient cement 

slurry is pumped down the inside of the casing and forced up the outside of the casing 
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through the annular space between the casing and subterranean bore hole wall (Powers et al., 

1977; Detroit et al., 1981) using two-plug cementing method (Calvert, 2006; Oilfield 

Glossary, 2009). Pressure is applied above plugs by an aqueous displacement fluid to 

displace any remaining cement slurry (Detroit et al., 1981).  Two types of cementing plug 

(top and bottom) are typically used on a cementing operation to allow the cement slurry to 

pass through the casing and to reduce the contamination of cement slurries by other fluids 

that remain inside the casing prior to pumping cement slurry (Oilfield Glossary, 2009). 

Typically, the cement slurry is brought much higher than the production zones into the well 

bore to exclude undesirable fluids from the well bore so as to protect fresh water zones and 

corrosion of the casing (Calvert, 2006). After the cementing process, a curing time is allowed 

for the slurry to harden before beginning completion work or drilling to a deeper horizon. 

The set cement slurry forms a low permeability annulus and isolates the productive zone of 

the well from the rest of the formation. Figure 2.1 is a schematic representation of a 

cemented well. 

 

               

Well 
depth

Casing 
diameter

1125 m

1405 m

2175 m

3685 m

4260 m

4800 m 7 3/8 in

9 3/8 in

13 3/8 in

16 in

20 in

26 in

 

 

Figure 2.1 Schematic representation of a cemented well (Plank 2011) 
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2.3 Oil Well Cements 

The productivity of an oil well is significantly affected by the quality of cementing between 

the well casing and the surrounding strata. Cement slurry flowability and stability are major 

requirements for successful oil well cementing. The properties of oil well cement slurries 

depend on its mixture design and the quality of its components. Because the cement is the 

most active component of the slurry and usually has the greatest unit cost, its selection and 

proper use are important in obtaining an effective, yet economical material meeting the 

expected service life performance of the well.  

Type I/II ordinary portland cements can provide adequate strength and durability for 

common applications (US Department of Transportation, 2009). However, some demanding 

applications may require the use of other cements to meet specific performance criteria. For 

instance, the need for high-early strength cements in pavement repairs, the use of blended 

cements with aggregates susceptible to alkali-aggregate reactions, and the use of oil well 

cements in the exploration and production of oil and gas in onshore as well as offshore wells 

are examples of such applications. Although slightly modified Type I, II and III portland 

cements can be used for cementing around the steel casing of gas and oil wells having depths 

not exceeding 1800 m (6000 ft), deeper wells usually require special oil well cements 

(Popovics, 1992). 

2.3.1 Classification of Oil Well Cements 

Oil-well cements are usually made from portland cement clinker or from blended hydraulic 

cements. OWCs provide a base ingredient in the slurry mix that is pumped into the interior 

metal casing of the well and forced back toward the surface from the base of the borehole 

filling the annulus (Powers et al., 1977, Detroit et al., 1981, Calvert, 2006). Initially, only one 

or two types of oil well cement were available. As oil/gas wells became deeper and subjected 

to more adverse environments, the more stringent performance criteria could not be satisfied 

by those cements. With the advent of the API Standardization Committee in 1937, improved 

OWCs were developed (Smith, 1987). The API Specifications for Materials and Testing for 

Well Cements (API Specification 10A, 2002) include requirements for eight classes of 

OWCs (classes A through H). OWCs are classified into grades based upon their C3A 

(Tricalcium Aluminate) content: Ordinary (O), Moderate Sulphate Resistant (MSR), and 
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High Sulphate Resistant (HSR). Each class is applicable for a certain range of well depth, 

temperature, pressure, and sulphate environments. Class A, Class G and Class H are the three 

most commonly used oil well cements. Class A is used in milder, less demanding well 

conditions, while Class G and H cements are usually specified for deeper, hotter and higher 

pressure well conditions (Lafarge, 2009). Conventional types of portland cement 

incorporating suitable additives have also been used.  

The chemical composition of cement is what distinguishes one type of oil well cement from 

another and determines the suitability of the cement for specific uses. The chemical 

composition of OWC is slightly different from that of regular portland cement. OWCs 

usually have lower C3A contents, are coarsely ground, may contain friction-reducing 

additives and special retarders such as starch, sugars, etc, in addition to or in place of gypsum 

(Popovics, 1992). The key features of commonly used OWCs are summarized in Table 2.1 

(API Specification 10A, 2002; Michaux and Nelson, 1990; Nelson et al., 2006; Lafarge, 

2009; Halliburton, 2009).  

API Class G and H are by far the most commonly used OWCs today. The chemical 

composition of these two cements is similar. The basic difference is in their surface area. 

Class H is coarser than Class G cement and thus has a lower water requirement (Table 2.1). 

The chemical composition and physical properties of typical class G and H cement are 

illustrated in Table 2.2 (API Specification 10A, 2002; Michaux and Nelson, 1990; Nelson et 

al., 2006). 

A cement that is ground too fine should not be used as oil well cement. Microfine cements 

and ultra-fine (blain surface> 9000 cm
2
/gm) portland cements cannot be used for primary 

cementing because it does not develop sufficient compressive strength to hold the casing in 

downhole condition and it does not generally have adequate sulphate resistance. However, 

microfine cement is a good option for oil well repairing since typical OWCs can not be used 

because of their larger particle size and the subsequent difficulty to penetrate in extremely 

small cracks/channels (Kumar et al., 2002).   
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Table 2.1 Key features of API Oil Well Cement (API Specification 10A, 2002; Nelson and Michaux, 2006; Lafarge, 2009; Halliburton, 2009) 
Cement Class A B C D E F G H 

Recommended  

w/c, % mass 

fraction of 

cement 

46 46 56 38 38 38 44 38 

Recommended 

rage of depth, m 

(ft) 

0 to 1830 (0 to 

6000) 

0 to 1830 (0 to 

6000) 

0 to 1830 (0 to 

6000) 

 1830 to 3050 

(6000 to 

10000) 

3050 to 4270 

(10000 to 

14000) 

3050 to 4880 

(10000 to 

16000) 

0 to 2440 (0 to 

8000) 

0 to 2440 (0 to 

8000) 

Availability O* grade, 

compatible 

with ASTM  C 

150, Type I 

Portland 

Cement 

MSR** and 

HSR*** grades, 

Comparable 

with ASTM C 

150, Type II 

O*, MSR** and 

HSR*** grades, 

similar to 

ASTM C 150, 

Type III 

MSR** and 

HSR*** grades 

MSR** and 

HSR*** grades 

MSR** and 

HSR*** grades 

MSR** and 

HSR*** grades 

MSR** and 

HSR*** grades 

Cost Lower cost Lower cost More costly 

than  ordinary 

portland 

cement 

More costly 

than  ordinary 

portland 

cement 

More costly 

than  ordinary 

portland 

cement 

More costly 

than  ordinary 

portland 

cement 

… … 

Other features Intended for 

use when 

special 

properties are 

not required 

(1) Intended 

for use when 

conditions 

require 

moderate or 

high sulphate-

resistance 

(2) lower C3A 

content than 

Class A 

 

(1) Intended 

for use when 

conditions 

require high 

early strength 

(2) The C3S 

content and 

surface area 

are relatively 

high 

(1) Required 

under 

conditions of 

moderately 

high 

temperatures 

and pressure 

(2) Retarded 

cement and 

retardation is 

achieved by 

reducing C3S 

and C3A, and 

increasing the 

particle size of 

the cement 

grains. 

(1) Required 

under 

conditions of 

high 

temperatures 

and pressure 

(2) Retarded 

cement and 

retardation is 

achieved by 

reducing C3S 

and C3A, and 

increasing the 

particle size of 

the cement 

grains. 

(1) Required 

under 

conditions of 

extremely high 

temperatures 

and pressures 

(2) Retarded 

cement and 

retardation is 

achieved by 

reducing C3S 

and C3A, and 

increasing the 

particle size of 

the cement 

grains. 

(1) Basic well 

cement.  

(2) Thickening 

Times 

controllable 

with additives 

to prevent 

loss of 

circulation up 

to 250º F 

(~120º C) 

(1) Basic well 

cement 

(2) Surface 

area is coarser 

than that of 

Class G 

(3)Thickening 

Times 

controllable 

with additives 

to prevent 

loss of 

circulation up 

to 450º F 

(~230º C) 

 
*O: ordinary, ** MSR: moderate sulphate resistant, *** HSR: high sulphate-resistant
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2.3.2 Other Types of Oil Well Cements 

In addition to API class OWCs, other cements can also serve the purpose for well cementing. 

For instance grey cement, which is a mineral mixture of chalk (Dusseault et al., 2009), and 

limestone containing silica and alumina (Portland Grey Cement, 2009) having cementitious 

properties when exposed to water, can be used for cementing oil wells. Hardened grey 

cement was found to be stronger and stiffer than hardened conventional OWCs (Dusseault et 

al., 2009). It is non-shrinking and has higher resistance to tension. Moreover, it has been 

claimed that grey cement is less costly than API Class G cement, provides a better final 

product since it reduces leakage behind the casing, improves the cement squeeze success 

ratio, provides better thermal well completion, and better resists acid attack and osmotic 

drying (Dusseault et al., 2009).  Expansive cements have also performed adequately as well 

cements (Kosmatka, 1990). Latex and monomer-modified cementitious systems have been 

used for oil-well and geo-thermal cementing, respectively (Ramachandran, 1984). Moreover, 

a product known as Ceramicrete, which is a chemically bonded phosphate ceramic is claimed 

to provide a tight bond to the earth materials and casings in the presence of drilling fluids or 

hydrocarbons (Argonne National Laboratory, 2003). The hardened Ceramicrete is not 

affected by severe down-hole conditions and is stable in a wide range of adverse chemical 

environments. It has low thermal conductivity and can be pumped at a very low viscosity. 

For this reason, it is particularly useful for drilling in permafrost regions (Argonne National 

Laboratory, 2003). 

 

Table 2.2 Chemical and physical properties of API Class G and Class H OWC (API Specification 

10A 2002; Michaux and Nelson, 1990; Nelson et al., 2006) 

Chemical Component (%) Physical Properties 

Magnesium oxide (MgO)            ≤6.0     

Sulphur Trioxide (SO
3
)               ≤3.0  

Loss on Ignition                           ≤3.0  

Insoluble Residue                        ≤0.75 

C
3
S (For MSR)                            48-58 

C
3
S (For HSR)                             48-65 

C
3
A (For MSR)                           ≤8.0 

C
3
A (For MSR)                           ≤3.0 

C
4 
AF+2 C

3
A                               ≤24 

Equivalent Alkali (Na2O)            ≤0.75 

  

Maximum free fluid content, %                                         5.9  

Thickening Time (Schedule 5: 52°C and 35.6 MPa)         ≤120 minutes 

Compressive strength at 8 hours @ 38
o

C and  

atmospheric pressure                                                         2.1 MPa 

Compressive strength at 8 hours @ 60
o

C and  

atmospheric pressure                                                         10.3 MPa 

Soundness (automotive expansion), %                               ≤0.8 

Consistency (52°C, 35.6 MPa and 15-30 minutes)               ≤30 Bc 
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2.4 Admixtures for Well Cementing 

Oil well cementing is generally less tolerant to errors than conventional cementing work. 

Thus, the OWC slurry must be carefully designed to meet demanding requirements such as a 

predictable thickening time (set time), fluid loss control, consistency, low viscosity, low free 

fluid, adequate strength, high sulphate resistance and overall high durability. OWC slurries 

must have a particularly low viscosity to be pumped into great depths. The down-hole high 

temperatures and pressures compel severe requirements on the setting behaviour of OWCs. 

OWC slurries usually incorporate Class G or H or other adequate cements, water, and 

chemical admixtures. They are formulated to provide the required physical properties at the 

conditions of pressure and temperature of the hole as well as the nature of the geological 

formations. However, they often have to contend with weak or porous formation, corrosive 

fluids, and over pressured formation fluids.  

A wide variety of cement admixtures are currently available to enhance the OWC slurry 

properties and achieve successful placement between the casing and the geological 

formation, rapid compressive strength development, and adequate zonal isolation during the 

lifetime of the well. The effect of these admixtures depends on a number of OWC 

parameters, such as the particle size distribution and chemical composition of the cement, 

distribution of silicate and aluminate phases, reactivity of hydrating phases, 

gypsum/hemihydrate ratio, total sulphate content, free alkali content, and the quantity and 

specific surface area of the initial hydration products. The temperature, pressure, admixture 

dosage, mixing energy, mixing sequence, and water/cement ratio also have a significant 

effect on the behaviour of admixtures in OWC slurries (Nelson et al., 1990; Nelson et al., 

2006). 

2.4.1 Types of Admixtures Used in OWC Slurries 

Typical admixtures for OWC slurries can be categorized into eight groups: set accelerators, 

set retarders, extenders, weighting agents, dispersants, fluid-loss control agents, lost 

circulation control agents, and other specialty additives (antifoam agents, fibers, etc.). The 

OWC slurry may incorporate retarders or accelerators to control the setting behaviour, 

weighting agents are light-weight systems to increase the density of the OWC slurry system, 

and extenders to lower the density of the cement system and increase its yield. Similarly, 
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different admixtures are used as dispersants or viscosifiers to control the viscosity of the 

slurry. For instance, fluid loss additives are used to control the loss of the aqueous phase of 

the OWC slurry to the geological formation and to maintain constant water to solid ratio in 

cement slurries, while lost circulation control agents are used to control the loss of the 

cement slurry to weak or regular formations. A detailed review of cement additives has been 

provided by Nelson et al. (1990 and 2006). In addition to chemical admixtures, a number of 

mineral additives such as fly ash, silica (α-quartz and condensed silica fume), diatomaceous 

earth, gilsonite, powdered coal (Nelson et al. 1990; Nelson et al., 2006), etc, have been used 

to alter certain properties of OWC slurries. A new generation of engineered cement set 

control (ECSC) additive has been developed and successfully used to cement long casing 

sections. The ECSC overcomes the well integrity problems due to huge temperature 

differential exist between the bottom and the top of a long cement column (Moradi et al., 

2006; Sorgard and Viali, 2007).  

2.5 Density of OWC Slurries 

The density of neat cement slurry, i.e., mixture of water and cement, varies from 1773 kg/m
3
 

(110 lb/ft
3
) to 1965 kg/m

3
 (123 lb/ft

3
) depending on the API Class of the cement and the 

water/cement ratio (w/c). Higher density cement slurry may be required to control well fluids 

subjected to high bottomhole formation pressures. It is desirable to increase the density of 

OWC slurries to minimize the diffusion of heavy drilling muds. Usually bentonite and 

organic gums are used to prevent segregation of the heavy constituents from the cement 

slurry (Ramachandran, 1984). In other cases, lower density cements may be required to 

prevent lost circulation during well cementing. 

Density altering additives (weighting agents or extenders) are used to achieve specific 

density requirements. Weighting agents add weight to the slurry to achieve higher density, 

while extenders are low specific gravity materials that are used to reduce the slurry density 

and to increase slurry yield. For instance, Barite, sand and microsand have relatively high 

specific gravity and are finely divided solid materials used to increase the density of a 

drilling mud or OWC slurry. Barite (BaSO4) is the most commonly available weighting agent 

in oil/ gas well cementing, with a minimum specific gravity of 4200 kg/m
3 

(262 lb/ft
3
) 

(Oilfield Glossary, 2009) and its particle size distribution is predominantly in the range of 3 
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to 74 microns (0.0012 to 0.0087 in) (Barite, 2009; Ariffin, 2009). Hematite, calcium 

carbonate, siderite, ilmenite, manganese tetraoxide (Nelson et al., 2006), sand and microsand 

(Halliburton, 2009) are other types of weighting agents, but only barite and hematite have 

related API/ISO standards (Oilfield Glossary, 2009). Barite was reported as less efficient 

weighting agent compared to ilmentite, hematite or manganese tetraoxide (Nelson et al., 

1990; Nelson et al., 2006). However, ilmentite plant dust was found to be less favorable than 

that of barite because a change in consistency with time was observed before initial setting 

for slurries weighted with ilmentite plant dust (Saasen and Log, 1996). Typical properties of 

these weighting agents are illustrated in Table 2.3 (Saasen and Log, 1996; Oilfield Glossary, 

2009) and the concentration of ilmenite, hematite and barite usually required to achieve a 

given slurry density are plotted in Figure 2.2. Table 2.4 (Nelson et al., 1990; Nelson et al., 

2006) summarizes general information regarding the performance characteristics of 

commonly used extenders.  
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Figure 2.2 Densification of cement slurries with various weighting agents  

               (PNS: Polynepthalyne Sulfonate) (Nelson et al. 1990, 2006).  
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Table 2.3 Typical properties of common weighting agents used in well cementing (Saasen and 

Log, 1996; Oilfield Glossary, 2009; Nelson et al., 2006) 

 

 

 

 

Table 2.4 Summary of properties of extenders used in OWC slurries (Nelson et al., 1990; Nelson 

et al., 2006) 

Extender Slurry densities obtainable 

(lb/gal) 

Other features 

Bentonite (clay based 

extenders) 

11.5-15 Assists fluid loss control. Hardened OWC 

system becomes less resistant to sulphate 

water and corrosive fluids because of 

increase in permeability 

Fly ash 13.1-14.1 Resists corrosive fluids. 

Sodium Silicates 

11.1-14.5 Required in low percentages. Ideal for sea 

water mixing. Provides sufficient viscosity 

to allow the use of large quantities of mix 

water without excessive free water 

separation 

Microspheres 

8.5-15.0 Good compressive strength, low 

permeability, thermal stability, and 

insulating properties  

Silica Fume 

≥11 Possible to obtain low-density cement 

systems with a high rate of compressive 

strength development, improves fluid loss 

control 

Foamed Cement 6.0-15.0 Excellent strength and low permeability 

 

2.6 Setting Time and Thickening Time of OWC Slurries 

As mentioned above, OWCs are subjected to a wide range of pressure and temperature, 

which has a major effect on the time required for their setting and hardening. The setting 

time is an important requirement in oil-well cementing. A premature setting can have 

disastrous consequences due to loss of circulation in the well, whereas too long setting times 

Material Density (S.G) 

g/cm3 

Additional water 

requirement (L/kg) 

Typical maximum 

slurry density (S.G) 

(gm/ cm3) 

Barite 4.33 0.20 2.28 

Hematite 5.05 0.019 2.64 

Ilmenite 4.45 0.00 >2.40 

Manganese 

tetraoxide 

4.84 … 2.64 

Siderite 3.80 … … 
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can cause financial losses due to lost productivity, in addition to possible segregation of the 

slurry or contamination by fluids. OWC slurries must also harden rapidly after setting. A 

slow setting behaviour can be achieved by adjusting the composition of the cement and or by 

adding retarders. Constituents of the cement slurry and their percentage can affect the 

hardening time. For example, the setting time can usually be increased by reducing the 

proportion of tricalcium aluminate (C3A). Setting times of up to 4 hours at a temperature of 

93
o
C (200°F) and 6 hours at a temperature of 21

o
C (70°F) can be achieved with a portland 

cement with no C3A (Ramachandran, 1984). Retarders can increase setting times up to 6½ 

hours at a temperature of up to 104
o
C (220°F) (Ramachandran, 1984). For oil well 

construction, it is generally desirable to maintain the setting time of the cement slurry fairly 

constant over the temperature range of 60
o
C (140°F) to 104

o
C (220°F).  

Accurate control of the thickening time, i.e. the time after initial mixing at which the cement 

can no longer be pumped, is crucial in the oil well cementing process. It is important to 

simulate the well conditions (temperature, pressure, etc.) as precisely as possible in 

determining the thickening time. There are some other factors that affect the pumpability of 

the slurry, but are very difficult to simulate during determining the thickening time of the 

slurry, such as fluid contamination, fluid loss to formation, unforeseen temperature 

variations, unplanned shutdowns in pumping, etc. (Hallibutton, 2009).  

The thickening time is usually controlled by using retarders. The addition of carbohydrates 

such as sucrose can significantly extend the thickening time or even prevent setting 

completely (Bentz et al., 1994). But these are not commonly used in well cementing because 

of the sensitivity of the degree of retardation to small variations in concentration (Nelson et 

al., 1990; Bermudez, 2007). It was found that the sugar acts as a retarder of cement slurries 

when added in small concentrations and as an accelerator when added in high concentration 

(Bermudez, 2007). Lignosulfonates and hydroxycarboxylic acids are retarders that are 

believed to perform well for OWCs with low C3A contents (Nelson et al., 1990). The 

mechanism by which these chemicals and others act as retarders is not well understood and is 

still a matter of controversy, but it is known that retarders bind to calcium ions (Taylor, 1997) 

and are able to inhibit the growth of ettringite crystals (Coveney and Humphries, 1996). A 

multiphase, multicomponent model for the hydration of OWC in the presence of retarders 

was proposed by Billingham et al. (Billingham et al., 2005). It was found that the chemical 
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actions of the retarders contribute to slowing the initial rate of hydration reactions and the 

sudden crystallization of ettringite. Other retarders used in well cementing include cellulose 

derivatives, organophosphonates and inorganic compounds such as  acids and salts of boric, 

phosphoric, hydrofluoric, and chromic, zinc oxide (ZnO) and Borax (Na2B4O7*10H2O), 

sodium chloride (concentrations greater than 20% BWOW) (Nelson et al., 1990; Nelson et 

al., 2006). The thickening time of OWC slurries was also found to increase with the addition 

of polyvinyl alcohol (PVA) latex (Lu et al., 2005; Ding et al., 2001). Thickening time was 

found to be almost independent of temperature when the ECSC additive was used in the 

slurry, and the slurry allowed efficient and reliable cementing of long cement columns with a 

large temperature differential between the top and the bottom (Moradi et al., 2006; Sorgard 

and Viali, 2007).  

Unlike retarders, CaCl2, NaCl, and sodium silicates are used to shorten the setting time and 

offset the set delay caused by other additives such as dispersants and fluid loss control 

additives. The accelerating effect of such chemicals depends on their chemical nature, 

concentration, curing temperature and other constituents of the cement slurry. Figure 2.3 

illustrates the effect of NaCl2 on the thickening time of OWC slurries (Nelson et al., 1990; 

Nelson et al., 2006). Salts of carbonates, aluminates, nitrates, sulphates, thiosulphates, as well 

as alkaline bases such as NaOH, KOH, NH4OH accelerate the setting time (Nelson et al., 

1990; Nelson et al., 2006). Glycerin contents of 26% by volume or less were also found to 

accelerate the hydration process of Class G OWC slurries (Saasen et al., 1991).  
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Figure 2.3 Effect of NaCl on thickening time (Nelson et al. 1990, 2006). 
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The criterion for evaluating the setting time of OWCs is different than that for other 

conventional cements. The setting time for OWCs is usually measured in terms of the change 

in viscosity/consistency at elevated temperature. The initial setting/thickening time is 

measured using a consistometer in terms of Bearden units of consistency (BC). At a 

consistency of 30 BC, a slurry is considered to be too viscous to be pumped, and this is 

usually the maximum consistency requirement during the 15 to 30 min stirring period for all 

classes of OWC (API Specification 10A, 2002). The time at which the consistency of an 

OWC slurry reaches 30 BC corresponds to the time of initial set of the cement. The time to 

reach 100 BC is referred as the thickening time of the cement slurry (API Specification 10A, 

2002) and is usually expected to be slightly larger than that to reach 30 BC (Saasen and Log, 

1996). 

2.7  Hydration of Oil Well Cement 

The setting and hardening of an OWC slurry are the result of a series of simultaneous and 

consecutive reactions between water and the constituents of the cement. Vlachou and Piau 

(1997) studied the microstructural and chemical evolution of Class G OWC slurry from the 

first minutes after mixing the cement powder with water until the beginning of setting. Based 

on scanning electron microscopy (SEM) and X-ray Diffraction (XRD), it was concluded that 

the form and structure of the hydration products were a function of experimental conditions, 

such as hydration time since mixing, stirring conditions (Vlachou and Piau, 1997), 

temperature (Justnes et al., 1995), chemical composition of cement and additive used 

(Vidick, 1989) etc. The slurry hydrated under continuous stirring showed constant viscosity 

and adequate fluidity over several hours. The formation of small spheres of hydration 

particles of the aluminate phases had no influence on the flow curve probably because these 

particles created no bonds between them and they moved freely into the inter-particle spaces. 

Subsequently, the slurry thickened rapidly with the multiplication of hydrated crystals and 

the start of setting processes (Vlachou and Piau, 1997). On the other hand, slurries hydrated 

at rest showed a much more increase of viscosity during the first hours, after which the 

evolution process slowed down (Vlachou and Piau, 1997). It was reported that in case of 

slurries hydrated at rest, an over-saturation of ions in the grain neighborhood leads to the 

formation of aluminate hydration crystals of colloidal size (Vlachou and Piau, 1997). These 
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crystal cover the surface of the grains and the hydration reaction eventually slows down. On 

the other hand, ions dispersed all over the sample volume and dissolution continues until 

saturation in case of slurries hydrated under stirring. The chemical composition of cement 

and additives used can affect the evolution of the chemical composition of the liquid phase of 

the cement paste (Michaux et al., 1989, Vidick et al., 1989). X-ray diffraction and scanning 

electron microscopy showed that a neat cement slurry changes from CSH(II), C2SH2, 

C3S2H3 to dicalcium silicate hydrate (C2SH) when the temperature exceeds 110°C and the 

microstructure of hardened slurry changes from a three-dimensional fiber network to a blank-

block or mass block for different curing temperature conditions (Zhang et al., 2008). On the 

other hand, the major products of cement slurry with silica sands changes into C5S6H5, 

C6S6H (> 150°C), C5S5A0.5H5.5, C3.2S2H0.8 or other kinds of calcium silicate hydrate at 

high curing temperatures and the microstructures are transformed into a fiber network, rough 

frame network, short-parallel-needle fiber or mass block structure (Zhang et al., 2008). 

Different cements show different sensitivity to additives, thus exhibiting different behaviours 

when mixed with the same additives (Vidick et al., 1989; Jupe et al., 2007). According to 

Justnes et al. (1995) only about 10% hydration is necessary for a plain API class G cement 

slurry with w/c = 0.5 to retain its shape at atmospheric pressure. Even though, changes in the 

hydration of C3S with pumping time of cement slurries could not be correlated, it was found 

that the largest changes in pumping time as a function of temperature occurred in a 

temperature interval where ettringite/monosulphate decomposes and crystalline hydro garnet 

started to be formed (Jupe, 2005). 

2.8 Mechanical Properties of Hydrated OWC Slurry 

Myers et al. (2005) argued that compressive strength is not the main parameter in well 

cement slurry design rather elasticity and tensile strength of the cement system is more 

important for casing support and zonal isolation. However, an effective and long term zonal 

isolation requires the consideration of other mechanical properties such as the flexural 

strength, shear strength and elastic properties (Young's modulus and Poisson’s ratio), 

particularly when wells are subjected to anisotropic earth stresses. Such properties are 

especially important in the case of multilateral junction cementing, which has evolved as an 

economic means for increasing reservoir productivity and reducing development plan costs 

(Blanco et al., 2002). Various models have been developed to quantify stresses induced in 
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cement sheaths. In most instances, such models tend to predict that failure usually occurs 

under tensile stresses rather than under compressive stresses (Goodwin and Crook, 1992; 

Heinold et al., 2002).  

The mechanical properties of hardened OWC slurry are affected by a number of factors and 

depend on the chemical composition of its constituents, temperature, curing regime etc. The 

compressive strength decreases with the addition of MgO, while the shear bond strength 

increases with the addition of MgO (Buntoro and Rubiandini, 2000). The addition of 3 to 5% 

by weight of cement (BWOC) of neat MgO as an expanding additive provides an excellent 

shear bond and acceptable compressive strength in geothermal and oil well cements at high 

temperatures of up to 250°C (Buntoro and Rubiandini, 2000; Saidin et al., 2008). For a 

cement slurry composed of 35% silica flour and 3% MgO BWOC, 3 days of curing result in 

higher shear bond strength and compressive strength as shown in Figure 2.4 (a, b). 

Microsilica (also called condensed silica fume), because of its high degree of pozzolanic 

activity, has allowed the introduction of low-density cement systems with higher rate of 

compressive strength development (Carathers and Crook, 1987). However, not all grades of 

microsilica improve slurry stability and mechanical properties of hardened cement system.  
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Figure 2.4 Effect of time on (a) shear bond strength behavior, and (b) compressive 

strength behavior of portland cement system containing 35% silica flour and 3% 

BWOC of neat magnesite at various temperature (Buntoro and Rubiandini, 2000). 
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Cement slurries prepared using densified microsilica neither improves the slurry stability nor 

the set cement permeability and mechanical properties (Daou, F. and Piot, 2008). Mechanical 

properties are not only dependant on the type of additives, but also on the slurry density. 

Thus, additives which are known to improve the flexural and tensile strength of hardened 

cementitious materials in low to medium density systems may not be as effective in higher 

density systems (Heinold et al., 2002). It has been found that incorporating polymeric latex 

particles improved the tensile strength and toughness of hydrated cementitious materials 

(Isenburg and Vanderhoff, 1974). Fibre-reinforced cement-based systems have been proven 

to be useful in various cementing applications. An increase in flexural strength and in energy 

absorption before fracture can be achieved by incorporating relatively small amounts of 

polymer latex together with short fibers. Approximately 0.8% by volume of a styrene-

butadiene copolymer latex added to a glass fiber-reinforced Class G OWC improved the 

energy to fracture by a factor of four due to an enhancement of the interfacial shear strength 

between fibers and the cementitious matrix (Pafitis, 1995). It was reported that combined 

addition of fibers and latex increased both the strength and fracture energy to values greater 

than that found by the incorporation of either fibers or latex alone (Pafitis, 1995). On the 

contrary, a decrease in compressive strength was observed with increasing amount of fiber in 

latex modified cement since the increased amount of fiber led to an increase in the porosity 

and permeability of the hydrated OWC (Trabelsi and Al-Samarraie, 1999). Ultra lightweight 

slurries with densities from 9 to 11 ppg provide adequate mechanical properties (flexible and 

tension strengths) and resistance to H2S and CO2 (Mata et al., 2006). The inert fibers, added 

to ultra lightweight slurries, improve the mechanical properties of the cement by creating a 

network across the loss zone during cementing in highly permeable and depleted formation, 

and the created net provide additional stability to resist tensile stresses (Garduño et al., 2006). 

Cestari et al. (2008 and 2009) studied the kinetic parameters of HCl interaction with an 

epoxy-modified cement slurry and a standard cement slurry and found that the epoxy-

modified cement slurry have good potential to be used in environmental-friendly oil well 

operations. Portland cement and polyurethane nonionic composites was found to provide 

improved the mechanical properties compared with the slurry prepared using only Portland 

cement (Nascimento et al., 2008). Fiber-toughening agent, consisted of carboxylated nitrile 

rubber particles at 5.5% BWOC and a polypropylene fiber at 0.2% BWOC, was found to 

significantly increase both the elasticity and the toughness of set cement (Yao and Hua, 
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2007). A high performance light weight (HPLW) slurry along with an engineered fiber 

material (EFM) resulted in improved zonal isolation and less reservoir damage by reducing 

the hydrostatic pressure in the annulus and artificially increasing the fracture pressure during 

placement, and cost savings by avoiding remedial cementing and non productive time 

(Tranquini et al., 2007).  

2.9 DURABILITY of HARDENED OWC SLURRIES 

Cement-based materials are subjected to deterioration under aggressive environments. The 

extreme temperature cycling of the well bore results in severe mechanical damage and 

ultimate failure of the cement sheath, potentially leading to microannulus (Saidin et al 2008). 

The rate of deterioration is generally aggravated at high temperature and pressure such as in 

the case of oil and gas bores. A strict control of cement reactivity and mechanical properties 

during the life cycle of the well is thus very important. The oil well cemented system should 

meet a wide range of short-term criteria such as free water, thickening time, filtrate loss, 

development of strength, shrinkage, etc., in addition to various long-term requirements 

including resistance to chemical attack, thermal stability and mechanical integrity of the 

cement sheath (Ravi et al., 2002).  

2.9.1 Porosity and Permeability 

The volume and size distribution of pores affect not only the mechanical strength of cement-

based materials, but also its durability. The porosity and pore size distribution of a hardened 

OWC slurry depends on a number of factors such as the w/c ratio, degree of hydration, type 

of cement, mixing conditions, chemical admixtures and mineral additives, etc. High 

temperature has a drastic effect on the pore structure and compressive strength of cement-

based materials. The total porosity is more than doubled when the curing or casting 

temperature increases from 20°C to 1000°C (Komonen and Penttala, 2001; 2004). Based on 

experimental results, Komonen and Penttala (2001) argued that exposure to a temperature 

from 50°C to 120°C can be as detrimental to the residual strength of a cement paste with a 

low water cement ratio as exposure to a temperature of 400-500°C.  Justnes et al. (1995) 

studied the change in porosity and pore size distribution as a function of time during the 

setting period for a plain API Class G cement with a w/c ratio = 0.5 at both 20°C and 60°C. It 

was found that although there was enough liquid volume to allow gas intrusion and 
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percolation to occur, the pore entries were so small (1.0-1.6 µm in diameter) that gas could 

enter only as small bubbles or when dissolved without disruption of the matrix. Polymeric 

latexes were found to improve the ability of the hardened OWC to prevent migration of 

reservoir fluids from one zone to another by decreasing permeability and preventing gas 

migration through the set slurry in the semi-solid state (Nakayama ad Beaudoin, 1987; Su et 

al., 1991). It was reported that the increased amount of fiber in latex modified cement led to 

an increase in the porosity and permeability of the hydrated OWC (Trabelsi and Al-

Samarraie, 1999). Light weight cement systems cured for 7 days at 185°F and 3000 psi 

exhibited lower permeability and porosity (Moulin and Revil, 1997). 

2.9.2 Shrinkage, Expansion and Dimensional Stability 

The expansion of OWC slurries is important to improve the quality of the well cementing 

sealing. Expansion should take place after pumping cement slurry into the annulus and the 

process should begin after the formation of the hardened cement structure starts but not after 

the formation of a rigid crystalline structure, as it can cause fracturing and adversely affect 

the porosity. On the other hand, if the expansion takes place too early, i.e. when the 

suspension is in a liquid state, the quality of formation isolation get worsens. The well casing 

is in an expanded state during the initial setting of the cement slurry due to the heat of 

hydration. Subsequent internal temperature reduction resulting from mud circulation may 

cause the casing to contract and destroy the cement/casing bond partially or entirely (Buntoro 

and Rubiandini, 2000). Expanding additives can overcome this problem as they tend to 

expand after the initial set, thus maintaining the bond between formation, cement and casing 

during pressure and temperature changes. Gypsum and gypsum containing substances can be 

used as expanding additives (Agzamov et al., 2001). The addition of gypsum with high-

alumina binders, high-alumina slags, or anhydrous calcium sulfoaluminate makes the 

resultant cement quick solidifying and late expansive (Agzamov et al., 2001). The slurry 

mixing time and type of additive used have a significant influence on the expansion of the 

hydrated cement. Mixing OWC with CaO additives for three hours, which simulates cement 

slurry pumping into the well, ceases the expansion, whereas MgO does not change the 

cement expansion after the same treatment at a temperature of 80°C (Agzamov et al., 2001). 

Expansion is reduced by 30% and 70% when the pressure is increased up to 50 MPa and 100 

MPa, respectively for cement with a CaO additive (Agzamov et al., 2001). In the case of 
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chromate aluminate cements, expansion is reduced by 25% with the addition of NaCl, and by 

30% when the pressure increases from 10 to 100 MPa (Agzamov et al., 2001).  

Gas leakage into and through the cemented annulus in oil and gas wells can cause 

environmental problems and compromise well safety. It is believed that a low shrinkage of 

the OWC slurry reduces the risk of gas migration (Backe et al., 1999; Backe, 1998). 

Shrinkage or expansion of a hydrating OWC slurry is dependant on the chemical 

composition and dosage of the constituents of the slurry, temperature and pressure. Chemical 

shrinkage, the volume reduction associated with the reaction between cement and water in a 

hydrating cement system, may be divided into two parts: external shrinkage and total 

shrinkage. The external shrinkage is the bulk volume change of cement slurry leading to a 

possible microannulus between the cement and the wellbore, whereas the total shrinkage is 

the sum of the external shrinkage and the contraction of pores of the slurry. The total 

chemical shrinkage of a given cement system can be reduced by increasing the slurry yield 

(Chenevert and Shrestha, 1991) or by decreasing the amount of water by adding sodium 

chloride, silica flour, bentonite, or sodium silicate (55) (Chenevert and Shrestha, 1991). Both 

the total and external chemical shrinkage of hardening Class G cement slurries seem to be 

independent of the w/c ratio at the early stage (during the first 48 hrs) (Justnes et al., 1995). 

The use of an extender reduces the shrinkage and the risk of gas migration provided that the 

mechanical strength development of the cement slurry is satisfactory (Backe, 1998). The 

external and total shrinkages of a neat Class G cement slurry cured at 20°C and atmospheric 

pressure were found to be about 1.0 ml/100g cement and 2.2 ml/100 g cement, respectively 

after 48 hours (Justnes et al., 1995). Human hair fibers reduces the plastic shrinkage cracks 

area of mortar by a remarkable percentage up to 92% and are claimed to commercially use in 

oil and gas well (Al-Darbi et al., 2006). 

2.9.3 Corrosion and Acid Attack 

Corrosion of hydrated OWC and the exterior wall of the well casing is common in oil wells. 

CO2 corrosion was found to be the dominant mechanism of OWC deterioration in the form of 

carbonic acid leaching intensified by high temperature (Krilov et al., 2000). Yang et al. 

(2001) reported that the unconsolidated phase and diffusional effect as a result of the action 

of the formation water solution matrix Ca(OH)2 with Ca(OH)2 are the basic reasons causing 
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this form of corrosion while according to Zhang et al. (2009) the cement corrosion by CO2 

occurs by the destruction of the microstructure formed by the original hydration products of 

oil well cement and is affected by CaCO3, with different crystal structure, which is produced 

by the chemical reaction between CO2 and the original hydration products. 

Pyrite (FeS2), a common constituent of reservoir rocks, can be easily oxidized to sulfuric acid 

(H2SO4) and sulphate ions (SO4
2-

) by exposure to moderately oxidizing conditions, including 

de-oxygenated injection or process water or steam. Pyrite oxidation causes excessive 

degradation of well cements and replacement of cement by structurally less stable products 

such as calcium sulphates (Hutcheon, 1998). Sulfuric acid may also cause the corrosion of 

the well tube and subsequent casing leak, which may lead to a failure of the casing due to 

cement collapse, tubing corrosion or both (Hutcheon, 1998). 

The durability of hardened OWC to acid exposure has not been well studied. About 40% of 

the world’s remaining gas reserves contain more than 2% of CO2 and/or more than 100 ppm 

of H2S (Lecolier, 2006). Therefore, a comprehensive investigation of the durability of OWC 

exposed to CO2 and H2S is of paramount importance to optimize oil/gas well production and 

special attention has to be provided to the design of the well system including the casing and 

cementing materials subjected to corrosive gases. 

The subsurface conditions that may exist in CO2 sequestration sites can damage the cement 

that makes the primary plug in abandoned wells. Duguid et al. (2004 and 2005) conducted 

experiments at ambient pressure and various temperatures (20°C, 23°C and 50°C) with the 

pH adjusted using HCl. Extensive degradation was observed in these experiments due to the 

continuous flow of acidified, carbonated brine. These results showed that lower pH and 

higher temperature cause faster degradation and temperature had more effect on degradation 

rates than pH (Duguid et al., 2004 and 2005). The rate of mass loss of the hardened OWC 

slurry usually slows down with time. Duguid et al. (2004) found that cement slurry 

containing bentonite deteriorated at a faster rate than that of a neat Class H cement slurry. 

Even a short exposure to carbonated brine can damage the sealing properties of the cement in 

an abandoned well (Duguid et al., 2004). Light-weight cement slurries are usually more 

resistant to acid attack and the resistance also improves when latex is used in the formulation 

as shown in Table 2.5 (Moulin and Revil, 1997). It was reported that hardened OWC 
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deteriorated and lost its integrity under a hostile downhole environment (high reservoir 

temperature>180°C, sour gas: 22% CO2 and 150 ppm H2S) after prolonged exposure (Krilov 

et al. 2000). Geothermal conditions (bottom hole temperature>250°C) (Sasaki et al., 1986) 

may result in well bore cement systems deterioration with loss of compressive strength and 

increasing permeability in a relatively short period of time (Gallus et al., 1979). According to 

Jacquemet et al. (2005) the presence of a H2S-CO2 mixture induced carbonation of the 

cement and sulfidation of iron bearing phases (steel and C4AF) coupled with a pH decrease at 

elevated pressure and temperature (500 bar and 200°C). It was reported that reactive power 

cement (RPC) formulation, optimized according to the grain size distribution of Class G 

cement and two different types of silica particles (silica sand and silica fume) and other 

classical additives such as lignosulfonate derivatives (retarder), polynaphthalene sulfonate 

(dispersant) and acrylic polymer (fluid loss agent), reduced the deteriorating effect of H2S 

sulfar gas (Noik and Rivereau, 1999).  

 

Table 2.5 Acid- resistant light-weight cement formulations (Moulin, E., and Revil, 1997) 

 Cement 1 Cement 2 Cement 3 Cement 4 

Density kg/m3 

(lbm/gal) 

1440 (12) 1896 (15.8) 1440 (12) 1896 (15.8) 

Latex (gal/sk) - - 1.25 1.6 

Weight loss, %     

     In 1 hr 1.0 3.7 0.3 2.8 

     In 4 hrs 4.3 21.0 0.9 7.7 

 

 

2.9.4 Sulphate Attack 

Sulfate ions chemically combine with tricalcium aluminate in an expansive reaction and can 

cause cement distress. This process depends on the C3A content of cement, the type and 

concentration of sulphate ions, permeability of the cementitious matrix, and temperature. The 

degradation process decreases with increasing temperature and can be mitigated by reducing 

the permeability of the hydrated cement (Morales et al., 2003). The sulphate degradation 

process requires a certain incubation period before the cementitious matrix pores become 

filled with ettringite. It was reported that specimens prepared with Class A and Class G API 

oil well cements showed insignificant expansion during the first 240 days when exposed to 

solutions containing sulphates concentration ranging from 0 to 30000 ppm and temperatures 
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of 32 and 84°C (Morales et al., 2003). Pore blocking additives, dispersants and low w/c can 

improve the sulphate resistance and durability performance of Class A cement (Morales et 

al., 2003). 

2.10 CONCLUSIONS 

Research on oil well cementing has been reviewed in this paper along with existing studies 

conducted on rheology, additives, mechanical properties and durability of oil/gas well 

cements. A successful oil well cementing should satisfy two basic criteria: (a) it should be 

easily pumpable for a sufficient time to allow proper placement of the slurry in the well bore 

subjected to extreme levels of temperature and pressure, and (b) the cement slurry should 

develop and maintain sufficient mechanical strength to support and protect the casing, and 

must have low permeability and adequate durability to ensure the long-term isolation of the 

producing formation. With the advent of API oil well cements, achieving these goals has 

become easier than before when only one or two Portland cements were available for well 

cementing. Chemical admixtures and mineral additives play an important role by altering the 

chemical and physical properties of the oil/gas well cement slurry and maintaining the proper 

rheology necessary for the placement of the cement slurry in typically deep well bores. The 

appropriate oil/gas well cement slurry design is a function of many parameters including the 

well bore geometry, casing hardware, formation integrity, drilling mud characteristics, 

presence of spacers and washers, and mixing conditions. An adequate rheological 

characterization of the slurry is required to optimize cementing properties.  Though cement 

slurry rheology is a widely studied subject, correlations between rheological properties and 

the chemical, microstructural and mechanical behaviour of the slurry after setting have not 

yet been fully defined. The oil/gas well cement should meet various long-term requirements 

such as resistance to chemical attack by CO2, acids and sulphates, thermal stability and 

mechanical integrity of the cement sheath. There is an opportunity for researchers to develop 

novel oil/gas well cementitious systems that have stable rheology and appropriate setting 

properties under high temperature and pressure, and excellent durability in much adverse 

environments including CO2, acid and sulphate attack. This warrants further dedicated 

research.   
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C h a p t e r  3 

RHEOLOGY OF OIL WELL CEMENT SLURRIES 

3.1 Introduction 

The word “Rheology” originates from the Greek word “reo”, meaning flow. Rheology is the 

study of the deformation and flow of materials. Typically, rheology studies the deformation 

of those materials whose behaviour falls between solids and fluids (viscoelastic materials) 

(Barnes et al., 1989). The study of rheological properties attempts to determine the intrinsic 

fluid properties; mainly viscosity, which is necessary to determine the relationships between 

the flow rate (shear rate) and the pressure gradient (shear stress) that causes the movement of 

a fluid (Guillot, 2006). The science of rheology can be employed for instance for achieving 

the following goals: 

• To understand the interactions between different ingredients in a material to get an 

insight into its structure.  

• To control the quality of a raw material by measuring its rheological properties. The 

acceptance/rejection of a product can be determined based on rheological results. 

• To evaluate the mixability and pumpability of a slurry. 

• To determine the frictional pressure when a slurry flows in pipes and annuli. 

• To evaluate the capability of a slurry or paste to transport large particles (e.g., some 

lost circulation materials and fibres). 

• To evaluate how the surrounding temperature profile affects the placement of a slurry 

or paste.  

• To design a processing equipment such as selecting the appropriate pump to provide 

sufficient power for a material to flow over a certain distance in pipelines. The 

relationship between the pump and flow in pipelines is governed by the rheological 

properties of the material. 

Fluid movement may be compared to a large number of platelets moving parallel to one 

another at different velocities (Guillot, 2006) (Fig. 3.1). In this simple flow geometry, the 
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velocity of the fluid particles varies linearly from one plate to another and the shear rate (or 

velocity gradient) can be mathematically described as: 

 

Shear rate =  

Or  

                 L

vv

dx

dv 21 
                                                                                                      (3.1) 

Where, x is an axis parallel to the plates. The dimensions of equation 3.1 are 

1
1







time
length

timelength

 

Therefore, the unit of shear rate is sec-1 and is represented by 


 .   

 

 

  

 

 

 

Figure 3.1 Flow between parallel plates 
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The force F, applied to the top of an element causes shear stresses ( ) expressed in the 

following equation: 

A

F
                                                                                                                                        (3.2) 

The viscosity, , of a fluid is the ratio of the shear stress, , to the shear rate, 


 . In common 

oilfield units, the unit of viscosity is the centipoises (cp) and in SI unit, it is the Pascal-sec 

(Pa.s). 




                                            (3.3) 

There are several ways to study the rheology of materials by inducing shear stress. Shearing a 

material using a two parallel plate geometry (Fig. 3.2) has been used to measure the viscosity 

of liquids. However, this geometry has encountered difficulty when used to test materials 

with low viscosity, since it is hard to hold such a material between the two plates. 

 

 

 

 

 

Figure 3.2 Illustration of the parallel plate geometry. 

The coaxial cylinders geometry is the most commonly used tool to measure the rheological 

properties of fluids because the sample can be easily placed in the gap between two 

cylinders, and the material is sheared by rotating one of the cylinders. Figure 3.3 is a 

schematic representation of the coaxial cylinders geometry.  
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Figure 3.3 Schematic representation of coaxial concentric cylinders with cylindrical conical 

end geometry. 

 

3.1.1 Newtonian Fluid 

Generally, fluids can be classified into two groups: Newtonian and non-Newtonian. 

Newtonian fluids (Fig. 3.4) comply with the Newtonian model represented by equation 3.3, 

in which the shear stress, , is proportional to the shear rate, 


 . The slope of the line is the 

viscosity,  , of the fluid which does not depend on the flow condition (e.g., shear rate, time 

of shearing) but depends on temperature and pressure (Guillot, 2006). Stresses in a 

Newtonian fluid will suddenly reach zero upon stopping the shearing. However, whatever is 

the period of the resting time, when the shearing starts again, the viscosity is as previously 

measured (Barnes, 1989).  

Fluids that show a Newtonian flow behaviour have often low molecular weights. Common 

Newtonian fluids are water, gasoline, etc. Silicon oils are used as a calibration liquid for 

rheometers due to their reliability.  
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Figure 3.4 Shear stress-shear rate relationship for a Newtonian fluid. 

 

3.1.2 Non-Newtonian Fluid 

Unlike Newtonian fluids, the viscosity of non-Newtonian fluids depends on the applied shear 

rate and the time during which the shear rate is applied, i.e., the shear stress-shear rate 

relationship differs from a straight line that goes through the origin. 

A certain level of stress must first be overcome before a non-Newtonian fluid starts to flow. 

The presence of a critical stress means that under static conditions, a non-Newtonian fluid 

essentially acts as a solid and will continue acting as a solid until the stress reaches the shear 

force needed to overcome the internal friction of the material. The Bingham plastic model 

was introduced to account for this distinguishing characteristic of non-Newtonian fluids 

(Bingham 1922): 

Two parameters describe the Bingham plastic model : 

• The value of  for 
0,0  


 

• The slope of the straight line, plastic viscosity , P  (Fig. 3.5).  



  P0
 , when 0                            (3.4)  





  

  
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

  =0, when 0                                                                                                          (3.5) 

 

 

 

 

 

 

 

 

Figure 3.5 Shear stress-shear rate relationship for a Bingham plastic fluid. 

 

The measured yield stress value may vary for a given material if the test conditions change. 

For example, Nehdi and Rahman (2004) found that the yield stress of cement paste varied if 

the type of the geometry used in the rheological test changed.  

The fact that the viscosity depends on the shear rate means that the tested sample does not 

have a constant viscosity. Thus, the viscosity of a non-Newtonian fluid is measured at a 

specified shear rate and is called apparent viscosity. Power-law fluids include pseudo-plastic 

fluids which flow immediately when a pressure gradient is applied. However, unlike 

Newtonian fluids, the relationship between shear stress and shear rate is not linear (Fig. 3.6). 

The Power-law fluids pass through the origin and are described by the following formula: 

.

 nk                                          (3.6) 

Slope =plastic viscosity 
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 =
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where, , k, 


  and n represent the shear stress, consistency, shear rate, and power law 

exponent, respectively. The exponent n describes the shear thinning and shear thickening 

behaviour. Cement pastes or slurries are considered as shear thinning when n<1 and shear 

thickening when n>1.  

 

 

 

 

 

 

 

Figure 3.6 Shear stress-shear rate relationship for a Power-law with n<1. 

A fluid becomes shear-thinning when the apparent viscosity decreases with the increase in 

shear rate, i.e. when the slope of the shear stress vs. shear rate flow curve decreases with the 

shear rate (Fig 3.7).  

 

 

Figure 3.7 Typical shear thinning behaviour: (a) shear stress vs. shear rate, and (b) 

viscosity vs. shear rate. 
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The shear-thickening phenomenon  is often associated with suspensions of irregularly shaped 

particles in which the liquid exhibits an increase in volume when it is sheared. The viscosity 

of shear-thickening materials increases with the increase of shear rate (Fig. 3.8). The 

microstructure of such materials will rearrange when sheared causing resistance to flow that 

increases with shear rate (Barnes et al., 1989).  

 

 

 

Figure 3.8 Typical shear thinning behaviour: (a) shear stress vs. shear rate, and (b) 

viscosity vs. shear rate. 

 

A Herschel-Bulkley fluid combines Power-law and Bingham plastic behaviours of fluids 

through the following formula: 

.

0



 n
k                                         (3.7) 

where, , 0 , k, 


  and n represent the shear stress, yield stress, consistency, shear rate, and 

power law exponent, respectively. The model assumes that below the yield stress ( 0 ), the 

slurry behaves as a rigid solid, similar to the Bingham plastic model. 
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3.1.3 Thixotropy  

Thixotropy is a gradual decrease of the viscosity under shear stress followed by a gradual 

recovery of structure when the stress is removed. Thixotropic fluids show both a shear 

thinning and time-dependent behaviour (Mewis, 1979). Thixotropy is due to the structure 

degradation resulting from rupturing floes or linked particles when the material is sheared. 

When the shearing stress is removed, the material structure rebuilds again and is eventually 

restored to its original condition (Barnes et al., 1989). A quantitative measurement of 

thixotropy can be attempted in several ways. The most apparent characteristic of a 

thixotropic system is the hysteresis loop, which is formed by the up-and down-curves of the 

flow curve. If a material is thixotropic, the resulting two curves (up and down curves) do not 

coincide, and the degree of thixotropic behaviour, measured by the area of the hysteresis 

loop, indicates a breakdown of structure (and hence shear thinning) that does not reform 

immediately when the stress is removed or reduced (Fig. 3.9). It should be noted that two 

successive tests are needed to determine whether a material is thixotropic or not; a material is 

thixotropic when a loop is also obtained in the second test. In thixotropic cement slurries, the 

down curve of the hysteresis loop is displaced to the right of the up-curve. The viscosity 

values of cement slurries in the down curve were found lower than those in the up-curve at a 

constant shear rate. The opposite behaviour to thixotropy is called anti-thixotropy or 

rheopexy. The reverse hysteresis indicates that the structure of the materials stiffens as it is 

sheared at high temperature due to the mechanism of thoxitropy build up, likely as a result of 

accelerated hydration. Antithixotropy can also be encountered for systems whose rate of 

structure recovery is accelerated by, for example vibration, and therefore the build-up of 

structure due to such an effect is greater than the structure break down due to shearing. This 

phenomenon is also denoted as negative thixotropy, because the measured down-curve 

becomes higher than the up-curve, leading to a negative value of the enclosed area between 

these two curves (Mewis, 1979). 
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Figure 3.9 Typical hysteresis loop of a thixotropic fluid. 

 

3.2 Rheology of Oil Well Cement Slurries 

The rheological properties of an oil well cement (OWC) slurry determines the quality of the 

final product and helps predicting its end use performance and physical properties during and 

after processing. Rheological measurements can determine the flow properties of the cement 

slurry such as its plastic viscosity, yield point, frictional properties, gel strength, etc. 

Rheology studies the flow of fluids and deformation of solids under stress and strain. In shear 

flows, imaginary parallel layers of liquid move over or past each other in response to a shear 

stress to produce a velocity gradient, referred to as the shear rate, which is equivalent to the 

rate of increase of shear strain (Douglas et al., 1995). In extensional flows, elements flow 

towards or away from each other. Elongational or stretching flows are seldom found in 

cement systems (Banfill, 2003). However, it may be possible to experience some elongation 

at the entry or exit of a pipe. The rheological properties of OWC slurries are important in 

assuring that the slurries can be mixed at the surface and pumped into the well with minimum 

pressure drop. The rheological properties of the cement slurry also play a critical role in mud 

removal. A proper flow regime must be maintained for complete removal of the mud from 

the well bore (Nelson, 1984).  

The flow regime of a cement paste or slurry can change with time, temperature, pretreatment, 

application of shear, type of application, type of dispersion, physical and chemical 

  




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characteristics of solid and liquid ingredients, the addition of special surface-active agents, 

and the extent of grinding and mixing. The rheological behaviour of the cement slurry also 

depends on a number of factors including the water-cement ratio, size and shape of cement 

grains, chemical composition of the cement and the relative distribution of its components at 

the surface of cement grains, presence of additives, mixing and testing procedures, etc. 

(Guillot, 1990; Guillot, 2006). The concentration and shape of solid particles has a significant 

effect on the rheological properties of an OWC slurry. The yield stress and plastic viscosity 

of cement paste usually increase as the cement becomes finer (Berg, 1979) and/or as the 

particle concentration increases (Barne el al,. 1989).  

The rheology of OWC slurries is generally more complicated than that of conventional 

cement paste. In order to contend with bottom hole conditions (wide range of pressure and 

temperature), a number of additives are usually used in the OWC slurries and the slurry 

shows different characteristics depending on the combination of admixture used. Sulfonates 

(polynapthalene sulfonate, lignosulfonates) are the most commonly used cement dispersants. 

Lignosulfonates should not be used at lower temperature because of its retardation effect 

(Nelson et al 1990, Nelson et al. 2006).  

It has been observed that the flow of OWC slurries follows the Bingham plastic model 

almost perfectly (Guillot, 1990). It was found that the viscosity of a Class G cement slurry 

decreases with the addition of a lignosulfonate dispersant as illustrated in Table 3.1 (Guillot, 

1990). The yield value of the cement slurry decreased with increasing concentration of the 

dispersant (Michaux and Defosse, 1986). Glycerin acts as a slurry viscosifier and it was 

found that the associated increase in viscosity at lower shear rates is significantly lower than 

that at higher shear rates (Saasen et al., 1991). The shear thinning characteristics of Class G 

OWC slurry incorporating glycerin is illustrated in Fig. 3.10. Moreover, the incorporation of 

sub-micron size polymer latex (Nakayama and Beaudoin, 1987; Su et al.,1991) and 

replacement of cement by polymer powder (Chougnet et al., 2006) can lead to a significant 

reduction in the OWC slurry viscosity, and therefore can improve mixability and 

pumpability. Rheological and hydraulic properties of foams (complex mixtures of gasses and 

liquids or slurries) are largely influenced by foam quality, liquid-phase viscosity, 

temperature, and pressure. It was found that unlike conventional aqueous foams, low-quality 

cement foams have a lower viscosity than the base fluid, and the viscosity increases as the 
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cement foam quality (gas volumetric fraction) increases from 10% to 30% (Ahmed et al., 

2009). The viscosity of low-quality cement foam increased slightly after expansion or 

removal of pressure (Ahmed et al., 2009). 

 

Table 3.1 Rheological parameters for Class G cement slurries with and without a dispersant 

(Guillot, 1990) 

Fluid Plastic Viscosity 

(mPa) 

Yield Stress 

(Pa) 

Neat Class G cement slurry 27.0 14.0 

Dispersed Slurry 25.0 2.4 
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Figure 3.10 Viscosity of slurry as a function of the shear rate (Saasen et al., 1991). 

 

 

The viscosity of OWC slurries exhibits a time-dependent behaviour which is difficult to 

characterize. However, for practical oilfield purposes, cement slurries are invariably 

represented by time-independent models as mentioned in the subsequent section. However, it 

is difficult to capture all possible trends of flow behaviour using a single rheological model 

(Yahia and Khayat, 2001). The performance of rheological models usually varies with the 
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test geometries, gap between shearing surfaces and their friction capacity, which makes the 

measurements more complicated (Nehdi and Rahman, 2004).  

3.2.1 Time-Independent Rheological Models 

Though there are qualitative and quantitative discrepancies between the rheological results 

for cement paste reported by different researchers, it is worthwhile to present the most 

commonly used rheological models to describe the rheological behaviour of cement slurries. 

These rheological models are usually mathematical expressions (Guillot, 1990; Banfill, 2003; 

Nehdi, 1998) of the shear stress or usually viscosity as a function of the shear rate. Figure 

3.11 shows examples of slurry flow curves used in the petroleum industry (Guillot, 1990). 

Various rheological models used to describe cement slurry rheology are summarized in Table 

3.2. 

Existing time-independent rheological models allow fitting shear stress, shear strain rate and 

viscosity experimental data to specific trends using rheological data analysis software. 

However, no model is free from statistical error (Nehdi and Rahman, 2004). The Bingham 

plastic model and the power law model are widely used to describe the rheological properties 

of cement slurries (Guillot, 1990). The Bingham plastic model includes both yield stress, 
0  

and a limiting viscosity, P at finite shear rates, which the Power law model fails to consider.  

However, the Bingham plastic model tends to overestimate the shear stress at both low and 

high shear rates in a manner opposite to that of the power law model (Guillot, 1990). It was 

argued that friction pressures of cement slurries are better described by a modified form of 

the theoretical Bingham plastic friction pressure equations (Shah and Sutton, 1990).  
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Figure 3.11 Examples of flow curves used in the petroleum industry (Guillot, 1990). 

 

 

Table 3.2 Various time-independent rheological models for cement slurries 

Model Main Equation Model Main Equation 

Newtonian Model 




  
Vocadlo Model n

nn
k 












 /1/1

0  

Bingham Plastic 

Model 



  P0
 

Hershcel-Bulkley 

Model 

n

k


  0  

Modified Bingham 

Model 

2

0



  cP  

Sisko Model 1


n

k    

Power Law Model n

k


   

Williamson Model 

n

k 















1

0  

Casson Model 

  P0  

  

  shear stress, 


 strain rate,   constant slope for Newtonian model, 0  yield stress, P plastic 

viscosity, c= regression constant, k  consistency index, n= power law index,  viscosity at infinite shear 

rate, n=constant. 
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3.2.2 Effect of Time, Temperature and Pressure on Rheology of Cement Slurry 

Temperature has a drastic effect on the rheological behaviour of cement slurries, which 

depends on the type of cement and admixtures used. The consistency, viscosity or plastic 

viscosity of cement slurries usually decreases with an increase in temperature as shown in 

Figure 3.12 (a, b). Limited experimental studies at higher temperatures suggest that cement 

slurry stability is problematic at higher temperature (Guillot, 1990). Pressure has a negligible 

effect on the flow behaviour of cement slurries because of the low compressibility and 

viscosity-pressure dependence of water. But the flow behaviour of cement slurries becomes 

increasingly sensitive to pressure at higher solid-liquid ratio (Guillot, 1990).  
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Figure 3.12 Temperature dependence of plastic viscosity and yield stress of a cement slurry 

with (a) cellulose derivatives and (b) a dispersant and a latex (Guillot, 1990). 
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The pressure and temperature dependence of the rheological properties of OWC slurries have 

not been well characterized because of the limitations of the standard oilfield testing 

equipment and API specifications for the determination of rheological properties, which limit 

the maximum temperature for measurements to 88C at atmospheric pressure (Guillot, 1990; 

API RP 10B-2, 2005). However, Kellingray et al. (1990) used a modified pressurized 

consistometer to obtain rheological information of OWC slurries at high temperature and 

high pressure. The maximum temperature and pressure used in their experiments were 119
o
C 

(246F) and 81.1 MPa (11800 psi), respectively.  

It was concluded that compared to temperature effects, pressure had negligible effects on the 

rheological properties of cement slurries as shown in Figure 3.13(a, b). Ravi and Sutton 

(1990) investigated the effect of temperature and pressure on the plastic viscosity and yield 

point of class H cement slurries using a high pressure, high-temperature rheometer and 

developed a correlation to calculate the equilibrium temperature for plastic viscosity and 

yield point. Both plastic viscosity and yield stress were found to decrease with the increase in 

temperature. However, plastic viscosity reached a constant value beyond the equilibrium 

temperature whereas there was no evidence for yield stress to attain a constant value beyond 

a certain temperature (Ravi and Sutton, 1990). The equilibrium temperature of the slurry for 

plastic viscosity and yield stress need not be the same and was found to be dependent on the 

slurry composition (Ravi and Sutton, 1990). 
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Figure 3.13 Effect of (a) temperature, and (b) pressure on the apparent viscosity of oil well 

cement slurries (Kellingray et al., 1990). Slurry A prepared using cement, silica flour, fluid 

loss aid (cellulose derivatives), dispersant (naphthalene sulphonate), and retarder (Calcium 

lignosulphonate) whereas Slurry B prepared using cement, silica flour and retarder (calcium 

lignosulphonate). 

 

3.2.3 Equipment and Testing Methods for Rheology of OWC Slurries 

Coaxial cylinder viscometers have been used for the evaluation of the rheological properties 

of OWC slurries. If the slurry rheological properties are well characterized, the friction 

pressure drop and the flow regime in the annulus of the oil well can be predicted with 

reasonable accuracy. Rheological measurements of cement slurries suffer from several 
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limitations including slip at the walls of the measuring device (Saak et al., 2001; Banfill and 

Kitching, 1991; Guillot 1990), migration of the particles due to centrifugal forces (Guillot, 

1990; Denis and Guillot, 1987), shear induced migration (Coussot and Piau, 1995) or gravity 

induced migration known as settlement/sedimentation, and plug flow (Banfill, 2003; Guillot, 

1990). A review of the literature concerning these effects is provided elsewhere (Banfill, 

2003; Guillot, 1990). Similar problems have also been encountered in the case of pile-flow 

viscometers and vane rheometers.  

More satisfactory results can be obtained by introducing devices in the measurement 

geometries to keep the paste homogeneous. These include angled blades (interrupted helical 

impeller) to lift particles  (Bhatty and Banfill, 1982), re-circulating pumps to provide a 

circulation of the fluid  through the sample cup and around the rotor-stator assembly 

(Meeten, 1990), blades with interlocking fingers (Vlachou and Piau, 2000) and more 

conventional mixers (Nachbaur et al., 2001). A modified cone and plate geometry was found 

efficient against settlement error, especially for relatively liquid suspensions with weak 

structures (Piau, 1997). Vlachou and Piau (2000) found that a modified parallel-plate 

geometry attached to commercial rotational rheometers reduced the settlement and slippage 

of OWC slurry particles at the walls and allowed to study the settling process of the cement 

slurries as a function of the intensity of the shear.  

Most conventional rheometers limit the maximum temperature for measurements too much 

lower than the actual bottom hole temperature and limit the pressure to only atmospheric 

levels. Such measurements may lead to poor predictions of OWC slurry properties in the 

actual oil bore, which in turn can increase the risk of cementing failures. Kellingray et al. 

(1990) used a modified high-temperature and high-pressure consistometer to investigate the 

OWC slurry rheology under simulated bottom hole conditions. A number of rheometers 

capable of withstanding high temperature and pressure have been developed. However, 

research studies in this area are still needed to further refine the testing equipment and 

procedures. Though OWC slurry rheology is a widely studied subject, correlations between 

chemical, microstructural and mechanical behaviour of the slurry before and after setting 

have not yet been clearly defined, and thus require more dedicated research. 
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3.3 Conclusions 

The rheological properties of cement-based materials determine the quality of the hardened 

cementitious matrix and help predicting its end use performance and its physical properties 

during and after processing. Measuring rheological properties of cement based materials in 

the laboratory remain a challenging task. The rheological properties are affected by numerous 

factors including the w/c, size and shape of cement grains, chemical composition of the 

cement and relative distribution of its components at the surface of grains, presence and type 

of additives, compatibility between cement and chemical admixtures, mixing and testing 

procedures, etc. Moreover, slip at the slurry-shearing surface interface, particle-particle 

interactions, chemical reactions, non-homogeneous flow fields, and human errors can make 

the rheological experiments difficult to reproduce. Above all, the equipment used to quantify 

the rheological properties of cement based materials is relatively expensive, difficult to 

operate, and may not be suitable for use in construction sites because of its large size and/or 

complicated set up.  

Rheological characterization is a tool that can evaluate the rheology of cement-based 

materials. By examining a suspension of cement particles in water, one can apply well 

established rheological theories. Hence, producing good quality paste or slurry  incorporating 

superplasticizers at high temperature can be achieved by controlling its rheological 

properties. Yield stress, viscosity and the degree of thixotropy are crucial parameters that 

affect the rheology of cement-based materials. 

For the particular case of the petroleum industry, cement slurries are pumped down to several 

thousand meters into the ground to anchor and seal the casing to the borehole of oil or gas 

wells. Thus, an accurate characterization of the rheology of cement slurries is critical. 

However, oil well cement slurry rheology is more complicated than that of cement paste. In 

order to contend with bottom hole conditions (wide range of pressure and temperature), a 

special class of cements called oil well cements (OWCs), specified by the American 

Petroleum Institute (API) (API Specification 10A, 2002) and various additives are usually 

used in the slurry composition. Among the eight (8) different types of available OWC, Class 

G and H cements are usually specified for deeper, hotter and higher pressure well conditions. 

A thorough review of the types of admixtures used in the petroleum industry and the 
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rheology of oil well cement (OWC) slurries has been provided in the literature (e.g. Nelson et 

al., 2006, and Guillot, 2006). But comparing the effects of different admixtures on the 

rheological properties of oil well slurries at different temperatures remains largely 

unexplored and substantial research work is needed to develop fundamental knowledge for 

the effective use of superplasticizers in oil well cementing.  
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C h a p t e r  4 

COUPLED EFFECTS OF CHEMICAL ADMIXTURES AND 

TEMPERATURE ON RHEOLOGICAL PROPERTIES OF OIL WELL 

CEMENT SLURRIES
*
 

4.1 Introduction 

Chemical admixtures play an important role in controlling the early-age physical and chemical 

properties of cement slurries, and subsequently those of the hardened cementitious system. 

However, admixtures are associated with some shortcomings including variation of the initial 

slump, rapid loss of fluidity of cement slurries, and binder-admixture compatibility problems. 

Cement slurries prepared with various kinds of admixtures using the same type of cement can 

exhibit large variations in flow. The rheological properties of cement slurries can be strongly 

affected by a number of factors including the water-cement ratio (w/c), size and shape of cement 

grains, chemical composition of the cement and relative distribution of its components at the 

surface of grains, presence of additives, interactions between the cement and chemical 

admixtures, mixing and testing procedures, time and temperature, etc.  

For the particular case of the petroleum industry, cement slurries are pumped down to several 

thousand meters into the ground to anchor and seal the casing to the borehole of oil or gas wells. 

Thus, an accurate characterization of the rheology of cement slurries is critical. However, oil well 

cement slurry rheology is more complicated than that of cement paste. In order to contend with 

bottom hole conditions (wide range of pressure and temperature), a special class of cements 

called oil well cements (OWCs), specified by the American Petroleum Institute (API) (API 

Specification 10A, 2002) and various additives are usually used in the slurry composition. 

Among the eight (8) different types of available OWC, Class G and H cements are usually 

specified for deeper, hotter and higher pressure well conditions (Lafarge, 2010). A thorough 

review of the types of admixtures used in the petroleum industry and the rheology of oil well 

cement (OWC) slurries has been provided in the literature (e.g. Nelson et al., 2006, and Guillot, 

2006). But comparing the effects of different admixtures on the rheological properties of oil well 

slurries at different temperatures remains largely unexplored.  

                                                 
*  A version of this chapter has been accepted in Construction Materials, ICE, Jul 2010, 40 p, (ID: COMA-D-

10-00023R1).  
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The objective of this study is to investigate the interactions of Class G OWC with different types 

of admixtures and the associated cement-admixture compatibility. A series of flow tests using an 

advanced rheometer were carried out to determine the optimum dosage of admixtures at various 

temperatures. Pressure has been found to have a less significant influence on the rheological 

properties of OWC slurries compared to that of temperature (Guillot, 2006, Ravi and Sutton, 

1990, and Kellingray et al., 1990). Therefore, the rheological properties of cement slurries having 

w/c of 0.35, 0.44, and 0.50 were investigated at temperatures of 23, 45, and 60oC but at ambient 

pressure. Moreover, the flow properties of cement slurries with a w/c of 0.44 and incorporating 

various dosages of six different chemical admixtures were investigated at the same temperatures. 

The admixtures included a new generation polycarboxylate-based high-range water reducing 

admixture (PCH), lignosulphonate-based mid-range water reducing admixture (LSM), 

polycarboxlate-based mid-range water reducing admixture (PCM), phosphonate-based set 

retarding admixture (SRA), hydroxylated carboxylic acid-based retarding admixture (HCR) and a 

rheoplastic solid admixture (RA). The rheological tests were performed as per the American 

Petroleum Institute (API) recommended procedure using an atmospheric rheometer. However, 

pertinent data could not be found in the open literature to compare it to the rheological properties 

of slurries prepared with Class G oil well cement and the admixtures used for this study. The 

present study allowed gaining an improved understanding of the effect of chemical admixtures on 

the rheology of OWC slurries at high temperature. This should contribute to the selection of 

adequate admixtures and their effective dosages to overcome difficulties encountered during the 

construction of oil and gas wells including the rapid loss of workability, pumping problems, 

acceleration of cement hydration, fast evaporation of mixing water and zonal isolation. 

4.2 Rheology of Cement Slurries  

The rheological properties of cement-based materials determine the quality of the hardened 

cementitious matrix and help predicting its end use performance and its physical properties 

during and after processing. To characterize the rheology of a cement slurry, rheological 

parameters such as the yield stress, apparent viscosity, plastic viscosity, shear thinning, or shear 

thickening behaviour need to be studied. The yield stress indicates the minimum effort needed for 

a material to start flowing. Below the yield stress, cement slurries behave like a solid. The 

apparent viscosity is the slope of the straight line connecting the origin and any point on the shear 

stress-shear strain rate flow curve, i.e. it is the viscosity at a particular shear rate. If the points on 

the flow curve are fitted to a straight line, the slope of such a straight line represents the plastic 
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viscosity.  Usually the plastic viscosity of a cement slurry is evaluated using the linear portion of 

the down-curve of the hysteresis loop. For a nonlinear flow curve, shear-thinning or shear-

thickening behaviour may be observed. Shear thinning is when the apparent viscosity decreases 

with the increase in the shear rate, i.e. when the slope of the shear stress vs. shear rate flow curve 

decreases with the shear rate. Shear thickening is when viscosity of the cement slurry increases 

with the shear rate. 

For fluids such as cement slurries, viscosity exhibits a time-dependent behaviour, which is 

difficult to characterize. However, for practical oilfield purposes, cement slurries are invariably 

represented by time-independent models. It has been observed that it is difficult to capture all 

possible trends of flow behaviour using a single rheological model (Yahia and Khayat, 2001). 

The performance of rheological models usually varies with the test geometries, gap between 

shearing surfaces and their friction capacity, which makes calculations of various rheological 

models complicated (Nehdi and Rahman, 2004).  

Existing time-independent rheological models allow fitting shear stress, shear rate and viscosity 

data to specific trends using rheological data analysis software. However, no model is free from 

statistical error. The Bingham plastic model and the Power law are widely used to describe the 

rheological properties of cement slurries (Guillot, 2006). The Bingham plastic model includes 

both yield stress, y and a limiting viscosity, P at finite shear rates, which the Power law model 

fails to consider. Therefore, the Bingham plastic model (equation 1) was used in this study to 

calculate the yield stress and plastic viscosity from the shear rate-shear stress down-curve.  



  P0                  (4.1) 

Where, , 0 , P , and 

.


  represent the shear stress, yield stress, plastic viscosity, and shear rate, 

respectively.  

The down-curve was chosen since it better fits to the Bingham plastic model than the up-curve. 

The down-curve is normally lower in shear stress values than the up-curve because of the 

breakdown in the slurry structure due to shear flow. The degree of thixotropic behaviour 

measured by the hysteresis loop, which is the area enclosed by the up and down curves (Saak, 

2000), indicates a breakdown of structure. Conversely, a reverse hysteresis loop indicates that the 

structure of the material stiffens when sheared due to a mechanism of thixotropy build-up (Eirich, 
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1960). The reverse hysteresis behaviour is called anti-thixotropy or rheopexy (Ferguson and 

Kemblowski, 1991). 

4.3 Materials 

Cement slurries used in this study were prepared using a high sulfate-resistant API Class G oil 

well cement with a specific gravity of 3.14. The chemical and physical properties of this cement 

are summarized in Table 4.1. De-ionized distilled water was used for the mixing, and its 

temperature was maintained at 23±1°C using an isothermal container. A number of conventional 

chemical admixtures along with new-generation admixtures were used and their effects on the 

rheological properties of cement slurries at different temperatures were evaluated. These 

admixtures include: 

(1) A new generation polycarboxylate-based high-range water reducing admixture (PCH), 

meeting ASTM C494 requirements as a Type A water-reducing and Type F high-range water 

reducing admixture was used at selected dosages of 0.25%, 0.50%, 0.75% and 1.0% by weight of 

cement. 

(2) Mid-range water reducing admixture (LSM) which is a lignosulphonate-based admixture 

meeting the ASTM C494 requirements as a Type A water reducing and Type F high-range water-

reducing admixture. Four dosages of LSM, namely 0.5%, 1.0%, 1.5% and 2.0% by weight of 

cement were used in this study. 

(3) Polycarboxylate-based mid-range water reducing admixture (PCM) meeting the ASTM C494 

requirements as a Type A water reducing and Type F high-range water reducing admixture. Four 

dosages of PCM, namely 0.25%, 0.50%, 0.75%, and 1.0% by weight of cement were used in this 

study. 

(4) Set-retarding admixture (SRA) meeting the ASTM C 494 requirements for Type B, retarding, 

and Type D, water reducing and retarding admixture. It is an organic phosphonate-based 

admixture commonly used in the petroleum industry. The dosages used were 0.3%, 0.6%, 1.0%, 

and 1.5% by weight of cement. 

(5) Hydroxylated carboxylic acid-based retarding admixture (HCR) complying with the ASTM 

C494 requirements for Type B, retarding, and Type D, water reducing and retarding admixture. 
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Four dosages of HCR (0.5%, 1.0%, 2.0%, and 3.0%) by weight of cement were used to examine 

the effect of HCR on the rheological properties of cement slurries at high temperature. 

(6) Rheoplastic admixture (RA) is a solid admixture especially designed for cementitious grouts 

to reduce the required mixing water and produce flowable, pumpable, thixotropic, non-

segregating high-strength cement slurry. Three dosages of RA (2.0%, 4.0%, and 6.0%) were used 

in this study. 

 

Table 4.1 Chemical and physical properties of API Class G OWC 

Chemical Component (%) Physical Properties 

Silica (SiO
2
) 21.6 Fineness 45μm sieve  92.4% passing  

Alumina (Al
2
O

3
) 3.3 Blaine (Spec. Surf.) 

385 m
2

/kg 

Iron Oxide (Fe
2
O

3
) 4.9  Thickening Time (Schedule 5) 110 minutes 

Calcium Oxide, Total (TCaO) 64.2 Compressive strength at 8 hours @ 

38
o

C 

2.1 MPa 

Magnesium Oxide (MgO) 1.1  Compressive strength at 8 hours @ 

60
o

C 

10.3 MPa 

Sulphur Trioxide (SO
3
) 2.2   

Loss on Ignition 0.60    

Insoluble Residue 0.30   

Equivalent Alkali (as Na
2
O) 0.41    

C
3
A <1    

C
3
S 62    

C
2
S 15   

C
4 
AF+2 C

3
A 16    

 

 

4.4 Apparatus 

The cement slurry preparation is very important because of the influence of the shear history of 

the mixture on its rheological properties (Orban et al., 1986). The cement slurries were prepared 

using a variable speed high-shear blender type mixer with bottom drive blades as per the 

ANSI/API Recommended Practice 10B-2.  

A high accuracy advanced rheometer (TA instruments AR 2000) (Fig. 4.1(a)) was used to 

measure the rheological properties of cement slurries. The rheometer is capable of continuous 

shear rate sweep, stress sweep and strain sweep. The geometry of the test accessory and the gap 
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and friction capacity of its shearing surfaces have a significant influence on the measured 

rheological properties (Nehdi and Rahman, 2004). The coaxial concentric cylinder geometry was 

considered suitable for this study because of the typically low viscosity of cement slurries. The 

geometry consists of a cylinder with a conical end that rotates inside a cylinder with a central 

fixed hollow as shown in Fig. 4.1(b). The radius of the inner solid cylinder is 14 mm. This inner 

solid cylinder rotates inside a fixed hollow cylinder of 15 mm radius. The gap between the head 

of the conical end and the bottom of the hollow cylinder was set to 0.5 mm for all experiments. It 

is required to use such a narrow gap in order to maintain a constant shear rate across the gap, 

which is important, especially in case of static flow studies to minimize the error caused by 

wall slip in rheological measurements (Saak et al., 2001). The rheometer has an auto gap 

system which compensates for the expansion of the stainless steel of the coaxial concentric 

cylinders under a wide range of temperatures, thus keeping the gap constant during experiments. 

The rheometer has a smart swap technology for temperature control in the range of -10°C to 

150°C in the case of the concentric cylinder system. The device keeps the temperature constant 

during the entire time span of the rheological test through a water circulation system. A solvent 

trap was used to prevent evaporation from the tested cement slurry sample by covering the top of 

the hollow cylinder. This solvent trap has an adequate mechanism to allow rotation of the shaft 

without any interference. 

 

 

 

Figure 4.1 Illustration of, (a) advanced rheometer with coaxial cylinder geometry, and (b) 

coaxial concentric cylinder with cylindrical conical end geometry. 
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The rheometer was calibrated using a certified standard Newtonian oil with a known viscosity of 

1.0 Pa.s and yield stress = 0 Pa at 20°C. The measured yield stress was 0 Pa and viscosity was 

1.009 Pa.s with an error of 0.9%, which is less than the tolerated error of 4% specified by the 

manufacturer. This computer controlled rheometer is equipped with rheological data analysis 

software, which can fit the shear stress-strain rate data to several rheological models. The 

Bingham model was used throughout this study to calculate the rheological properties of cement 

slurries.  

4.5 Experimental Procedure 

4.5.1 Mixing and Preparing Cement Slurry 

The cement slurries were prepared using a high-shear blender type mixer with bottom driven 

blades according to the following procedure. First, the weighed amount of cement and the solid 

admixture (if any) were dry mixed in a bowl by hand using a spatula for about 30 sec. The 

mixing water was subsequently poured into the blender. Then the required quantity of liquid 

admixture was added into the mixing water using a needle, and the mixing started at a slow speed 

for 15 sec so that chemical admixtures could be thoroughly dispersed in the water. The cement-

solid admixture was added to the liquids (liquid admixture and water) over a period of 15 sec. 

Manual mixing was conducted for 15 sec and a rubber spatula was used to recover material 

sticking to the wall of the mixing container to ensure homogeneity. Finally, mixing resumed for 

another 35 sec at high speed. This mixing procedure was strictly followed for all cement slurries. 

All mixing was conducted at a controlled ambient room temperature of 23±1°C. The prepared 

slurry was then placed into the bowl of a mixer for preconditioning over 20 minutes at the test 

temperature (23°C, 45°C, or 60°C) at a speed of 150 rpm. The total time between the beginning 

of mixing and the start of the rheological tests was kept constant to avoid the effect of exogenous 

variables on the results. The rheometer set-up was also maintained constant for all slurries. The 

concentric cylinder test geometry was kept at the test temperature so as to avoid sudden thermal 

shock of the slurry. 

4.5.2 Rheometric Tests 

After mixing and preconditioning, the cement slurry sample was placed in the coaxial cylinder of 

the rheometer. The temperature of the rheometer was adjusted to the required level. The sample 

was then subjected to a stepped ramp or steady state flow and viscosity measurements were taken 
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at 20 different shear rates starting from 5.11 to 511 s-1 after a continuous rotation of 10 sec at 

each speed. Subsequently, the data were measured at a descending shear rate from 511 to 5.11 s-1 

to obtain the down flow curve. The hysteresis loop thus produced was used to characterize the 

thixotropy of the cement slurry (Saak, 2000). A schematic representation of the viscometric 

testing program is illustrated in Fig. 4.2. To check the reproducibility of the test results, three sets 

of cement slurry were tested at three different temperatures. Neat cement slurries were prepared 

at a w/c of 0.44 but without chemical admixtures. The rheological properties of cement slurry are 

time, temperature, and shear history dependent. Therefore, each test was performed with a new 

cement slurry at 20 min after mixing. Figure 4.3 represents the generated data for the reliability 

tests and reveals that the experimental procedure and the rheometer can produce repeatable 

measurements with a relative error of about 10%.  

4.5.3 Gel Strength 

Cement slurries create a particulate structure leading to gel formation when allowed to remain 

static. Static gel strength is an important factor related to the annular fluid migration. It is a 

measure of the attractive forces between the particles in a fluid under static or non-flow 

conditions. Conversely, yield strength is an indication of the attractive forces under flowing 

conditions. Gel strength also represents the thixotropic properties of the slurry. A gel formation is 

usually measurable even if the static period is short. After determining the rheological properties, 

the same slurry sample was used to determine the initial and final gel strength. For this purpose, 

the slurry sample was preconditioned at a shear rate of 511 s-1 for a period of 1 minute to disperse 

the gel already formed. The sample remained static for 10 sec and then a shear rate of 5.11 s-1 

was applied. The maximum observed shear stress reading immediately after turning on the 

rheometer was recorded as the initial gel strength, also called the 10-sec gel strength. The slurry 

sample was subsequently kept static for 10 min and the peak shear stress was recorded again at a 

shear rate of 5.11 s-1 and referred as the 10-min gel strength. 
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Figure 4.2 (a) Schematic representation of stepped ramp, and (b) rheometer test sequence  

(shear rate history used in rheological tests). 
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4.6 Results and Discussion 

4.6.1 Effect of W/C and Temperature on Rheological Properties 

In order to examine the effects of the w/c and temperature on oil well cement slurry rheology, 

neat cement slurries were prepared without any chemical admixtures. Cement slurries with 

different w/c at various temperatures showed significantly different rheological properties. 

However, regardless of the w/c and temperature, all slurries exhibited non-Newtonian and shear 

thinning behaviour as shown in Fig. 4.4.  

Figure 4.5 illustrates typical hysteresis loops for cement slurries with a w/c of 0.44 at different 

temperatures. The area enclosed by the upper and lower curves of the hysteresis loop quantifies 

the degree of structure breakdown in the slurry due to shear flow and is an indication of 

thixotropy. The hysteresis loop area for cement slurries at 23°C was found to be smaller than 

those at higher temperatures, which implies that less structure exists in cement slurries at lower 

temperature. This is likely due to the increase in the rate of hydration of the cement at higher 

temperature. Smaller hysteresis loop area indicates the presence of less structure, which also 

generally results in improved flow properties. At 60°C, sudden occurrence of high shear stress in 

Figure 4.3 Generated (a) yield stress, and (b) plastic viscosity from Bingham model. 

(a) (b) 
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the very low shear rate region may be associated with the formation of a gel structure network 

formed at such high temperature. 
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Figure 4.4 Variation of apparent viscosity (a) with variable w/c, and (b) at different  

temperatures. 
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Figure 4.5 Hysteresis loop for an oil well cement slurry with w/c = 0.44. 

 

The effect of the w/c on the yield stress with variation of temperature is illustrated in Fig. 4.6(a). 

As expected, the yield stress decreased with increasing w/c due to the decrease in the volume 

fraction of solids. Moreover, yield stress values increased with the increase of temperature, which 

indicates that more energy was required to make the cement slurry flow, likely due to the 

increase in the rate of cement hydration at higher temperature. The effect of temperature was 

more significant at lower w/c. As observed in Fig. 4.6, for a w/c of 0.35, the yield stress increase 

(a) (b) 
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between 23°C and 45°C was less significant than the corresponding values between 45°C and 

60°C. 
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  Figure 4.6 Variation of yield stress oil well cement slurry with temperature and w/c. 

 

The plastic viscosity of slurries versus the temperature and w/c was determined using the slope of 

the linear portion of the down-curve of the hysteresis loop. The effect of the w/c and temperature 

on the plastic viscosity of OWC slurries is illustrated in Fig. 4.7.  
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Figure 4.7 Variation of plastic viscosity of cement slurry with temperature and w/c. 
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Plastic viscosity decreased with increasing w/c at a nonlinear rate. It showed a sharp drop at all 

temperatures when the w/c increased from 0.35 to 0.44 and the subsequent decrease was not 

significant. Plastic viscosity also decreased with increasing temperature for the slurries with a 

w/c of 0.44 and 0.50, but it did not follow a consistent pattern when the w/c was 0.35.  

4.6.2 Coupled Effects of Temperature and Chemical Admixtures on Yield Stress  

A steady state shear rate sweep was applied to cement slurries at various temperatures and the 

resultant flow curve was used to determine the yield stress and plastic viscosity using the 

Bingham plastic model. Figure 4.8(a) illustrates the yield stress values for OWC slurries 

incorporating various dosages of PCH at different temperatures. It can be observed that yield 

stress decreased significantly with increasing PCH dosage regardless of the temperature. The rate 

of decrease in yield stress was steeper at higher temperature. The differences between yield stress 

values measured at different temperatures (23°C, 45°C, and 60°C) decreased with higher dosage 

of PCH. This is likely due to the fact that a higher PCH dosage offset the acceleration of 

hydration due to higher temperature. This behaviour was also observed in earlier research (Nehdi 

and Al-Martini, 2007, Al-Martini, 2008). Moreover, the higher the temperature, the higher was 

the admixture saturation dosage (Fig. 4.8(a)). The observed saturation dosages were 0.30%, 

0.50%, and 0.75% at 23°C, 45°C, and 60°C, respectively. 

As shown in Figure 4.8(b), the yield stress increased with the LSM dosage up to 1.0% at 23°C, 

then decreased slightly beyond that dosage. At 45°C and 60°C, the yield stress increased 

gradually with increasing LSM dosage up to 1% then reached a plateau. The increase of yield 

stress with increasing admixture dosage may be due to the fact that the admixture was rather 

acting as an accelerator; a behaviour also observed elsewhere (Nehdi and Al-Martini, 2007). 

Yield stress increased sharply with increasing temperature (Fig. 4.8(b)). For instance, at a LSM 

dosage of 1%, the yield stress at 45°C and 60°C was 1.15 and 1.86 times higher than that at 

23°C, respectively, which is likely due to the acceleration in the rate of hydration at higher 

temperature.  

The effect of the PCM dosage on the yield stress at different temperatures is presented in Fig. 

4.8(c). It is shown that yield stress increased significantly with temperature increase and 

decreased with the increase of the PCM dosage. It is also shown that at 60°C, yield stress values 

decreased steeply with PCM up to a dosage of 0.75%, and then the decrease became less 

significant. At 45°C, the yield stress values decreased continuously with increasing PCM dosages 
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until it reached a plateau (saturation dosage), beyond which no significant decrease in yield stress 

was observed. The depicted PCM saturation dosages were about 0.50%, 0.75%, and 1.00% at 

23oC, 45oC, and 60oC, respectively. 
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Figure 4.8 Yield stress of oil well cement slurries at various temperatures and different dosages 

of admixtures, (a) PCH, (b) LSM, and (c) PCM (w/c = 0.44). 
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The effect of the set retarding admixture (SRA) on the yield stress of cement slurries at different 

temperatures is shown in Fig. 4.9. Generally, the yield stress increased significantly with 

temperature increase and decreased with the increase of the SRA dosage, except at 60oC and low 

SRA dosage (Fig. 4.9). Yield stress-SRA dosage curves at various temperatures were found to be 

nearly parallel to each other, which implies similar slurry behaviour at all temperatures 

investigated, though higher energy was needed to initiate flow of cement slurries at higher 

temperature. 
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Figure 4.9 Yield stress of oil well cement slurries at various temperatures and different dosages 

of SRA admixtures (w/c = 0.44). 

 

The yield stress values of cement slurries incorporating various dosages of HCR are presented in 

Fig. 4.10(a). Yield stress values increased significantly with increasing temperature and 

decreased slightly with increasing admixture dosage. At 23oC, the yield stress showed a sharp 

drop when the dosage increased from 0.50% to 1.00%. Beyond this dosage, there was no 

noticeable change in yield stress. At 60oC a gradual decrease in yield stress with increasing HCR 

dosage was observed. 

Figure 4.10(b) illustrates the measured yield stress values at different temperatures for OWC 

slurries incorporating various dosages of the rheoplastic admixture (RA). Generally, yield stress 

values increased with higher temperature and higher RA dosage for a RA dosage below 2.0%. 

Beyond this dosage, yield stress values dropped significantly with RA dosage. At higher RA 

dosages (6%), yield stress values became comparable at all the temperatures investigated.  
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Figure 4.10 Yield stress of oil well cement slurries at various temperatures and different dosages 

of admixtures, (a) HCR, and (b) RA (w/c = 0.44). 
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4.6.3 Coupled Effects of Temperature and Chemical Admixtures on Plastic Viscosity  

The plastic viscosity at different temperatures of OWC slurries incorporating different dosages of 

various admixtures was determined from the slope of the shear stress-shear strain down curve 

and is illustrated in Figs. 4.11, 4.12 and 4.13. The measured plastic viscosity does not always 

truly represent the material properly and sometimes could be misleading because of the high 

error involved in the fitting curve to the Bingham model (Saak, 2000). However, plastic viscosity 

was measured and presented in this section because it is very difficult to create mechanical 

models for the deformation behaviour of cement paste using the apparent viscosity at each shear 

rate point (Nehdi and Rahman, 2004). 

Figure 4.11(a) illustrates the plastic viscosity at different temperatures for cement slurries 

incorporating various dosages of PCH. Generally, the plastic viscosity gradually decreased with 

increased PCH dosage up to a dosage of almost 0.50%, and then it tended to slightly increase 

beyond this dosage. It can be observed that plastic viscosity increased at a relatively constant rate 

with increasing temperature up to a dosage of 0.75%, and then tended to decrease.  

Figure 4.11(b) presents the plastic viscosity values at different temperatures for cement slurries 

incorporating various dosages of LSM. The plastic viscosity at 23°C did not show a significant 

variation with LSM dosage. At 45°C, the plastic viscosity decreased significantly with increasing 

LSM dosage. It can be further observed that at high temperature (60°C) the dispersing capability 

of LSM was not effective and the plastic viscosity continuously increased with increasing dosage 

of up to 1.5%. 

The plastic viscosity values at various temperatures for cement slurries incorporating various 

PCM dosages are presented in Fig. 4.11(c). At lower PCM dosage and at 23°C, the plastic 

viscosity decreased with increasing PCM up to a dosage of 0.50%, beyond which plastic 

viscosity showed a sharp increase. At 45°C, plastic viscosity decreased gradually with increasing 

PCM dosage up to 0.50% and then followed a plateau beyond which no further decrease was 

observed. Plastic viscosity decreased with increasing PCM dosage at 60°C except at a dosage of 

0.5% where a sharp increase in plastic viscosity was observed. This sudden jump in plastic 

viscosity value at 60°C could be attributed to the error associated with the fitting of flow curve to 

Bingham model. 

 



83 

 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.5 1 1.5 2 2.5 3 3.5

P
la

s
ti
c
 V

is
c
o

s
it
y
 (
P

a
.s

)

Dosage of  PCH (% BWOC) 

23°C

45°C

60°C

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.5 1 1.5 2 2.5 3 3.5

P
la

s
ti
c
 V

is
c
o

s
it
y
 (
P

a
.s

)

Dosage of  LSM (% BWOC) 

23°C

45°C

60°C

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.5 1 1.5 2 2.5 3 3.5

P
la

s
ti
c
 V

is
c
o

s
it
y
 (
P

a
.s

)

Dosage of  PCM (% BWOC) 

23°C

45°C

60°C

 

Figure 4.11 Plastic viscosity of oil well cement slurries at various temperatures and different 

dosages of admixtures, (a) PCH, (b) LSM,  and (c) PCM (w/c = 0.44). 
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As shown in Fig. 4.12(a), the plastic viscosity generally increased with temperature increase, and 

decreased with increased SRA dosage, except at 60°C where plastic viscosity increased up to 

0.6% SRA dosage and then decreased at higher dosage. Figure 4.12(b) shows that at 23°C plastic 

viscosity values increased up to about 0.50% HCR dosage, beyond which it decreased until it 

reached a plateau. At 45°C and 60°C, plastic viscosity generally decreased gradually with 

increasing HCR dosage.  
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Figure 4.12 Plastic viscosity of oil well cement slurries at various temperatures and different 

dosages of admixtures, (a) SRA, and (b) HCR (w/c = 0.44). 
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The plastic viscosity at different temperatures for cement slurries incorporating various dosages 

of RA is illustrated in Fig. 4.13). It is shown that plastic viscosity decreased with the increase of 

RA dosage, and increased significantly with temperature increase at low RA dosage. However, 

plastic viscosity values at all temperatures tested reached comparable values as the RA dosage 

increased.  
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Figure 4.13 Plastic viscosity of oil well cement slurries at various temperatures and different 

dosages of RA admixtures (w/c = 0.44). 

 

4.6.4 Coupled Effects of Temperature and Chemical Admixtures on Apparent Viscosity 

The apparent viscosity results of OWC slurries at a shear rate of 258 s-1 are presented in Figs. 

4.14, 4.15 and  4.16. A shear rate of 258 s-1 was chosen since it was the mean shear rate used in 

the experimental program. Figure 4.14(a) illustrates the apparent viscosity at different 

temperatures for cement slurries incorporating various dosages of PCH. It can be observed that 

the apparent viscosity decreased with increased PCH dosage at all investigated temperatures, and 

increased with temperature increase in a manner generally similar to that of yield stress. 

However, apparent viscosity values at different temperatures reached comparable values at 

higher PCH dosage. The observed saturation dosages were 0.30%, 0.50%, and 0.75% at 23°C, 

45°C, and 60°C, respectively. 

As shown in Fig. 4.14(b), the apparent viscosity increased gradually with LSM dosage up to 

1.0% and this increase was more significant at higher temperature. Apparent viscosity of cement 

slurries with LSM appeared to follow the same trend as that of yield stress.  
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Figure 4.14 Apparent viscosity of oil well cement slurries at various temperatures and different  

dosages of admixtures, (a) PCH, and (b) LSM (w/c = 0.44). 
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Apparent viscosity values of OWC slurries incorporating various PCM dosages is presented in 

Fig. 4.15(a). It can be observed that the apparent viscosity generally decreased with the increase 

of PCM dosage, and increased significantly with temperature increase. At 60oC, no significant 

change in apparent viscosity was evident between dosages of 0.25 and 0.5%, but beyond this 

level the apparent viscosity decreased sharply. A sharp decrease in apparent viscosity was 

observed at low dosage at 45oC and 60oC. A similar trend was observed in the case of yield stress 

for OWC slurries prepared using PCM. At 23 and 45oC, the apparent viscosity decreased with the 

increase in SRA dosage (Fig. 4.15(b)). But at 60oC, a dosage below 0.6% could not effectively 

offset the acceleration of hydration due to high temperature. However, an increased dosage 

beyond that level was effective and led to a significant decrease in the apparent viscosity.  
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Figure 4.15 Apparent viscosity of oil well cement slurries at various temperatures and different  

dosages of admixtures, (a) PCM, and (b) SRA(w/c = 0.44). 
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HRC had little effect on the apparent viscosity below a dosage of 0.5% (Fig. 4.16(a)). As the 

dosage increased, the apparent viscosity gradually decreased with the HCR dosage and reached a 

plateau at all temperatures tested. The effect of RA on the apparent viscosity at different 

temperatures is illustrated in Fig. 4.16(b). It is shown that the apparent viscosity increased with 

the temperature and also with the RA dosage up to a dosage of 2.0% at all temperatures tested, 

then it started to decrease markedly beyond this dosage. It appears that RA acted as an 

accelerator at low dosage and as a retarder and dispersant at higher dosage. 
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Figure 4.16 Apparent viscosity of oil well cement slurries at various temperatures and different  

dosages of admixtures, (a) HCR, and (b) RA(w/c = 0.44). 
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4.6.5 Coupled Effects of Temperature and Chemical Admixtures on Thixotropy 

The thixotropy at different temperatures of OWC slurries incorporating different dosages of 

various admixtures was determined by the area enclosed between the up and down-curves of the 

hysteresis loop and is presented in Figs. 4.17 and 4.18. A different scale was used so as to better 

predict the degree of thixotropy for each admixture. The thixotropy behaviour of cement slurries 

incorporating PCH is presented in Fig. 4.17(a). Generally, OWC slurry thixotropy was negative 

for all test temperatures. However, at 23°C, thixotropy was positive at a PCH dosage of 0.75% 

indicating that structure breakdown occurred due to the effective dispersing mechanism. Table 

4.2 shows that the degree of thixotropy was generally lower for slurries prepared with PCH than 

that with other admixtures at all the temperatures investigated.  

Figure 4.17(b) illustrates the effect of LSM on the thixotropy of OWC slurries. At 23°C, 

thixotropy increased up to a dosage of 1%, and then started to decrease, which is consistent with 

the trend of yield stress. At higher temperatures of 45°C and 60°C, thixotropy increased 

dramatically with LSM dosage up to 1.5%, likely due to the buildup of structure as a result of 

accelerated hydration at higher temperature. Thixotropy started to decrease beyond the dosage of 

1.5%. However, at 60°C cement the slurry exhibited anti-thixotropy (negative value) for a dosage 

of 0.5%, which means that the material stiffened with increased shear at high temperature, a 

behaviour also observed elsewhere (Eirich, 1960). 

Moreover, at 23°C, thixotropy increased up to a PCM dosage of 0.75% and then started to drop at 

a dosage of 1% (Fig. 4.17(c)). At higher temperatures (45°C and 60°C), the OWC slurry 

thixotropy shifted from positive to negative values, indicating that stiffening of the OWC slurry 

occurred at higher temperatures. However, thixotropy still approached lower values with the 

increase of PCM dosage. Low PCM dosages failed to mitigate the stiffening of cement slurries at 

high temperature, whereas it was more effective at a dosage of 0.75%. 
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Figure 4.17 Thixotropy of oil well cement slurries at various temperatures and different dosages 

of admixtures, (a) PCH, (b) LSM, and (c) PCM (w/c = 0.44). 
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Table 4.2 Thixotropy of oil well cement slurry incorporating different admixtures 

Admixture % 

BWOC 

Thixotropy (Pa/s) Admixture % 

BWOC 

Thixotropy (Pa/s) 

23°C 45°C 60°C 23°C 45°C 60°C 

PCH* 0.25 -27.2 -673.1 -742.5 SRA* 0.3 1899.5 3571.7 4027.4 

0.5 -87.6 -343.5 -670.9 0.6 1448.4 2027.5 6131.8 

0.75 207.7 -210.7 -598.6 1 -1463.1 1000.9 6660.5 

1 67.2 -100.0 -400.8 1.5 -21.2 512.7 -2253.3 

LSM* 0.5 1248.3 1491.5 -38.6 HCR* 0.5 1200.3 1350.0 1934.1 

1 2192.2 2899.8 1232.4 1 -700.7 -940.9 -1350.4 

1.5 1970.9 4005.4 6551.3 2 -560.9 -760.6 -870.9 

2 1850.6 3509.1 6300.2 3 -300.1 -269.6 -430.3 

PCM* 0.25 229.5 1688.9 2741.1 RA* 2 1942.8 4321.8 5000.3 

0.5 302.9 -322.6 -4254.5 4 -1944.0 879.7 4120.5 

0.75 798.0 -566.1 -990.3 6 560.5 700.4 750.7 

1 69.4 -367.3 -902.3 - - - - 
* PCH: new generation polycarboxylate-based high-range water reducing admixture, LSM: 

lignosulphonate-based mid-range water reducing admixture, PCM: polycarboxlate-based mid-range water 

reducing admixture, SRA: phosphonate-based set retarding admixture, HCR: hydroxylated carboxylic 

acid-based retarding admixture, and RA: rheoplastic solid admixture. 

 

The effect of the SRA on thixotropy is presented in Fig. 4.18(a). At 23°C, thixotropy decreased 

with increasing SRA dosage and became negative beyond a dosage of 0.75%. At 45°C, 

thixotropy decreased gradually with the SRA dosage, which is consistent with the findings of 

yield stress. Conversely, thixotropy increased significantly with the SRA dosage at 60°C up to a 

dosage of 1%, and then decreased until reaching a negative value at a dosage of about 1.5%.  

It was also observed that at relatively low HCR dosage, the higher the temperature, the higher 

was the degree of thixotropy (Fig. 4.18(b)). Thixotropy shifted from positive to negative with 

increased HCR dosage at all test temperatures, indicating increased stiffening of the slurry. 

Thixotropy also decreased with relatively higher HCR dosages. It showed a comparable pattern 

at all investigated temperatures, which is consistent with the findings of yield stress.  

Fig. 4.18(c) represents the effect of the RA on the thixotropy of OWC slurries. At 23°C, 

thixotropy decreased with increasing RA dosage and became negative at a dosage of about 4%. 

Beyond this dosage, the reverse hysteresis turned back to normal. At 45°C and 60°C, thixotropy 

generally decreased with increasing RA dosage.  
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Figure 4.18 Thixotropy of oil well cement slurries at various temperatures and different dosages 

of admixtures, (a) SRA, (b) HCR, and (c) RA (w/c = 0.44). 
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4.6.6 Effect of Temperature and Chemical Admixtures on Gel Strength 

It can be observed that the 10-sec gel strength, 10-min gel strength, and shear stress at low and 

high shear rates of 5.11 s-1 and 511 s-1 of neat cement slurries increased with decreasing w/c (Fig. 

4.19) likely due to increased solid ratio. Figure  4.20  illustrates the effect of temperature on the 

rheological properties of a neat OWC slurry with w/c=0.44. At 23°C both gel strength values at 

10-sec and 10-min were lower than the yield stress, regardless of the w/c. However, the rate of 

change of those properties with increasing temperature was not similar. Indeed, the 10-min gel 

strength was found to be higher than the yield stress at 45°C and 60°C for all w/c values tested. 

At 60°C, the 10-min gel strength was 1.94 times the yield stress, whereas the ratio was 0.67 and 

1.13 at 23°C and 45°C, respectively. The higher value of the 10-min gel strength at 45°C and 

60°C is due to the higher rate of hydration and subsequent stiffening of the slurry at increased 

temperature.  

Table 4.3 represents the effects of the dosage of various admixtures and temperature on the 10-

sec gel strength, 10-min gel strength, yield stress, and thixotropy. In general, the gel strength 

increased with increasing temperature for all admixtures and dosages used in this study. For 

PCH, PCM and HCR, both the 10-sec and 10-min gel strength decreased with increasing 

admixture dosage. Also, the higher the temperature the higher was the gel strength. For LSM, 

SRA and RA, the gel strength increased with the dosage up to a threshold level, beyond which 

the gel strength started to decrease. At all the temperatures investigated, the values of gel strength 

were generally lower for slurries prepared with PCH than those incorporating the other 

admixtures. Generally, the trends of gel strength in Table 4.3 were in general agreement with 

those of the yield stress and thixotropy. 
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Figure 4.19 Variation of rheological properties of cement slurries with water cement ratio and 

temperature (a) at 23oC, (b) at 45oC, and (c) at 60oC. 

T= 45°C
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Table 4.3 Gel strength and yield stress of oil well cement slurries incorporating different admixtures 

Admixture 

% 

BWOC 

23°C 45°C 60°C 

10-sec gel 

strength 

10-min gel 

strength 

Yield stress 10-sec gel 

strength 

10-min gel 

strength 

Yield stress 10-sec gel 

strength 

10-min gel 

strength 

Yield stress 

  Pa Pa Pa Pa Pa Pa Pa Pa Pa 

PCH 

0.00 16.27 19.85 29.62 18.01 35.27 31.95 59.01 90.13 46.43 

0.25 4.04 5.19 5.62 11.20 18.79 15.00 17.88 77.21 26.65 

0.50 2.09 3.48 2.85 3.17 6.66 3.99 5.40 24.70 7.53 

0.75 2.67 5.17 2.95 1.85 5.28 3.56 1.88 15.17 4.15 

1.00 1.77 5.54 2.61 1.33 3.17 3.40 1.51 10.64 4.01 

LSM 

0.00 16.27 19.85 29.62 18.01 35.27 31.95 59.01 90.13 46.43 

0.50 21.94 25.31 33.74 22.57 31.33 37.00 30.81 63.51 52.92 

1.00 22.70 34.27 34.60 26.19 34.95 40.00 41.84 77.83 64.41 

1.50 19.33 30.66 29.52 35.05 43.81 41.00 42.40 97.33 65.17 

2.00 15.32 26.01 28.17 34.11 42.87 38.57 40.32 90.26 63.23 

PCM 

0.00 16.27 19.85 29.62 18.01 35.27 31.95 59.01 90.13 46.43 

0.25 6.19 7.10 8.95 13.79 18.81 20.11 18.90 198.50 29.06 

0.50 3.77 5.27 5.61 8.83 14.32 12.15 16.42 60.24 26.47 

0.75 3.74 5.42 3.66 3.73 7.85 5.27 10.83 31.72 14.47 

1.00 2.70 5.08 4.20 3.16 6.96 3.65 6.93 20.95 10.60 

SRA 

0.00 16.27 19.85 29.62 18.01 35.27 31.95 59.01 90.13 46.43 

0.30 13.54 17.98 27.29 16.93 25.13 30.55 29.98 69.81 48.08 

0.60 13.10 20.20 20.58 14.00 20.76 26.59 29.50 71.46 49.23 

1.00 9.86 24.62 15.31 11.24 23.01 20.08 25.17 42.63 42.64 

1.50 3.46 11.05 4.07 7.67 21.34 15.77 20.56 77.86 36.78 

HCR 

0.00 16.27 19.85 29.62 18.01 35.27 31.95 59.01 90.13 46.43 

0.50 15.19 19.01 26.33 15.01 29.93 30.87 29.56 73.59 39.95 

1.00 7.65 21.69 12.07 10.45 23.04 21.00 15.64 55.10 37.06 

2.00 5.42 14.45 10.06 7.77 20.77 17.48 9.11 41.18 31.33 

3.00 3.99 11.11 8.50 5.58 18.56 16.50 7.67 34.65 27.25 

RA 

0.00 16.27 19.85 29.62 18.01 35.27 31.95 59.01 90.13 46.43 

2.00 29.80 36.39 47.37 40.82 95.58 52.11 67.35 140.79 71.19 

4.00 20.40 29.47 24.52 26.15 70.64 35.03 28.67 100.52 39.01 

6.00 8.02 18.27 7.01 15.04 45.37 10.95 17.79 54.23 19.99 
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Figure 4.20 Variation of rheological properties of oil well cement slurries with temperature at w/c 

= 0.44. 

 

4.6.7 Comparison of Effects of Various Admixtures on Rheology of Oil Well Cement Slurries 

Rheological data were taken at 20 different shear rate levels starting from 5.11 to 511 s-1 and then 

at descending shear rates from 511 to 5.11 s-1. The maximum shear rate was chosen as 511 s-1 

because shear rates above this value were reported to provide inconsistent results (ANSI/API RP 

10B-2, 2005). It should be noted that the data corresponding to the shear rate of 5.11 s-1 was 

discarded and the Bingham plastic model was fitted between 11 to 511 s-1 to calculate yield stress 

and plastic viscosity. This is because shear rate data at/or below 10.2 s-1 can be affected by 

slippage at the wall of the coaxial cylindrical rheometer (Guillot, 2006) and do not provide 

reproducible results (ANSI/API RP 10B-2, 2005, Guillot, 2006). Due to differences in their 

chemical compositions and the mechanisms by which they act, the different chemical admixtures 

led to various effects of the rheological properties of OWC slurries that influence the properties 

of cement slurries.  

The effects of various dosages of the different chemical admixtures explored in this study on the 

rheological properties of OWC slurries at a w/c of 0.44 are presented in Figs. 4.21 to 4.23. Figure 

4.21 shows yield stress and apparent viscosity values for OWC slurries incorporating PCH, LSM, 

PCM, SRA, HCR and RA admixtures at temperatures of 23oC, 45oC, and 60oC. Agreement 

between the behaviour and trend of yield stress and apparent viscosity can be observed. An OWC 
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slurry with a w/c of 0.44 and incorporating no admixture was considered as a control mixture. It 

can be observed that the admixtures had diverse effects on the rheology of OWC slurries at 

various temperatures. The study reveals that both yield stress and apparent viscosity increased 

with temperature increase. However, the rate of increase of yield stress and apparent viscosity is 

not linear, which is in agreement with previous findings (Al-Martini, 2008, Nehdi and Al-

Martini, 2007, Soroka, 1993).  

For PCH, PCM and HCR, the yield stress and apparent viscosity decreased with the increase of 

admixture dosage, and saturation dosages could be observed. Results plotted in Fig. 4.21 reveal 

that PCH was generally more effective at reducing the yield stress and apparent viscosity than the 

other admixtures. Due to the effective dispersing mechanism of polycarboxylate, OWC slurries 

made with PCH had lower yield stress and apparent viscosity values than that of the control 

mixture for all admixture dosages and test temperatures. The polycarboxylate-based admixture, is 

composed of a backbone chain of complex polymers with carboxylate groups and grafted 

polyethylene oxide (9OCH2CH2)n,PEO) side chains. These polymers adsorb on to the hydrating 

cement grains and a portion of the grafted side chains is oriented into the solution. Because of the 

comb like structure of the polymers, the polyethyleneoxide (PEO) side chains interact favorably 

with the aqueous medium and stretch into the solution. The increased osmotic pressure resulting 

from the approach of cement grains towards each other and overlapping of adsorbed layers of the 

dispersant induce steric repulsive forces between the cement particles, thus fluidizing the cement 

slurry (Volpert, 2005, Nelson et al., 2006). 

At relatively low dosages, LSM did not improve the rheological properties of cement slurries, but 

rather acted as an accelerator. However, at dosages above 1%, LSM started to act as a dispersant 

at 23°C and the yield stress values and apparent viscosity became lower than that of the control 

mixture. Depending on the lignosulphonate retarder’s carbohydrate content and chemical 

structure (e.g. molecular weight distribution and degree of sulphonation) and the type of cement, 

it is generally effective to a bottom hole temperature of about 122°C (Nelson et al., 2006). 

However, in the present study both at 45°C and 60°C, the yield stress and apparent viscosity 

values were generally higher than that of the control mixture. They only exhibited a decreasing 

trend beyond a dosage of 1.5%.  
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Figure 4.21 Yield stress and apparent viscosity of oil well cement slurries incorporating different 

admixtures at various temperatures, (a) T=23oC, (b) T=45oC, and (c) T=60oC (w/c = 0.44). 

(a) 

(b) 

(c) 
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The effects of PCM and HCR were found to be similar to that of PCH, but somewhat less 

significant. At 23°C and 45°C, the yield stress and apparent viscosity started to decrease with 

increasing SRA dosage. But at 60°C, both values increased slightly at SRA dosage below 0.50%. 

At higher dosages, SRA effectively offset the acceleration of hydration and the yield stress and 

apparent viscosity started to decrease. For the rheoplastic admixture RA, it was found that the 

yield stress and apparent viscosity increased up to 2% RA and then decreased beyond that level 

since RA could effectively offset the acceleration of hydration at such a high dosage. It can be 

concluded that, the effect of LSM, SRA and RA on yield stress and apparent viscosity was 

dosage-dependent as observed elsewhere (Ramachandran et al., 1997).  

Figure 4.22 illustrates the effects of different admixtures and temperatures (23oC, 45oC, and 

60oC) on the 10-sec and 10-min gel strength of OWC slurries. The 10-sec and 10-min gel 

strength followed a similar trend to that of  yield stress and apparent viscosity. However, there 

exists no simple correlation between the values of yield stress and gel strength. Depending on the 

admixtures dosage and temperature, the ratio of the 10-sec gel strength to yield stress was found 

to be in the range of 0.50 to 1.37, whereas the range was found to be 0.67 to 7 for the 10-min gel 

strength to yield stress ratio.  

Figure 4.23(a, b, and c) illustrates the effect of different admixtures on the plastic viscosity of 

OWC slurries at different temperatures (23oC, 45oC, and 60oC) along with that of the control 

mixture. It was reported that plastic viscosity of cement slurries generally decreases with an 

increase in temperature (Ravi et al., 1990 and Ramachandran et al., 1997). But it is not possible 

to provide such a conclusion based on the current study. In order to evaluate the reproducibility 

of test results, some selected tests were performed several times and the results were reproducible 

within a variability of 5%. At 23°C, plastic viscosity decreased with increased admixture dosage 

up to a certain level and then started to increase in the case of PCH, PCM, and RA at associated 

dosages of 0.50%, 0.50% and 4.0%, respectively. Plastic viscosity gradually increased with 

increased dosage in the case of LSM, whereas it decreased with increased SRA dosage. In the 

case of HCR, plastic viscosity generally decreased with increased dosage. At 45°C, admixtures 

showed almost similar behaviour in terms of plastic viscosity except for LSM. At 60°C, slurries 

incorporating PCH did not exhibit a regular behaviour and plastic viscosity increased with 

increased admixture dosage. In the case of PCM, SRA and HCR, plastic viscosity increased up to 

a certain limit and then started to decrease at associated critical dosages of 0.50%, 0.75% and 

0.50%, respectively. However, it was not possible to provide a simple correlation of the effect of 
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chemical admixtures and temperatures on the plastic viscosity based on the present study, which 

was also noted previously (Nehdi and Al-Martini, 2007, Al-Martini, 2008). 
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Figure 4.22 10-sec and 10-min gel strength of oil well cement slurries incorporating different 

admixtures at various temperatures, (a) T=23oC, (b) T=45oC, and (c) T=60oC (w/c = 0.44). 

 

(a) 

(b) 

(c) 
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Figure 4.23 Plastic Viscosity of oil well cement slurries incorporating different admixtures at 

various temperatures (a) T=23oC, (b) T=45oC, and (c) T=60oC (w/c = 0.44). 

 

(a) 

(b) 

(c) 
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Thixotropy measurements of OWC slurries showed that at lower dosage of admixtures (except 

for LSM), the higher the temperature the higher was the degree of thixotropy. This is probably 

because at lower dosages the admixtures are not effective enough to disperse the structures 

formed as a result of the acceleration of hydration at higher temperature. Thixotropy values were 

observed to decrease with increasing admixture dosage, indicating that higher dosages reduced 

the degree of stiffening. Similar findings were also observed in previous work (Nehdi and Al-

Martini, 2007, Al-Martini, 2008) using ordinary Portland cement pastes.  

As mentioned earlier, the rheology of OWC slurries depends on a number of factors, such as 

cement hydration kinetics (Saak, 2000), supporting liquid rheology (Nelson et al., 2006), inter-

particle forces (Saak, 2000, Nelson et al., 2006), and solid volume fraction (Nelson et al., 2006). 

A number of chemical admixtures such as plasticizers/water reducer (dispersants), retarders, 

weighting agents, extenders, etc, have been used to modify the rheological properties of OWC 

slurries for proper placement in deep and narrow oil well annulus. Most water reducing 

admixtures retard the cement hydration rate in addition to acting as a deflocculant due to 

electrostatic repulsion (Ramachandran et al., 1997, Saak, 2000, Nelson et al., 2006), steric 

repulsion, or both (Nelson et al., 2006). Moreover, the performance of chemical admixtures also 

depends on other factors including the type of cement and its fineness, nature and amount of 

calcium sulfates and soluble alkali sulfates, C3A content and distribution of aluminate and silicate 

phases at the surface of cement grains (Vidick et al., 1987), reactivity of cement phases (Michaux 

and Nelson, 1992), time, mixing energy and mixing method, water temperature, w/c, etc.  

The mechanisms by which chemical admixtures act are still a matter of controversy. It was 

documented that the combined effect of adsorption and nucleation are responsible for the 

hydration retardation induced by admixtures (Ramachandran et al., 1997 and Nelson et al., 

2006). Admixtures inhibit the contact of cement grains with water by adsorbing on to the surface 

of cement grains and the hydration products throughout the hydration process and thereby delay 

the hydration process. Retarders may also adsorb onto the nuclei of hydration products and can 

inhibit the further hydration. But at higher temperature, this layer can break down and the rate of 

hydration is accelerated. This may be one reason why LSM, SRA and RA seem to increase the 

yield stress and viscosity at high temperature.  

Moreover, at lower dosage the adsorbed layer of admixture might not be sufficiently effective to 

act as a barrier to prevent the contact of water and cement grains, which promotes the 

acceleration of hydration reactions. This could be the reason why relatively higher yield stress 
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and viscosity values were observed at low dosages of LSM, SRA and RA. Moreover, lower water 

content reduces the space between solid particles. Hence, hydration products can easily come in 

closer contact with each other, resulting in faster rate of hydration reactions and earlier stiffening. 

This could probably be another reason why LSM, SRA and RA acted as accelerators up to a 

certain dosage.  

It was documented that a portion of the chemical admixture is consumed by the initial hydration 

products if it is added in the mixing water during the pre-induction period, and thus does not 

contribute effectively to reducing the slurry viscosity and yield stress (Michaux and Nelson, 

1992, Hanehara and Yamada, 1999, Nelson et al, 2006). This could also have contributed to 

getting increased yield stress and viscosity for slurries incorporating LSM, SRA and RA. 

4.7 Conclusions 

The rheological properties of OWC slurries are affected by numerous factors including the w/c, 

size and shape of cement grains, chemical composition of the cement and relative distribution of 

its components at the surface of grains, presence and type of additives, compatibility between 

cement and chemical admixtures, mixing and testing procedures, etc. Moreover, slip at the slurry-

shearing surface interface, particle-particle interactions, chemical reactions, non-homogeneous 

flow fields, and human errors can make the rheological experiments difficult to reproduce. 

However, during the present tests, every effort was made to minimize experimental error by 

strictly following a consistent mixing and testing procedure. The effect of the w/c and 

temperature on the rheological properties of OWC slurries incorporating various chemical 

admixtures was studied using an advanced rheometer. Six admixtures were used in this study 

including a new generation polycarboxylate-based high-range water reducing admixture (PCH), 

lignosulphonate-based mid-range water reducing admixture (LSM), polycarboxylate-based mid-

range water reducing admixture (PCM), phosphonate-based set retarding admixture (SRA), 

hydroxylated carboxylic acid-based retarding admixture (HCR), and a rheoplastic solid 

admixture (RA). The coupled effects of the temperature and type and dosage of admixture on 

yield stress, plastic viscosity, apparent viscosity, and gel strength were studied. Based on the 

experimental results, the following conclusions can be drawn: 

 The rheological properties of OWC slurries are highly dependent on temperature; they 

generally increased nonlinearly with temperature increase. This is mainly due to the 

dependence of the formation of hydration products on temperature. 
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 As expected, the viscosity of OWC slurries decreased significantly with the increase of the 

w/c. 

 The rheological properties of OWC slurries depended on the type of admixture used. PCH, 

PCM, and HCR improved fluidity at all test temperatures and for all dosages used, while 

slurries incorporating LSM required more energy to initiate slurry flow since the yield stress 

increased at all dosages tested. 

 The admixture dosage had a significant effect on the slurry rheology. At lower dosages 

LSM, SRA and RA acted as accelerators, thus enhancing the thixotropic behaviour of OWC 

slurries. This was more pronounced at higher temperature. However, beyond certain 

threshold dosages, such admixtures became effective dispersants and reduced the extent of 

cement slurry thixotropy.  

 PCH was found to be more effective at improving the rheological properties of OWC 

slurries at all test temperatures even at relatively lower dosages compared to the other 

admixtures tested. 

It should be noted that the findings reported in this study are valid for the cement and admixtures 

used herein. Other cement/admixture combinations can exhibit different characteristics. Even 

admixtures from the same category could behave differently, and thus need to be investigated 

separately.  
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C h a p t e r  5 

EFFECT OF SUPPLEMENTARY CEMENTITIOUS MATERIALS 

ON RHEOLOGY OF OIL WELL CEMENT SLURRIES
*
 

5.1 Introduction 

The use of supplementary cementitious materials (SCMs) has received increased attention 

over the last few decades. Mineral and chemical admixtures play an important role in 

controlling the physical and chemical properties of fresh and hardened cementitious 

systems. Partial replacement of cement using SCMs is increasingly perceived as a 

sustainable solution. It reduces the cement factor thus reducing CO2 emission from 

cement production, and mitigates disposal of various industrial by products. A large 

number of industrial and naturally occurring materials including fly ash, volcanic ash, 

ground granulated blast furnace slag, silica fume, Zeolite, diatomaceous earth, metal 

powder, and rice husk ash can be used as  partial replacement for cement.  

Due to differences in their chemical and physical properties, SCMs have diverse effects 

on the rheological, mechanical and long-term durability performance of cementitious 

systems. For the particular case of the petroleum industry, cement slurries are pumped to 

several thousand meters into the ground to anchor and seal the casing to the borehole of 

oil or gas wells. Thus, an advanced characterization of the rheology of oil well cement 

slurries is critical. However, the investigation of oil well cement slurry rheology is more 

complicated than that of cement paste. In order to contend with the bottom-hole 

conditions (wide range of pressure and temperature), various additives are usually used in 

the slurry composition. A thorough review of the different types of admixtures used in the 

petroleum industry and the rheology of oil well cement is available in the open literature 

(Nelson et al., 2006; Guillot 2006).  

A number of studies (e.g. Janotka et al., 2010; Golaszewski et al., 2005; Vikan and 

Justnes, 2003; Sabir et al., 2001; Zhang and Han, 2000; Sybert and Reick 1990; Ivanov 

and Roshavelov, 1990; Saasen and Log, 1996; White et al., 1985) used supplementary 

                                                     
* Part of this chapter has been published in the proceeding of the Canadian Society of Civil Engineering 

Conference, 2008. 
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cementitious materials (FA, SF, MK and RHA) either in conventional portland cement 

paste or slurries. However, very scant information can be found on the rheological 

properties of oil well cement slurries incorporating SCMs as partial replacement for 

cement. Moreover, the coupled effects of temperature, chemical admixtures and mineral 

admixtures on the rheological properties of oil well cement slurries remain largely 

unexplored.  

In this study, the flow properties of Class G oil well cement slurries with a water to 

cement ratio (w/c) of 0.44 and incorporating four different SCMs including metakaolin 

(MK), silica fume (SF), rice husk ash (RHA), and class F fly ash (FA) along with a new 

generation polycarboxylate-based high-range water reducing admixture (PCH) were 

tested at different temperatures (23, 45 and 60°C). Their behaviour was compared to that 

of a control slurry without admixtures. A series of flow tests using an advanced rheometer 

were carried out to determine the optimum dosage of admixtures. The effect of pressure 

has been ignored in this study since previous research (Guillot, 2006) indicated that it has 

an insignificant effect on the rheological properties of cement slurries compared to that of 

temperature.  

The present study allowed gaining an improved understanding of the effect of SCMs on 

the rheology of oil well cement slurries at high temperature, which should help in 

selecting adequate admixtures and their effective dosages to overcome difficulties 

encountered during the construction of oil and gas wells.  

5.2 Principles of Flow Properties  

Rheological properties control the flow, workability, pumpability, finishing, and other 

characteristics of cementitious slurries and mortar. Workability is the energy required to 

handle and finish a cementitious mixture, whereas pumpabiliy is better represented by 

fundamental properties such as yield stress. The rheological properties of cement-based 

materials are not only shear rate and shear history dependent, but also time dependent, 

which is difficult to characterize. However, for practical oilfield purposes, cement slurries 

are usually represented by time-independent models. It has been observed that it is 

difficult to capture all possible trends of flow behaviour using a single rheological model 

(Yahia and Khayat, 2001). The performance of rheological models usually varies with the 
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test geometries, gap between shearing surfaces and their friction capacity, which makes 

the measurements even more complicated (Nehdi and Rahman, 2004).  

Existing empirical and time-independent rheological models (e.g. Bingham, Herschel-

Bulckley, Modified Bingham, Casson, etc.) allow fitting shear stress, shear rate and 

viscosity data to specific trends using rheological data analysis software. However, no 

model is free from statistical error. The estimated rheological properties can vary 

significantly when calculated using various models (Nehdi and Rahman, 2004). The 

Bingham plastic model and the Power Law model are widely used in the petroleum 

industry to describe the rheological properties of cement slurries (Guillot, 2006). The 

Bingham plastic model includes both yield stress, y and a limiting viscosity, P at finite 

shear rates, which the Power Law model fails to consider. Therefore, the Bingham plastic 

model (equation 5.1) was used in this study to calculate the yield stress and plastic 

viscosity from the shear rate-shear stress experimental down-curve. The down-curve 

(unloading) does not usually follow the same path as that of the up-curve because of the 

structural breakdown of the cement paste/slurry with the increase of shear rate. However, 

it was argued that the down-curve better fits the Bingham model than the up-curve 

(Ferguson and Kenblowski, 1991) 



  P0                    (5.1)  

where, , 0 , P , and 


  represent the shear stress, yield stress, plastic viscosity, and shear 

rate, respectively. 

To characterize the rheology of cement slurry, rheological parameters such as the yield 

stress, apparent viscosity, plastic viscosity, shear thinning, or shear thickening behaviour 

need to be studied. The yield stress indicates the minimum effort needed for a material to 

start moving and is the intercept of the flow curve (shear stress vs. shear rate) with the 

shear stress axis. Below the yield stress, a material behaves like a solid. The plastic 

viscosity is the slope of the fitted straight line of the flow curve. Usually the plastic 

viscosity of cement slurry is evaluated using the linear portion of the down curve of the 

hystersis loop. For a nonlinear flow curve, shear-thinning or shear-thickening behaviour 

may be observed and the assumption of constant plastic viscosity is not valid.  In such 

case, Herschel-Bulkley’s model (equation 5.2) becomes more suitable.   
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.

0



 n
k                              (5.2) 

where, , 0 , k, 


  and n represent the shear stress, yield stress, consistency, shear rate, 

and power law exponent, respectively. The model assumes that below the yield stress 

( 0 ), the slurry behaves as a rigid solid, similar to the Bingham plastic model. The 

exponent n describes the shear thinning and shear thickening behaviour. Cement pastes or 

slurries are considered as shear thinning when n<1 and shear thickening when n>1. A 

fluid becomes shear thinning when the apparent viscosity decreases with the increase in 

shear rate, i.e. when the slope of the shear stress vs. shear rate flow curve decreases with 

the shear rate. Shear thickening is when viscosity of the cement slurry increases with the 

shear rate. 

5.3 Materials 

Cement slurries tested in this study had a w/c = 0.44 and were prepared using a high 

sulphate resistant API Class G oil well cement (OWC) with various dosages of SCMs 

including metakaolin (MK), silica fume (SF), rice husk ash (RHA) and Class F fly ash 

(FA). The chemical and physical properties of the cement and SCMs are summarized in 

Table 5.1. Deionized distilled water was used for the mixing, and its temperature was 

maintained at 23±1°C using an isothermal container. The mixture composition of the 

slurries are provided in Table 5.2.  A new generation polycarboxylate-based high-range 

water reducing (HRWR) admixture (PCH) meeting ASTM C 494 requirements as a Type-

A water-reducing and Type-F high-range water-reducing admixture was used at dosages 

from 0.25 % to 2.5% by mass of binder for MK, SF, RHA, and FA. 
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Table 5.1 Properties of materials used 

Properties API Class G 
Oil Well 
Cement 

Metakaolin Silica 
Fume 

Rice 
Husk 
Ash 

Class F 
fly Ash 

Silica (SiO2) (%) 21.6 53.5 85 91.3 60 

Alumina (Al2O3) (%) 3.3 42.7 0.1 0.4 21 

Iron Oxide (Fe2O3
) (%) 4.9 1.3 0.1 0.5 4.88 

Calcium Oxide, Total 
(TCaO) (%) 

64.2 0.09 0.4 0.6 6.26 

Magnesium Oxide 
(MgO) (%) 

1.1 0.07 _   

Sulphur Trioxide (SO3) 
(%) 

2.2  3 0.5 0.26 

Loss on Ignition (%) 0.60 1.5 6 3.7 0.22 

Insoluble Residue (%) 0.30  _   

Equivalent Alkali (as 
Na2O) (%) 

0.41  1.5 1.4  

Fineness % passing 
45μm sieve 

92.4 99.5 97.2 80.9 90 

Mean particle size (μm)  4.5 0.17 30.4 15.9 

Specific surface area 

(m
2
/kg) 

385 
(Blaine) 

15000 
(BET) 

15000 
(BET) 

3040 
(BET) 

 

Specific gravity 3.14 2.6 2.22 2.05 2.03 

 
 
Table 5.2 Composition of cement slurry 

 
 
 

 

 MK 
(% by 
mass) 

SF 
(% by 
mass) 

RHA 
(% by 
mass) 

FA 
(% by 
mass) 

Oil well 
Cement 

(% by mass) 

PCH (% by 
mass) 

Case 1 5-15 – – – 85-95 0-2.5 

Case 2 – 5-15 – – 85-95 0-2.5 

Case 3 – – 5-15 – 85-95 0-2.5 

Case 4 – – – 5-15 85-95 0-2.5 
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5.4 Apparatus 

The particle size distribution of the cement, SF, MK, RHA and FA was determined using 

a Malvern Mastersizer 2000 laser diffraction particle size analyzer. The cement slurry 

preparation is very important because of the influence of the shear history of the mixture 

on its rheological properties (Orban et al., 1986). The cement slurries were prepared using 

a variable speed high-shear blender type mixer with bottom drive blades as recommended 

by the ANSI/API Recommended Practice 10B-2 (ANSI/API RP 10B-2, 2005).  

A high accuracy advanced rheometer (TA instruments AR 2000) (Fig. 4.1(a)), capable of 

continuous shear rate sweep, stress sweep and strain sweep was used throughout this 

study to measure the rheological properties of cement slurries. Because of relatively the 

low viscosity of cement slurries, the coaxial concentric cylinder geometry was considered 

suitable for this study. The geometry consists of a cylinder with a conical end that rotates 

inside a cylinder with a central fixed hollow as shown in Fig. 4.1(b). The radius of the 

inner solid smooth cylinder is 14 mm. This smooth inner solid cylinder rotates inside a 

fixed hollow cylinder of 15 mm in diameter. The gap between the head of the conical end 

and the bottom of the hollow cylinder was set to 0.5 mm for all experiments. Such a 

narrow gap is necessary in order to maintain a constant shear rate across the gap to 

minimize the error caused by wall slip in rheological measurements (Saak et al., 2001). 

The rheometer features an auto gap in order to compensate for the expansion of the 

stainless steel of the coaxial concentric cylinders under a wide range of temperatures, thus 

keeping the gap constant during experiments. The device keeps the temperature constant 

during the entire time span of the rheological test through a water circulation system. In 

order to prevent evaporation from the tested cement slurry, a solvent trap was used to 

cover the top of the hollow cylinder. This solvent trap has an adequate mechanism to 

allow rotation of the shaft without any interference. 

The rheometer was calibrated using a certified standard Newtonian oil with a known 

viscosity of 1.0 Pa.s and yield stress of 0 Pa at 20°C. The measured yield stress was 0 Pa 

and viscosity was 1.009 Pa.s with an error of 0.9%, which is less than the tolerated error 

of 4% specified by the manufacturer. The rheometer is computer controlled and equipped 

with a rheological data analysis software, which can fit the shear stress-strain rate data to 

several rheological models. The Bingham and Herschel-Bulkley’s models were used 

throughout this study to calculate the rheological properties of cement slurries.  



113 
 

5.5 Experimental Procedure 

5.5.1 Mixing and Preparation of Oil Well Cement Slurry 

A number of oil well cement slurries were prepared with a w/c = 0.44 and not 

incorporating any chemical admixture or SCM in order to check the reliability of the 

testing procedure and the apparatus at different test temperatures. The cement slurries 

were prepared using a high-shear blender with bottom drive blades according to the 

following procedure. First, the weighed amount of cement and the SCM (if any) were 

hand mixed dry in a bowl for about 30 sec using a spatula. The mixing water was then 

poured into the blender and the required quantity of PCH (if any) was added into the 

mixing water using a needle. The mixing started at a slow speed for 15 sec. The cement-

solid admixture was then added over a period of 30 sec. Manual mixing was conducted 

for 30 sec and a rubber spatula was used to recover material sticking to the wall of the 

mixing container to ensure homogeneity. Finally, mixing resumed for another 35 sec at 

high speed. 

The mixing procedure was strictly followed for all cement slurries and mixing was 

conducted at ambient room temperature. The prepared slurry was then placed in the bowl 

of a mixer for preconditioning for 20 minutes at the specific test temperature at a speed of 

150 rpm. The total time between the beginning of mixing and the start of the rheological 

test was kept constant to avoid the effect of exogenous variables on the results (Williams 

et al., 1999; Chow et al., 1988; Roy and Asaga, 1979). The rheometer set-up was also 

maintained constant for all slurries. The concentric cylinder test geometry was also 

conditioned at the test temperature so as to avoid sudden thermal shock to the slurry. 

5.5.2 Rheometric Tests 

After mixing and preconditioning, the cement slurry sample was placed in the coaxial 

cylinder of the rheometer and the slurry was covered with a solvent trap to prevent 

evaporation of water during testing. Temperature was adjusted to the required level. The 

sample was then subjected to a stepped ramp or steady state flow and viscosity 

measurements were taken at 20 different shear rates starting from 5.11 to 511 s-1 after a 

continuous rotation of 10 sec at each speed. Then, the slurry sample was subjected to a 

descending shear rate from 511 to 5.11 s-1 to obtain the down flow curve. The hysteresis 
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loop thus produced is used to characterize the thixotropy of cement paste (Saak, 2000). A 

schematic representation of the viscometric testing program is illustrated in Fig. 5.1.  
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Figure 5.1 (a) Schematic representation of stepped ramp, and (b) rheometer test sequence 
(shear rate history used in rheological tests) for OWC-SCM slurry 
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5.6 Results and Discussion 

5.6.1 Reliability of Rheometer and Rheometric Test 

To ensure statistical repeatability of results, three sets of neat cement slurry (each consists 

of three different cement slurry samples) with w/b=0.44 were tested at 23, 45 and 60°C. 

Another three sets of similar cement slurries with a w/b of 0.44 and incorporating 5% 

SCM but without chemical admixture were also tested. The rheological properties of 

cement slurry are time, temperature, and shear history dependent. Therefore, each test 

was performed on a new cement slurry at 21.5 mins after first contact between cement 

and water. Table 5.3 presents the data generated for the reliability study. The standard 

deviation values are relatively small, which reveals that the experimental procedure and 

the rheometer can produce repeatable measurements with satisfactory accuracy. In the 

case of neat cement slurries (Table 5.3(a)), the percentage of coefficient of variation (ratio 

of standard deviation to the mean) for the yield stress is 1.02, 1.72, and 0.83%, at 23°C, 

45°C and 60°C, respectively. For plastic viscosity, the corresponding values are 1.71%, 

4.62% and 5.81%, respectively. In the case of cement slurries incorporating SCM (Table 

5.3(b)), the percentage of coefficient of variation for yield stress is 1.27%, 5.59%, 1.02%, 

and 4.07%, for MK, FA, SF and RHA, respectively. For plastic viscosity the 

corresponding values are 4.35%, 3.69%, 2.36% and 1.53%, respectively. 

 

Table 5.3a Reliability of flow test using neat cement slurry at w/c=0.44 

Temp
. 

Yield Stress Plastic Viscosity 

Estimated Avg SD* COV** Estimated Avg. SD* COV** 

23°C 

26.62    0.068    

27.01 26.66 0.27 1.02 0.071 0.06 0.0012 1.71 

26.35    0.069    

45°C 

31.15    0.064    

30.87 30.65 0.53 1.72 0.060 0.06 0.0028 4.62 

29.92    0.057    

60°C 

46.43    0.035    

45.55 46.09 0.38 0.83 0.031 0.03 0.0019 5.81 

46.28    0.032    
* SD : Standard deviation, ** COV: Co efficient of variation 
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Table 5.3b Reliability of flow test using cement slurry with SCM at 60°C with w/c=0.44 

SCM 

Yield Stress Plastic Viscosity 

Estimated Avg SD* COV** Estimated Avg. SD* COV** 

MK 

90.05    0.215    

88.71 88.68 1.13 1.27 0.225 0.2263 0.0098 4.35 

87.29    0.239    

FA 

22.97    0.076    

23.41 22.32 1.25 5.59 0.081 0.0800 0.0030 3.69 

20.57    0.083    

SF 

70.53    0.234    

69.25 69.55 0.71 1.02 0.226 0.2270 0.0054 2.36 

68.88    0.221    

RHA 

13.17    0.315    

12.35 12.49 0.51 4.07 0.322 0.3213 0.0049 1.53 

11.95    0.327    

* SD : Standard deviation, ** COV: Co efficient of variation 
 

5.6.2 Effect of Type and Dosage of SCMs on Rheological Properties of OWC Slurries  

In order to examine the effect of the type of SCM on OWC slurry rheology, cement 

slurries were first prepared with a water binder ratio of 0.44, but without any chemical 

admixture. After preconditioning, cement slurries were tested at three different test 

temperatures and the rheological properties are presented in Figs 5.2-5.5. 

The effect of different SCMs on the yield stress of OWC slurries having w/c = 0.44 at 

different test temperatures, namely 23, 45 and 60°C are presented in Figs. 5.2(a-c) and 

5.3(a-d). Figure 5.2 reveals that the yield stress gradually increased with the addition of 

MK and SF. This could be due to the increase in water demand by the addition of fine 

powders like MK and SF (mean particle sizes of 4.5 and 0.17 μm, and specific surface of 

15000 and 15000 m2/kg, respectively). However, the yield stress values for OWC-SF 

slurries were found to be greater than those of OWC-MK slurries, a behaviour also 

observed by others for ordinary Portland cement (OPC) (Caldarone et al., 1994; 

Caldarone and Gruber, 1995; Ding and Li, 2002). It was found that MK provided better 

workability than did SF for the given mixture proportions (Ding and Li, 2002) and less 

HRWR admixture was required for concrete mixtures modified by MK than SF mixtures 

(Caldarone et al., 1994; Caldarone and Gruber, 1995). Yield stress decreased with 
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increasing dosage of RHA. Similar behaviour was reported by Laskar and Talukder 

(2008) for concrete using OPC and different levels of RHA. It should be noted that the 

RHA was not ground to fine particle size after combustion. It can also be observed that 

unlike MK and SF, yield stress decreased with increased addition of FA which is in 

agreement with the findings of other researchers on OPC (Lange et al., 1997; Laskar and 

Talukdar, 2008). The replacement of cement by FA slows down the rate of hydration and 

extends the dormant period. This is likely due to the coarser particle size and lower 

surface area of FA, in addition to its spherical shape which reduces frictional forces 

among angular particles due to a ‘‘ball bearing’’ effect. It is also well known that the 

spherical particle shape of fly ash particles helps reducing the water demand to obtain a 

similar fluidity to that of mixtures made without any fly ash. Other studies suggested that 

among all 3D shapes, spheres give the minimum surface area for a given volume (Polya 

and Szego, 1951) resulting in lower water retention and subsequently lower water 

demand for a particular workability due to a higher particle packing density (Sakai et al., 

1997, Yijin et al., 2004). White et al. (1985) suggested that particle size and shape are key 

factors for controlling the rheological properties FA based OWC slurries. 

 It should be noted that at similar dosage, yield stress values for cement slurries made 

with SCM and without any chemical admixtures at all test temperatures followed the 

following order: SF>MK>RHA>FA. 

It can be observed that for all types and dosage of SCMs, yield stress increased non-

linearly with the increase of temperature (Fig. 5.3). This is likely due to the increase of 

the rate of hydration reactions at higher temperature. Similar findings were observed for 

neat cement pastes by other researchers (Al-Martini, 2008; Nehdi and Al-Martini, 2007; 

Soroka, 1993). The increase was more substantial for SF and MK, perhaps due to their 

higher fineness. Figure 5.3(a,b) shows that yield stress for OWC slurries incorporating 

MK and SF was higher than that of the control mix without SCM for all MK and SF 

proportions tested. An opposite trend was observed when OWC was partially replaced 

with RHA or FA; the higher the RHA or FA dosage, the lower was the yield stress value 

(Fig. 5.3(c, d)). However, the yield stress for OWC slurries incorporating RHA was 

slightly higher than that of FA slurries irrespective of the test temperature and proportion 

of RHA or FA (Fig. 5.2 and 5.3(c, d)). This is due to the higher specific surface of RHA 

and its irregular particle shape versus the spherical shape of FA. 
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Figure 5.2 Variation of yield stress of OWC slurries with type and dosage of SCM at (a) 
23°C, (b) 45°C and (c) 60°C. 
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Figure 5.3 Variation of yield stress with temperature for OWC slurries prepared by partial 
replace of OWC by (a) MK, (b) SF, (c) RHA, and (d) FA. 
 

Figures 5.4 and 5.5 show the effect of the partial replacement of OWC by SCM and that 

of temperature, respectively, on the plastic viscosity of OWC slurries. The plastic 

viscosity of OWC slurries generally followed the same trend as that of yield stress for all 

the SCMs tested, except for RHA. In the case of MK and SF, plastic viscosity values 

increased with the dosage of MK or SF used and decreased with the FA content at all 

temperatures tested. Conversely, plastic viscosity values increased with the addition of 

RHA as partial replacement of OWC. It can be observed that for all SCMs, plastic 

viscosity increased with temperature, but the increase was more substantial for MK (Fig. 

5.5(a)).  

 

 

0

20

40

60

80

0 20 40 60 80

Temperature (ºC)

Y
ie

ld
 S

tr
e

s
s
 (

P
a

)

100% OWC

5% FA 95% OWC

10% FA 90% OWC

15% FA 85% OWC

0

20

40

60

80

0 20 40 60 80

Temperature (ºC)

Y
ie

ld
 S

tr
e

s
s
 (

P
a

)

100% OWC

5% RHA 95% OWC

10% RHA 90% OWC

15% RHA 85% OWC

(a) (b)

(c) (d)

0

40

80

120

160

200

0 20 40 60 80

Temperature (ºC)

Y
ie

ld
 S

tr
e

s
s
 (

P
a

)
100% OWC

5% MK 95% OWC

10% MK 90% OWC

15% MK 85% OWC

0

40

80

120

160

200

0 20 40 60 80

Temperature (ºC)

Y
ie

ld
 S

tr
e

s
s
 (

P
a

)

100% OWC

5% SF 95% OWC

10% SF 90% OWC

15% SF 85% OWC



120 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.4 Variation of plastic viscosity of OWC slurries with type and dosage of SCM at 
(a) 23°C, (b) 45°C and (c) 60°C. 
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Figure 5.5 Variation of plastic viscosity with temperature for OWC slurries prepared by 
partial replace of OWC by (a) MK, (b) SF, (c) RHA, and (d) FA. 

 

5.6.3 Coupled Effect of SCMS and PCH Dosage on Yield Stress of OWC Slurries 

Figure 5.6 illustrates the variation of yield stress of OWC slurries incorporating varying 

dosages of SCMs and PCH at a w/b ratio of 0.44. Different scale has been used to 

represent results for FA and RHA due to much lower yield stress values than those for 

MK and SF.  

It can be observed that for all SCMs, yield stress generally decreased with PCH addition 

and this decrease was generally gradual until reaching a saturation dosage. However, for 

each SCM, the saturation dosage depended on the SCM dosage and temperature. The 

saturation dosage of PCH using different SCMs at different temperature is illustrated in 

Table 5.4. It can be further observed from Fig. 5.6 that regardless of the dosage of SCM 

and PCH, the higher the temperature, the higher was the yield stress, which is due to the 

higher rate of hydration reactions at higher temperature. Yield stress decreased with PCH 

addition for all SCMs, yet the dosages required were higher in the case of SF and MK.  

(a) (b)

(c) (d)
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The coupled effects of MK and PCH dosage on the yield stress of OWC slurries with 

variation of temperature is presented in Figs. 5.6(a-c). The higher the amount of MK, the 

higher was the saturation dosage of PCH. Lower dosage of PCH was found to be less 

efficient in reducing the yield stress at higher dosage (15%) of MK and the phenomenon 

is more significant at higher temperature (Figs. 5.6(b-c)). Similar behaviour was observed 

in case of SF. It can be observed that at lower dosage of PCH, the increase in yield with 

dosage of SF is more significant at higher temperature (Fig. 5.6(e-g)) probably because of 

at higher temperature lower dosage of PCH fails to offset the higher rate of structural 

build up due to higher acceleration rate. 

Figures 5.6(g-i) illustrate the variation of yield stress with the addition of RHA and PCH 

for OWC slurries at test temperatures. The yield stress value of OWC slurries 

incorporating RHA started to decrease steeply at a PCH dosage higher than 0.25% until it 

reached a plateau (saturation dosage) beyond which no significant reduction was visible. 

At 45º and 60ºC the yield stress initially increased with PCH dosage up to 0.25% 

regardless of the RHA addition level. Subsequently, yield stress showed a significant 

reduction at dosages higher than 0.25%   

FA was used up to 15% by mass as partial replacement for OWC and the coupled effects 

of FA and PCH on yield stress of oil well cement slurries at different temperatures are 

presented in Figs. 5.6(j-l). At 23ºC and low dosage of PCH (0.25% PCH), yield stress for 

the OWC slurry incorporating 5% FA was slightly greater than that of the control OWC 

slurry prepared without any SCM. The saturation dosage of PCH for OWC slurries 

incorporating FA was found to become higher than that of the control mixture even 

though FA addition generally reduced the yield stress. This can be due to active 

adsorption of PCH by un-burnt carbon in FA. It was reported that un-burnt carbon in FA 

is responsible for loss of workability due to adsorption of high-range water reducing 

admixture molecules (Park et al., 2005).  
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Figure 5.6 Variation of yield stress with dosage of PCH and SCM for OWC slurries incorporating MK [(a) at 23°C; (b) 45°C; and (c) 60°C], SF [(d) 
at 23°C; (e) 45°C; and (f) 60°C].  
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(d) (e) (f) 
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Figure 5.6 Variation of yield stress with dosage of PCH and SCM for OWC slurries incorporating RHA[(g) at 23°C; (h) 45°C; and (i) 60°C], and FA 
[(j) at 23°C; (k) 45°C; and (l) 60°C]. 

(g) (h) (i) 

(j) (k) (l) 
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Table 5.4 Saturation dosage of SCM used at different temperature 

 Addition level Temperature 
  23ºC 45ºC 60ºC 

Control Mix  0.3 0.5 0.75 
MK 5 0.75 1 1 

10 1 1 1.5 
15 1 1 1.5 

SF 5 0.75 1 --
10 1 1.5 --
15 1.5 1.5 -- 

FA 5 0.5 0.75 1 
10 0.75 0.75 1 
15 0.75 1.0 1 

RHA 5 1.5 1.5 1.5
10 1 1.5 1.5
15 1 1.5 1.5 

 

5.6.4 Coupled Effects of SCMS and PCH Dosage on Viscosity and Shear 

Thinning/Thickening Behaviour of OWC Slurries  

Plastic viscosity values of the OWC slurries were measured as the slope of the down flow 

curve of the hysteresis loop and plotted in Fig. 5.7. In general, plastic viscosity was found 

to increase with the increase of test temperature and to decrease with the increase of PCH 

dosage. Figures 5.7(a-c) illustrate the plastic viscosity values for OWC slurries 

incorporating various dosages of MK and PCH at different temperatures. It can be 

observed that below the saturation dosage plastic viscosity of all slurries decreased with 

the dosage of PCH at 23ºC. Beyond the saturation dosage, plastic viscosity of OWC 

slurries with 5% and 10% MK tended to increase, whereas, the value continued to 

decrease in the case of the slurry prepared with 15% replacement of OWC by MK.  

Figures 5.7(d-f) show the coupled effects of SF and PCH on the plastic viscosity of OWC 

slurries. It can be observed that at 23ºC the plastic viscosity continued to decrease up to 

the saturation dosage, then the value started to increase with PCH dosage. Similar 

behaviour was observed by Al-Martini (2008). Yamada et al. 1998 suggested that this 

phenomenon is linked to steric hindrance: the primary mechanism by which PCH 

disperses cement particles. When the polycarboxylate polymer adsorbs on cement 

particles, repulsive interaction occurs due to elastic and mixing mechanisms. Cement 

particles can be regarded as a dispersed medium when the distance between two particles 
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is equal to or higher than double the thickness of the polymer adsorption layer. The elastic 

component of the steric hindrance deploys repulsive forces when cement particles try to 

approach each other. On the other hand, when two neighbouring polymers approach each 

other the mixing term of the steric hindrance corresponds to the resistance among them. 

Therefore, beyond the saturation dosage, these resistances increase with the increase of 

the un-adsorbed PCH polymers and increase plastic viscosity. (Yamada et al., 1998).  At 

45ºC, plastic viscosity values were found to continue its decreasing trends with PCH 

dosage, whereas some increase in the plastic viscosity was observed at PCH dosage of 

1.5% for OWC slurry prepared with 15% addition of SF at 60ºC.  

The plastic viscosity of OWC slurries incorporating RHA showed a opposite trend to that 

of yield stress. It can be observed that plastic viscosity increased at a relatively constant 

rate with the addition of RHA (Figs. 5.7(g-i) and this effect was more pronounced at 

higher temperature. Plastic viscosity appeared to increase at lower dosage of PCH and 

then started to decrease with increasing PCH dosage. The effect of FA and PCH dosage 

on plastic viscosity was illustrated in Figs. 5.7(j-l). It can be observed that plastic 

viscosity increased with temperature and decreased with FA dosage. It can also be 

observed that plastic viscosity values followed the same trend as that of yield stress and 

decreased with the addition of PCH dosage.  

Figures 5.8 and 5.9 present the down flow curves and apparent viscosity, respectively, for 

OWC slurries incorporating 5% SCM with varying PCH dosages ranging from 0% to 

1.5% at 60ºC. The same level of partial replacement of OWC by various SCMs by mass 

was used in order to have a better understanding of the effect of individual SCMs with the 

variation of PCH. It is depicted in Fig. 5.8 that the shear stress of the slurries increased 

with increasing shear rate and decreased with increasing dosage of PCH for all the SCMs 

tested. It can be observed in Fig. 5.9(a) that the apparent viscosity gradually decreased 

with increasing shear rate for OWC slurries incorporating 5% MK (Fig. 5.9(a)) and SF 

(Fig. 5.9(b)) at all PCH dosages tested (0% to 1.5%). This phenomenon is called shear 

thinning/pseudoplastic behaviour, which is typical for agglomerated suspensions such as 

cement pastes and slurries (Eirich 1960). Cement slurries incorporating 5% RHA 

exhibited shear thickening behaviour at PCH dosage of 1.5% (Fig. 5.9(c)). In the case of 

FA, a change in the rheological behaviour from shear thinning to shear thickening was 

observed at a PCH dosage beyond 1% (Fig. 5.9(d)). Such slurries are called dilatant. The 
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apparent viscosity of the OWC slurries incorporating PCH dosages of 1% and 1.5% 

increased gradually with the increase of the shear rate. 

Cyr et al. (2000) argued that the dispersing mechanisms of superplasticizers are 

responsible for the shear thickening behaviour. They used the Herschel-Bulkley equation 

(equation 5.2) to characterize the rheological properties of cement pastes. Cement slurries 

testing results demonstrate that Bingham model is not appropriate for describing cement 

slurries’ shear thinning or thickening behaviour because of distortion of flow curve by 

decreasing or increasing of viscosity with increasing shear stress (Skripkiūnas and 

Daukšys, 2004). Even though the Bingham model has been used throughout the present 

study to characterize the rheological properties of OWC slurries, the Herschel-Bulkley 

model has been used in this section to identify the shear thinning or shear thickening 

behaviour of OWC slurries as a function of chemical and mineral admixtures. The 

variation of the exponent n with the dosage of PCH is presented in Fig. 5.10. It can be 

observed in Fig. 5.10 that the exponent n varies with the admixture dosage. Regardless of 

the SCM type, all OWC slurries showed shear thinning behaviour at lower dosages of 

PCH. Then, the exponent continued to increase with increased dosage of PCH and the 

slurry behaviour changed from shear thinning to shear thickening.  
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Figure 5.7 Variation of plastic viscosity with dosage of PCH and SCM for OWC slurries incorporating MK [(a) at 23°C; (b) 45°C; and (c) 60°C], SF 
[(d) at 23°C; (e) 45°C; and (f) 60°C].  
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Figure 5.7 Variation of plastic viscosity with dosage of PCH and SCM for OWC slurries incorporating RHA[(g) at 23°C; (h) 45°C; and (i) 60°C], 
and FA [(j) at 23°C; (k) 45°C; and (l) 60°C]. 

(g) (h) (i) 

(j) (k) (l) 
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Figure 5.8 Flow curve of oil well cement slurry incorporating 5% of SCMs and different dosage of PCH Admixture at 60ºC, (a) MK; (b) SF; (c) 
RHA; and (d) FA.  
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Figure 5.9 Apparent viscosity curve of oil well cement slurry incorporating 5% of SCMs and different dosage of PCH Admixture at 60ºC, (a) 
MK; (b) SF; (c) RHA; and (d) FA. 
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The degree of shear thinning or shear thickening also depended on the type and dosage of 

SCM used. It can be observed that the degree of shear thickening increased with the 

dosage of PCH at higher MK content. However, the OWC slurry incorporating 5% MK 

showed shear thinning behaviour at each dosage of PCH. The slurries reverted from shear 

thinning to shear thickening at PCH dosages of 1.0% and 0.75% for 10 and 15% 

replacement of OWC by MK, respectively. The n value did not show significant changes 

with the dosage of SF dosage and shear thinning behaviour persisted for each SF content 

regardless of the PCH dosage (Fig. 5.10(b)). It can also be observed that, the higher the 

amount of SF, the lower is the value of n which implies that addition of SF reduces the 

dilatancy of oil well cement slurries. Similar finding was observed by Daukšys et al. 

(2008) for cement slurries prepared with microsilica addition. Addition of RHA as partial 

replacement of OWC reduced the value of n up to a PCH dosage of 0.5%. But when the 

dosage of PCH> 0.5%, it was observed that the n value increased with the dosage of 

RHA, except for the slurry prepared with 15% RHA and PCH dosage greater than 1.5%. 

In the case of FA, the value of the n exponent increased with the dosage of PCH and the 

slurry behaviour changed from shear thinning to shear thickening at a PCH dosage of 1% 

(Fig. 5.10(d)). It can be further observed in Fig. 5.10(d) that the value of n did not show 

significant changes with the FA replacement level at PCH dosages of up to 0.75%, 

beyond which the degree of shear thickening increased with higher replacement of OWC 

by FA. 
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Figure 5.10 Variation of exponent n with dosage of PCH and SCMs at 60ºC, (a) MK; (b) 
SF; (c) RHA; and (d) FA.  

 

5.7. Discussion 

Various studies reported the effects of temperature and high-range water reducers (e.g. 

Nehdi and Al-Martini, 2007; Al-Martini and Nehdi, 2009; Domone and Thurairatnam 

1988) and mineral admixtures (Rahman and Nehdi, 2003; Nehdi and Rahman, 2004; 

Laskar and Talukdar, 2008; Nelson et al., 2006; Ferraris et al., 2001) on the rheology of 

cement paste, grout and concrete. Those studies were mostly carried on ordinary Portland 

cement. However, similar data could not be found in the open literature to compare the 

rheological properties of slurries prepared with API Class G oil well cement, along with 

the effect of SCMs and chemical admixtures. The effects of various type and dosage of 

SCMs on the rheology of OWC slurries having a w/c of 0.44 were investigated in the 

present study using a high accuracy advanced rheometer (TA instruments AR 2000). 

Rheological data were taken at 20 different shear rate levels starting from 5.11 to 511 s-1 

(a)

(c)

(b)

(d)
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and then at descending shear rates from 511 to 5.11 s-1. However, the data corresponding 

to the shear rate of 5.11 s-1 was discarded while fitting the data to the Bingham plastic 

model or Herschel-Bulkley model to calculate the rheological properties. This is because, 

data at/or below 10.2 s-1 can be affected by slippage at the wall of the coaxial cylindrical 

rheometer (Guillot, 2006) and do not generally provide reproducible results (ANSI/API 

RP 10B-2 2005, Guillot 2006).  

The rheology of OWC slurries depends on a number of factors including the type of 

cement and its fineness, nature and amount of calcium sulphates and soluble alkali 

sulphates, C3A content and distribution of aluminates and silicate phases at the surface of 

cement grains (Vidick et al., 1987), reactivity of cement phases (Michaux and Nelson, 

1992), cement hydration kinetics (Saak, 2000), supporting liquid rheology (Nelson et al., 

2006), inter-particle forces (Saak, 2000; Nelson et al., 2006), solid volume fraction 

(Nelson et al., 2006), mixing energy and mixing method, type and dosage of chemical 

admixture, water temperature, w/c, etc. Considering the results discussed above, it can be 

concluded that OWC slurries incorporating SCMs exhibit different rheological behaviour 

than that prepared with pure OWC. This could be due to differences in their physical 

properties, chemical compositions, and the mechanisms by which they act. The particle 

shape and surface area play significant role in controlling the rheological behaviour of 

OWC slurries. The slurries prepared with larger fraction of spherical particles should 

have lower viscosity which is evident in case of slurries prepared with FA. But in case of 

SF, yield stress and viscosity was found to be greater with increasing amount of SF, 

probably because of higher surface area which increases the water demand to produce a 

similar fluidity to that of mixtures made without any SF. The OWC slurries prepared with 

RHA showed a different behaviour than that expected. Instead of increasing the yield 

stress, the values were found to decease gradually with the increasing replacement level 

of RHA. Similar findings were also observed by Laskar and Talukdar (2008), while 

others (Habeeb and Fayyadh, 2009; Cordeiro et al., 2009; Nehdi et al., 2003) found that 

the replacement of cement by RHA resulted in increased water demand and reduced 

concrete workability. This discrepancy is due to the various fineness, specific surface and 

carbon contents of the RHA used in each study. In order to achieve the similar 

consistency (slump) to that of concrete made without RHA, more superplasticizer had to 

be used with partial replacement of OPC by RHA (Habeeb and Fayyadh, 2009 and 

Cordeiro et al., 2009). Laskar and Talukdar (2008) argued that finer RHA particles fill 
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into spaces between larger cement particles, which results in improved packing particle 

density and reduces frictional forces, thereby reducing yield stress.  

The plastic viscosity of OWC slurries generally followed the same trend as that of yield 

stress for all the SCMs tested, except for RHA. Laskar and Talukdar (2008) argued that 

the fineness and shape of RHA play a critical role in increasing the plastic viscosity of 

OWC slurry. Any deviation from a spherical shape generally entails an increase in plastic 

viscosity for the same phase volume (Nehdi et al., 1998). Moreover, the higher the 

fineness the more is the number of contacts among particles, and consequently the higher 

is the resistance to flow. 

The mechanisms by which PCH acts are still a topic of continuing research. It was argued 

that PCH form a comb like structure by adsorbing on to hydrating cement grains due to 

the orientation of a portion of the grafted side chains of polyethylene oxide (PEO) into the 

solution. The comb-like structure of the polymers helps the PEO side chains to interact 

favourably with the aqueous medium and to stretch into the solution. The increased 

osmotic pressure resulting from the approach of cement grains towards each other and 

overlapping of adsorbed layers of the dispersant induce steric repulsive forces between 

cement particles, thus fluidizing the cement slurry (Volpert, 2005; Nelson et al., 2006). 

The performance of PCH varied with the type and dosage of SCM used. This is due to 

differences in the chemical compositions and physical properties of the SCMs, the 

chemical composition of PCH itself and the mechanisms by which it acts. Generally, 

PCH improved the rheological properties of OWC slurries at all temperatures tested. 

However, higher the temperature, higher was the yield stress. This phenomenon is 

possibly due to the breakdown of the layer which was formed by PCH  adsorption onto 

the surface of cement grains and the growth of hydration products due to the higher rate 

of hydration reactions.   

Shear thinning behaviour was observed for OWC slurries with a PCH dosage of up to 

0.5% for all the SCMs tested. Shear thinning behaviour is attributed to the shear 

alignment of cement particles in the direction of flow with an increase of shear stress 

(Eirich 1960). The formation of particulate flocs takes place at low shear rates because of 

higher inter-particle attractions. Hydrodynamic forces exerted by the flow field become 

predominant over the inter-particle attractive forces with the increase of shear stress. 
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Thus, flocs breakdown into smaller particles, which eventually releases the liquid 

entrapped within the flocs and decreases viscosity (Ferguson and Kemblowski 1991). All 

OWC slurries prepared without PCH, irrespective of the SCM used, showed shear 

thinning behaviour (Figs. 5.9 and 5.10). However, increasing the PCH dosage increased 

the value of the n exponent in the Herschel-Bulkley model, and the slurry behaviour 

shifted towards shear thickening (Fig. 5.10). It was observed in previous studies that the 

use of superplasticizers gives cement pastes a shear thickening behaviour (Cyr et al., 

2000). Al-Martini and Nehdi (2009) observed that the use of PCH seemed to increase the 

apparent viscosity beyond the saturation dosage. However, such a relation between the 

saturation dosage and shear thickening could not be made in this study on OWC. It has 

been found that the degree of shear thickening also depends on the type and dosage of 

SCM used. MK was found to amplify this phenomenon, whereas SF was found to 

attenuate and suppress the shear thickening behaviour, which was also observed by others 

(Cyr et al., 2000) for OPC pastes. In the case of FA, PCH dosages of up to 0.75% were 

found to have insignificant effect on the n-value. When the PCH> 0.75, shear thickening 

behaviour persisted and the corresponding n-value slightly increased with the increase in 

the FA proportion. RHA used as partial replacement for OWC led to shear thinning 

behaviour up to a PCH dosage of 0.75%.  

Barnes (1989) argued that the intensity of shear thickening is function of the particle 

shape, particle size, and particle size distribution. Irregular shaped particles tend to show 

shear thickening behaviour more easily, which could be one reason why the addition of 

MK as partial substitution for OWC intensified the shear thickening behaviour. Shear 

thickening behaviour could be attributed to the disordered structure of highly 

concentrated solid suspensions (Hoffman, 1998). This disordered structure dissipates 

more energy due to particle jamming, resulting in higher hydrodynamic forces than 

repulsive inter-particle forces, and hence viscosity increases with increasing shear rate 

(Hoffman, 1998). According to Bossis and Brady (1989), shear thickening could be due 

to the formation of hydrodynamic clusters, which occurs when shear forces are strong 

enough to drag particles virtually into contact. These clusters jam the particle flow and 

become larger and larger. As a consequence, the viscosity increases with increase in shear 

rate. The increase of shear rate enhances the disorder between cement particles as well as 

within the polymer chain of superplasticizers. Steric hindrance by which PCH disperses 

cement particles could be linked to the shear thickening phenomenon (Al-Martini and 
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Nehdi, 2009). When polycarboxylate polymers adsorb on to the hydrating cement grains, 

repulsive interaction occurs as a consequence of elastic and mixing mechanism. The 

elastic and mixing mechanisms are a function of the thickness and density of the polymer 

adsorption layer, respectively (Yamada et al., 1998). In order to be dispersed, the distance 

between two cement particles should be equal to or higher than double the thickness of 

the polymer adsorption layer. When cement particles try to approach each other, the 

elastic component of the steric hindrance exhibits repulsive forces. On the other hand, the 

mixing component of the steric hindrance produces resistance when two neighbouring 

polymers approach each other (Yamada et al., 1998). As a consequence, the resistance of 

the mixing component of the steric hindrance increases with the increase of PCH dosage. 

This is possibly the reason why the exponent n-value increased with the increase on PCH 

dosage and the slurry behaviour converged towards shear thickening. 

5.8 Conclusions  

The effects of various mineral admixtures with and without the presence of a new 

generation polycarboxylate-based high-range water reducing admixture (PCH) on the 

rheological behaviour of API Class G oil well cement slurries were investigated at 23, 45, 

and 60°C. First, OWC slurries incorporating various SCMs were tested without the use of 

PCH. Subsequently, PCH was used to prepare OWC slurries incorporating different 

SCMs. Based on the experimental results, the following conclusions can be drawn: 

 The FA and RHA used in the present study reduced yield stress, which can have a 

positive influence on the pumpability of OWC slurries. However, MK and SF 

increased yield stress when used as partial replacement for API Class G OWC. 

 The plastic viscosity of OWC slurries increased with the incorporation of MK, SF 

and RHA as partial replacement for OWC and decreased with the addition of FA.  

 Regardless of type and dosage of SCM, both yield stress and plastic viscosity of 

OWC slurries were found to increase nonlinearly with the increase of temperature.  

 At a given dosage, yield stress values for OWC slurries incorporating SCMs and 

without any chemical admixtures followed the following order: 

SF>MK>RHA>FA at all test temperatures. 
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 PCH, a new generation polycarboxylate-based high-range water reducing 

admixture, effectively reduced the yield stress and plastic viscosity of OWC 

slurries prepared with or without SCM addition at all temperatures tested.  

 PCH was found to enhance the shear thickening behaviour of OWC slurries and 

the intensity of this effect varied with the type and amount of SCM (amplified 

with metakaolin, reduced by SF, unchanged with FA, and showed an irregular 

behaviour with RHA).   

It should be noted that the findings reported in this study are valid for the cement, 

supplementary cementitious materials and chemical admixtures used herein. Other 

cement/admixture combinations can exhibit different characteristics. Even admixtures 

from the same category but from different source could behave differently, and thus need 

to be investigated separately.  

5.9 References  

Al-martini, S. (2008) Investigation on Rheology of Cement Paste and Concrete at High 

Temperature.  PhD Thesis, The University of Western Ontario, 376 p. 

Al-Martini, S., and Nehdi, M. (2009) Coupled Effects of Time and High Temperature on 

Rheological Properties of Cement Pastes Incorporating Various Superplasticizers. 

Journal of Materials in Civil Engineering, ASCE, Vol. 21, No. 8, August 2009, 

pp. 392-401. 

ANSI/API RP 10B-2. (2005). Recommended Practice for Testing Well Cements. First 

Edition, July 2005, 171 p. 

Barnes, H.A. (1989). Shear-thickening (“Dilatancy”) in Suspensions of Nonaggregating 

Solid Particles Dispersed in Newtonian liquids. Journal of Rheology, Vol. 33, No. 

2, pp. 329-366. 

Bossis, G., and Brady, J.F. (1989). The Rheology of Brownian Suspensions. Journal of 

Chemical Physics. Vol. 91, No. 3, 1989, pp. 1866-1874. 

Caldarone, M. A., and Gruber, K. A. (1995). High Reactivity Metakaolin-A Mineral 

Admixture for High-Performance Concrete,” Proceedings of the International 



139 
 

Conference on Concrete under Severe Conditions: Environment and Loading, 

CONSEC 1995, Sapporo, Japan, K. Sakai, N. Banthia, and O. E. Gjorv, eds., Vol. 

2, E & FN Spon: Chapman & Hall, New York, pp. 1015-1024. 

Caldarone, M. A., Gruber, K. A., and Burg, R. G. (1994). High-Reactivity Metakaolin: A 

New Generation Mineral Admixture. Concrete International, Vol. 16, No. 11, pp. 

37-40.  

Chow, T. W., Mclntire, L. V., Kunze, K. R., and Cooke, C. E. (1988). The Rheological 

Properties of Cement Slurries: Effect of Vibration, Hydration Conditions, and 

Additives. SPE Prod. Eng., Vol. 3, No. 4, pp. 543–550. 

Cordeiro, G.C., Fairbairn, R.D.T.F., Rego, E.M. (2009). Use of Ultrafine Rice Husk Ash 

with High-Carbon Content as Pozzolan in High Performance Concrete.  Materials 

and Structures, Vol. 42, No. 7, pp. 983-992. 

Cyr, M., Legrandb, C., and Mouret, M. (2000). Study of the Shear Thickening Effect of 

Superplasticizers on the Rheological Behaviour of Cement Pastes Containing or 

Not Mineral Additives. Cement and Concrete Research, Vol. 30, No. 9, pp. 1477-

1483. 

Daukšys, M., Skripkiūnas, G., and Ivanauskas, E. (2008). Microsilica and Plasticizing 

Admixtures Influence on Cement Slurry Dilatancy. Materials Science,  Vol. 14, 

No. 2. pp. 143-150. 

Ding, J.T., and Li, Z. (2002). Effects of Metakaolin and Silica Fume on Properties of 

Concrete. ACI Materials Journal, Vol. 99, No. 4, pp. 393-398. 

Domone, P.L. and Thurairatnam, H. (1988). The Effect of Water Cement Ratio, 

Plasticizers and Temperature on the Rheology of Cement Grouts. Advances in 

Cement Research, Vol. 1, No. 4, pp 195-206. 

Eirich, R.F. 1960. Rheology Theory and Applications. Academic Press, New York and 

London, 1960, pp. 205-248. 

Ferguson, J., and Kenblowski, Z. (1991). Applied Fluid Rheology. Elsevier Applied 

Science, London and Newyork, pp. 209-210. 



140 
 

Ferraris, C.F., Obla, K.H., and Hill, R. (2001). The Influence of Mineral Admixtures on 

the Rheology of Cement Paste and Concrete. Cement and Concrete Research, 

Vol. 31, No. 2, pp. 245-255.  

Golaszewski, J., Szwabowski, J., and Bisok, B. (2005). Interaction Between Cement and 

Superplasticizer in Presence of Metakaolin. Proceedings of the International 

Conference on Admixtures - Enhancing Concrete Performance, Dundee, 

Scotland, United kingdom, pp. 47-57.  

Guillot, D. (2006). Rheology of Well Cement Slurries. Well Cementing, Edited by E.B. 

Nelson and Guillot, D. Schlumberger, Texas, pp. 93-142. 

Habeeb, G.A., and Fayyadh, M.M. (2009). Rice Husk Ash Concrete: The Effect of RHA 

Average Particle Size on Mechanical Properties and Drying Shrinkage. Australian 

Journal of Basic and Applied Sciences, Vol. 3, No. 3, pp. 1616-1622. 

Hoffman, R.L. (1998). Explanations for the Cause of Shear Thickening in Concentrated 

Colloidal Suspensions. Journal of Rheology, Vol. 42, No. 1, pp. 111-123.  

Ivanov, Y.P., and Roshavelov, T.T. (1990). The Effect of Condensed Silica Fume on the 

Rheological Behaviour of Cement Pastes. International Conference on Rheology 

of Fresh Cement and Concrete, British Society of Rheology, Liverpool, March 

26-29, 1990, pp. 23-26. 

Janotka, I., Puertas, F., Palacios, M., Kuliffayová, M., and Varga, C. (2010). Metakaolin 

Sand Blended Cement-Pastes: Rheology, Hydration process and Mechanical 

Properties. Construction and Building Materials, Vol. 24, No. 5, pp. 791-802. 

Lange, F., Mörtel, N., and Rudert, V. (1997). Dense packing of cement pastes and 

resulting consequences on mortar properties. Cement and Concrete Research, 

Vol. 27, No. 10, pp. 1481–1488. 

Laskar, A.I., and Talukdar, S. (2008). Rheological Behaviour of High Performance 

Concrete with Mineral Admixtures and Their Blending. Construction and 

Building Materials, Vol. 22, No. 12, 2008, pp. 2345–2354. 



141 
 

Michaux, M., and Nelson, E.B. (1992). Flash-Set Behaviour of Oil Well Cement Slurries 

Containing Lignosulphonates. Proceedings of the 9
th

 International Congress on 

The Chemistry of Cement, Vol. 4, 1992. 

Nehdi, M., Mindess, S., and Aitcin, P.-C. (1998). Rheology of High-Performance 

Concrete: Effect of Ultrafine Particles. Cement and Concrete Research, Vol. 28, 

No. 5, pp. 687-697.  

Nehdi, M. and Al-Martini, S. (2007). Effect of Chemical Admixtures on Rheology of 

Cement Pastes at High Temperature. Journal of ASTM International, Vol. 4, No. 

3, March 2007, 17 p.  

Nehdi, M. and Rahman, M. A. (2004). Estimating Rheological Properties of Cement 

Pastes Using Various Rheological Models for Different Test Geometry, Gap and 

Surface Friction. Cement and Concrete Research, Vol. 34, n. 11, pp. 1993-2007. 

Nehdi, M., Duquette, J., and El Damatty, A. (2003). Performance of Rice Husk Ash 

Produced Using a New Technology as a Mineral Admixture in Concrete. Cement 

and Concrete Research, Vol. 33, No. 8, pp. 1203-1210. 

Nelson, E.B., Michaux, M., and Drocho, B. (2006). Cement Additives and Mechanism of 

Action.  In: E.B. Nelson and Guillot, D. (Eds.), Well Cementing, Schlumberger, 

Texas, 2006, pp. 49-91. 

Orban, J., Parcevaux ,P., and Guillot, D. (1986). Influence of Shear History on the 

Rheological Properties of Oil Well Cement Slurries. 8th International Congress 

on the Chemistry of Cement, Vol. 6, pp. 243− 247. 

Park, C.K., Noh, M.H., and Park, T.H. (2005). Rheological Properties of Cementitious 

Materials Containing Mineral Admixtures. Cement and Concrete Research, Vol. 

35, No. 5, pp. 842-849. 

Polya, G., and Szego, G. (1951). Isoperimetric Inequality in Mathematical Physics,” 

Princeton University Press, Princeton, NJ, 279 p. 



142 
 

Rahman, M.A., and Nehdi, M. (2003). Effect of Geometry, Gap, and Surface Friction of 

Test Accessory on Measured Rheological Properties of Cement Paste. ACI 

Materials Journal, Vol. 100, No. 3, pp. 331-339. 

Roy, D., and Asaga, K. (1979). Rheological Properties of Cement Mixes. III: The Effects 

of Mixing Procedures on Viscometric Properties of Mixes Containing 

Superplasticizers. Cement and Concrete Research, Vol. 9, No. 6, pp. 731–739. 

Saak, W. A. (2000). Characterization and Modeling of the Rheology of Cement Paste: 

With Application Toward Self-Flowing Materials. Ph.D. Thesis, University of 

Northwestern, 256 p. 

Saak, W. A., Jennings, M. H., and Shah, P. S. (2001). The influence of wall slip on yield 

stress and viscoelastic measurements of cement paste. Cement and Concrete 

Research, Vol. 31, n. 2, pp. 205–212. 

Saasen, A., and Log, P.A. (1996). Effect of Ilmenite Plant Dusts on Rheological 

Properties of Class G Oil Well Cement Slurries. Cement and Concrete Research, 

Vol. 26, No. 5, pp. 707-715. 

Sabir, B.B., Wild, S., and Bai, J. (2001). Metakaolin and Calcined Clays as Pozzolans for 

Concrete: A review. Cement and Concrete Composites, Vol. 23, No. 6, pp. 441-

454. 

Sakai, E., Hoshimo, S., Ohba, Y., and Daimon, M. (1997). The Fluidity of Cement Paste 

with Various Types of Inorganic Powders. Proceedings of the 10th International 

Congress on the Chemistry of Cement, Sweden, Vol. 2, 8 p. 

Skripkiūnas, G., Daukšys, M. (2004). Dilatancy of Cement Slurries With Chemical 

Admixtures. Journal of Civil Engineering and Management, Vol. 10, No. 3, pp. 

227-233.  

Soroka, I. (1993). Concrete in Hot Environments. E & FN Spon, London, 1993, 243 p.  

Sybert, F, and Reick, P. (1990). Effect of Fly Ash on the Rheological Properties of 

Cement Paste. International Conference on Rheology of Fresh Cement and 

Concrete, British Society of Rheology, Liverpool, March 26-29, pp. 13-22.  



143 
 

Vidick, B., Oberste-Padtberg, R., Rondelez, F. (1987). Selective Surface Determination 

of the Silicate Phases in Portland Cement Powders Using Alkyltrichlorosilane. 

Cement and Concrete Research, Vol. 17, No. 4, 1987, pp. 624-632.  

Vikan, H. and Justnes, H. (2003). Influence of Silica Fume on Rheology of Cement Paste. 

3
rd

 International Symposium on Self-Compacting Concrete, Editor Ólafur H. 

Wallevik, Indriði Níelsson, 17-20 August, 2003, Iceland, pp. 190-201. 

Volpert, E. (2005). Cementing Compositions Including a Dispersant Agent for Cementing 

Operation in Oil Wells. US Patent 6953091, 2005. 

White, E.L., Lenkei, M., Roy, D.M., and Tamas, F.D. (1985). Effect of Fly Ash and 

Superplasticizers on the Rheology of Cement Slurries. Materials Research Society 

Symposia Proceedings, Vol. 43, p 95-106. 

Williams, A. D., Saak, W. A., and Jennings, H. M. (1999). The Influence of Mixing on 

the Rheology of Fresh Cement Paste. Cement and Concrete Research, Vol. 29, 

No. 9, 1999, pp. 1491–1496. 

Yahia, A. and Khayat, K. H. (2001). Analytical Models for Estimating Yield Stress of 

High Performance Pseudoplastic Grout. Cement and Concrete Research, Vol. 31, 

No. 5, 2001, pp. 731-738. 

Yamada, K., Hanehara, S., and Honma, K. (1998). The Effect Of Naphthalene Sulphonate 

Type And Polycarboxylate Type Superplasticizers On The Fluidity Of Belite-Rich 

Cement Concrete. Proceedings Inter. Workshop on Self-Compacting Concrete, 

Kochi University of Technology, Kochi, Japan, 1998, pp. 201-210. 

Yijin, L., Shiqiong, Z., and Yingli, G. (2004). The Effect of Fly Ash on the Fluidity of 

Cement Paste, Mortar, and Concrete. Proceedings of the International Workshop 

on Sustainable Development and Concrete Technology, Beijing, pp. 339–345. 

Zhang, X., and Han, J. (2000). The Effect of Ultra-Fine Admixture on The Rheological 

Property Of Cement Paste. Cement and Concrete Research, Vol. 30, No. 5, pp. 

827-830.  

 



144 

 

 

C h a p t e r  6 

MODELING RHEOLOGICAL PROPERTIES OF OIL WELL 

CEMENT SLURRIES USING MULTIPLE REGRESSION ANALYSIS 

AND ARTIFICIAL NEURAL NETWORKS
*
  

6.1 Introduction 

The recent oil spill in the Gulf of Mexico and the associated environmental and economic 

impact has put renewed emphasis on the importance of oil well cementing operations. 

The rheological properties of oil well cement (OWC) slurries are important in assuring 

that such slurries can be mixed at the surface and pumped into the well with minimum 

pressure drop, thereby achieving effective well cementing operation. The rheological 

properties of OWC slurries depend on various factors including the water-cement ratio 

(w/c), size and shape of cement grains, chemical composition of the cement and relative 

distribution of its components at the surface of grains, presence and type of additives, 

compatibility between cement and chemical admixtures, mixing and testing procedures, 

time and temperature, etc. The interactions among the above mentioned factors play a 

vital role in altering the rheological properties of OWC slurries. Moreover, a wide range 

of bottom-hole pressure and temperature makes the characterization of the rheology of OWC 

slurries more challenging than that of normal cement paste. Therefore, a clear understanding 

of this complex behaviour is important in order to successfully predict the rheological 

properties of OWC slurries.  

Much work has been conducted over the last few decades to investigate the rheological 

behaviour of cementitious systems such as cement paste, mortar, grout, slurry and 

concrete. A number of shear stress-strain rate relationships have been developed for 

cement slurries. However, there exists no model that explains the interactions among the 

materials used for preparing such slurries and test conditions such as temperature, shear 

rate, etc. The power-law, Bingham, and Herschel-Bulkley models are the most commonly 

used in the well cementing industry (Guillot, 2006). Such models are comprised of 

empirical expressions derived from the analysis of limited experimental data and/or based 

                                                 

* A part of this chapter has been under review for publication in ASCE Journal of Materials in Civil 

Engineering, 2010. Another part has been submitted to Construction & Building Materials, 2011. 
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on simplifying assumptions (El-Chabib and Nehdi, 2005). Moreover, they do not have 

true predictive capability outside the experimental domain and/or when different 

materials are used (El-Chabib et al., 2003), and do not explain the interactions among test 

parameters.  

Artificial neural networks (ANNs) are powerful computational tool that allow overcoming the 

difficulty of assessing the complex and highly nonlinear relationships among model 

parameters through self-organization, pattern recognition, and functional approximation. ANN 

simulates the structure and internal functions of the biological brain. Unlike conventional 

models, ANN does not assume a model structure between input and output variables. It rather 

generates the model based on the database provided for training the network. An ANN solves 

problems by creating parallel networks and the learning of those networks, rather than by a 

specific programming scheme based on well-defined rules or assumptions (Bruni et al., 2006).  

On the other hand, multiple regression analysis (MRA) is a statistical method to learn about 

the analytical relationship between several independent or predictor variables (input variables) 

and a dependent or criterion variable (output variable) (Statsoft, 2010). The relations may be 

linear or nonlinear, and independent variables may be quantitative or qualitative. MRA 

explains the effects of a single input variable or multiple variables on the output variable with 

or without considering the effects of other variables (Cohen et al., 2003).  

Temperature has been found to have drastic effects on the rheological behaviour of 

cement slurries. Its effect also depends on the type of cement and admixtures used. Thus, 

it was argued that it would be difficult to find a general model that can represent the 

temperature dependency of cement slurry rheology (Guillot, 2006). Ravi and Sutton 

(1990) developed a correlation to calculate the equilibrium temperature for plastic 

viscosity and yield stress of Class H cement slurries using a high-pressure, high-

temperature rheometer. It was found that both plastic viscosity and yield stress increased 

with the increase in temperature. However, plastic viscosity reached a constant value 

beyond the equilibrium temperature, whereas there was no evidence for yield stress to 

attain a constant value beyond a certain temperature. Using the Bingham plastic model, 

Ravi and Sutton (1990) developed equations to represent the variation of rheological 

parameters with temperature where the yield stress and plastic viscosity values were 

measured at 80°F (27°C) and limited to a maximum temperature, Tmax. Their equations 

below were developed using cement systems containing specific additives, and are thus 

dependent on the slurry composition.  
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)00325.0()()( 2TTbaTp             (6.1) 

Where, p  is in mPa.s and T is in °F; and pa  3054.10729.65 at 80°F; and 

pb  00381.00734.1  at 80°F. 

Currently, there is need to create a reliable method for predicting the rheological 

performance of OWC slurries and relating its composition (admixture type, dosage, etc.) 

and test conditions (e.g. shear rate, temperature) to the expected rheological properties. In 

this framework, ANN and MRA have been used in the present study to develop models to 

predict the shear stress of OWC slurries at a given shear rate, as a function of the 

temperature and admixture dosage.  The ability of the models thus developed to evaluate 

the sensitivity of rheological properties to the variation of shear rate, admixture dosage, 

and test temperature was investigated. Hence, a shear stress-shear rate curve for OWC 

slurries can be predicted at different temperatures prior to fitting the data to conventional 

rheological models. Consequently, the rheological properties of OWC slurries can be 

predicted as a function of mixture composition and test conditions for the first time. 

6.2 Experimental Program 

6.2.1 Materials 

OWC slurries used in this study were prepared using a high sulphate-resistant API Class 

G OWC with a specific gravity of 3.14. Deionized distilled water was used for the 

mixing, and its temperature was maintained at 23±1°C using an isothermal container. 

Three different chemical admixtures including a new generation polycarboxylate-based 

high-range water reducing admixture (PCH), polycarboxylate-based mid-range water 

reducing admixture (PCM) and mid-range lignosulphonate based water reducing 

admixture (LSM) were used to prepare the OWC slurries with a w/c = 0.44. Their 

dosages are presented in Table 6.1.  

6.2.2 Apparatus 

The OWC slurries were prepared using a variable speed high-shear blender type mixer 

with bottom drive blades as per the ANSI/API Recommended Practice 10B-2 (2005). A 

high accuracy advanced rheometer (TA instruments AR 2000) (Fig. 4.1(a) (Chapter 4)) 

was used to measure the rheological properties of the slurries. The rheometer is capable 

of continuous shear rate sweep and stress sweep. The coaxial concentric cylinder 
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geometry was considered suitable for this study because of the typically low viscosity of 

OWC slurries. The geometry consists of a cylinder with a conical end that rotates inside a 

cylinder with a central fixed hollow as shown in Fig. 4.1(b) (Chapter 4). The rheometer is 

equipped with a rheological data analysis software, which can fit the shear stress-strain 

rate data to several rheological models.  The Bingham model was used throughout this 

study to calculate the rheological properties of cement slurries, i.e. yield stress and plastic 

viscosity.  

Table 6.1 Chemical admixtures used for preparing oil well cement slurries 

Type of admixture Abbreviation Dosages % BWOC*

New generation polycarboxylate-

based high-range water reducing 

admixture 

Polycarboxylate-based mid-range 

water reducing admixture 

Mid-range lignosulphonate based 

water reducing admixture  

PCH 

 

PCM 

 

LSM 

0.25, 0.50, 0.75, and 1.00 

 

0.25, 0.50, 0.75, and 1.00 

 

0.5, 1.0, 1.5 and 2.0 

* BWOC: by weight of cement 

 

6.3 Experimental Procedure 

The cement slurries were prepared using a high-shear blender type mixer with bottom 

driven blades as per the ANSI/API Recommended Practice 10B-2 (ANSI/API RP 10B-2, 

2005) at a controlled ambient room temperature of 23±1°C. The prepared slurry was then 

placed into the bowl of a mixer for preconditioning over 20 minutes at the test 

temperature (23°C, 45°C, or 60°C) at a speed of 150 rpm. The total time between the 

beginning of mixing and the start of the rheological tests was kept constant to avoid the 

effects of exogenous variables on the results. The rheometer set-up was also maintained 

constant for all tested slurries. The concentric cylinder test geometry was maintained at 

the test temperature so as to avoid sudden thermal shock of the slurry. 

After mixing and preconditioning, the cement slurry sample was placed in the coaxial 

cylinder of the rheometer. The temperature was adjusted to the required level and the 

sample was then subjected to a stepped ramp or steady state flow where rheological 

measurements were taken at 20 different shear rates starting from 5.11 s
-1

 up to 511 s
-1

 

after a continuous rotation of 10 sec at each level. Subsequently, the data were measured 
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at a descending shear rate from 511 s
-1

 to 5.11 s
-1

 to obtain the down flow curve. A 

schematic representation of the viscometric testing scheme is illustrated in Fig. 4.2 

(chapter 4).  

6.4 Experimental Results 

Typical shear stress-shear rate down curves of the hysteresis loop for OWC slurries 

prepared using a new generation polycarboxylate-based high-range water reducing 

admixture (PCH) at 60°C are presented in Fig. 6.1. The down-curve better fits the 

Bingham plastic model than the up-curve (Ferguson and Kemblowski, 1991, Al-Martini 

and Nehdi, 2009), therefore the shear rate–shear stress down curve was considered in 

calculating the rheological properties (yield stress and plastic viscosity) using the 

Bingham plastic model (equation 6.2). The rheological parameters thus calculated are 

highly dependent on the temperature and admixture dosage as can be observed in Figs. 

6.2 and 6.3.  



  P0           (6.2) 

Where, , 0 , P , and 


  represent the shear stress, yield stress, plastic viscosity, and shear 

rate, respectively. 
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In this study, two different approaches: MRA and ANN have been used to predict the 

shear stress as a function of test variables (temperature, admixture dosage and shear rate). 

The predicted flow curve allows in turn predicting the rheological properties of OWC 

slurries. Hence model predictions and corresponding experimental data can be compared. 

 

 

Figure 6.2 Effect of temperature on (a) yield stress, and (b) plastic viscosity of OWC 

slurry prepared using different admixtures (0.5% BWOC). 
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Figure 6.3 Effect of admixture dosage on (a) yield stress, and (b) plastic viscosity of 

OWC slurry prepared using different admixtures at 60°C. 

 

 

 

0

20

40

60

80

0 0.5 1 1.5 2 2.5 3

Y
ie

ld
 s

tr
e
ss

 (
P

a
)

Admixture dosage (% BWOC)

PCH

PCM

LSM

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.5 1 1.5 2 2.5 3

P
la

st
ic

 v
is

c
o
si

ty
 (

P
a
.s

)

Admixture dosage (% BWOC)

PCH

PCM

LSM

(a) 

(b) 



151 

 

 

6.5 Artificial Neural Networks Approach 

ANNs simulate the structure and internal functions of the biological brain. An ANN is 

capable of learning the mapping between a set of input data and its corresponding output. 

Through training, it creates memory capable of predicting output when presented with a 

new set of data within the practical range of the input used in the training process. Among 

various kinds of ANNs, the feed-forward back-propagation learning algorithm is the most 

commonly used in engineering applications, for instance in modelling the behaviour of 

cement based materials. A neural network consists of a number of layers (an input layer, 

one or more hidden layers, and an output layer) of several interconnected linear or 

nonlinear processing units (neurons). Each processing unit receives multiple inputs from 

the neurons in the previous layer through the weighted connection, and after performing 

appropriate computation, transfers its output to other processing units or as a network 

output using an assigned transfer (activation) function as shown in Fig. 6.4.  

 

 

 

 

 

 

Figure 6.4 Simplified model of artificial neural network. 

 

For a particular network, weight or connection strength is the backbone which controls 

the performance of the network. Randomly set initial weights are modified through 

network training until the network stabilizes. Each neuron J
l
 in layer l receives input Xi

l-1
 

from the connected neurons in layer l-1 and forms a single net input Uj
l
, which is 

modified by the nonlinear activation function f to produce an output value Yj
l
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)( l

j

l

j UfY                            (6.4) 

where 
l

jiW is the connection strength between neurons i and j in layers l and l-1, 

respectively, n is the number of neurons in layer l-1, and θl
j is a threshold value assigned 

to neuron j in layer l. 

Because of the differentiability requirement needed in the back-propagation technique, 

the nonlinear log-sigmoid function presented in equation (6.5) is the most commonly used 

activation function. This function generates an output between 0 and 1 as the neuron’s net 

input can have any value from negative to positive infinity (Demuth et al., 2008). 

)(
1

1
l
j

l
jU

l

j

e
f


                           (6.5) 

The generalized delta rule, developed by Rumelhart et al. (1986) is generally used as a 

learning mechanism in back-propagation neural networks. In this approach, the 

connection strength or weights are updated at a rate of k , known as the learning rate, in 

the direction in which the total network error decreases rapidly (towards the solution 

weights by correcting the errors). An iteration of this algorithm can be described as 

follows: 

ji

k

k

k

ji

k

ji
W

E
WW




 1
               (6.6) 

where, W
k
ji is a weight vector of current weights, k  is the learning rate and E

k
 is the k

th
 

error term. The selection of the learning rate is case sensitive and usually ranges from 0.0 

to 1.0. A very high rate of learning may lead to rapid training, but it may not converge to 

a stable solution. A very low rate of learning, on the other hand, increases the training 

time and the algorithm takes too long to converge (El-Chabib and Nehdi, 2005).  

The momentum is used to stabilize the weight trajectory. In this process, the weight is 

modified based on the current error correction to weights, plus some portion of the 

previous weight change shown in equation (6.7): 

 
11   k

ji

k

ji
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ji
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ji WWWW               (6.7) 
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where,  is the momentum term. The value of the momentum should always be less than 

1.0. The network becomes completely insensitive to the local gradient and, therefore, fails 

to learn properly when (Demuth et al., 2008). 

Over-fitting leads to a precise prediction of the training patterns yet can also cause poor 

generalization of new patterns. On the other hand, a premature training may cause 

unsatisfactory performance because of not adequately learning the embedded 

relationships between inputs and outputs. The training continues until it converges to a 

desired minimum error between its predicted outputs and the desired targets provided in 

the training process. The duration of training can be determined by (a) limiting the 

number of iterations, called training epochs, (b) setting a desired minimum error, or (c) 

monitoring the trend of error improvement so that training will be stopped when no or 

little improvement in the training error is reported over a given number or epochs. In each 

iteration, the error (as shown in equation 6.8) is compared with the convergence 

tolerance; if it is not met, the iteration continues and the calculated system error is back 

propagated to the network to adjust the weights and thresholds in a gradient search for the 

desired minimum system error (El-Chabib and Nehdi, 2005). 

 
 
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P

p

K

k

pkpkst ot
P

E
1 1

2)(
1

                       (6.8) 

where, Est is the system error, p is a training pattern, P is the number of training patterns 

assigned to one epoch, and tpk and opk are the predicted output and provided target of 

pattern p at output unit k, respectively.  

The construction of a successful neural network requires considering three important 

steps: selection of database, network architecture, and network training and testing.  

6.5.1 Selection of Database 

Although ANNs have been successfully used in predicting complex nonlinear 

relationships and in modeling various aspects in cement and concrete research, their 

efficiency depends on the quality of the database used for training (El-Chabib et al., 

2003). In order to account for the primary aspects that influence the input-output 

relationship of rheological properties of OWC slurries and capture the practical range of 

key input parameters (shear rate, admixture dosage and temperature), the network should 

be trained using a large and comprehensive set of reliable experimental data.  In order to 
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train the model, 190 data points were used for each of the three admixtures tested (PCH, 

PCM and LSM). Fifty new data points unfamiliar to the model, but within the range of 

training data, were used to test the performance of the network. It should be noted that 

each flow curve consists of 20 data points at equal shear rate intervals starting from 5.11 

to 511 s
-1

. Table 6.2 presents the ranges, mean values, and standard deviations of all input 

and output variables in the final database. 

Table 6.2 Range, average (Avg.), and standard deviation (SD) of input and output 

variables 

 Training Data Testing Data 

 Range Average SD* Range Average SD* 

Shear rate (s-1), 
.

   
5.11-511 258 155 5.11-511 257.9 157.52 

Temperature, ºC 

 

23-60 42.9 15.2 23-60 42.67 18.61 

Dosage of PCH 

and PCM, % 

0.25-1.0 0.63 0.28 0.25-1.0 0.60 0.27 

Dosage of LSM,% 0.5-1.0 1.27 0.56 0.5-1.0 1.21 0.56 

Shear stress 

(PCH), τ 
1.97-45.3 15.43 9.27 2.01-44.97 16.1 9.50 

Shear stress 

(PCM), τ 
3.23-

53.53 

22.75 12.0 3.36-51.9 23.74 11.88 

Shear stress 

(LSM), τ 
10.81-

144.9 

67.23 27.26 14.89-

140.69 

68.21 27.60 

* SD: Standard Deviation 

 

6.5.2 Network Architecture 

In this study, a feed-forward back propagation neural network was developed to predict 

the rheological parameters of OWC slurries. There are no generally accepted 

rules/guidelines to select the architecture or topography of a network. The topography and 

training parameters obtained through trial and error for the ANN model thus developed 

are presented in Fig. 6.5 and Table 6.3.  
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Figure 6.5 Architecture of developed ANN model. 

 

Table 6.3 Topography and training parameters for the developed ANN model 

Number of input nodes 

Number of output nodes 

Number of hidden layers 

Number of nodes in hidden layers 

Activation function input-hidden layers 

Activation function hidden-output layers 

Distribution of weights 

Momentum coefficient 

Learning rate 

Convergence  

3 

1 

1 

9 

Log-sigmoid 

Linear 

Gaussian 

0.03 

0.05 

5E-8 

 

The model parameters were selected based on the lowest training and testing error. For 

example, in order to determine the optimum number of hidden nodes, the network 

performance was evaluated by changing the number of hidden nodes alone and keeping 

all other parameters unchanged. It can be observed in Fig. 6.6 that the addition of more 

hidden nodes consistently improved the performance of the ANN in the training process. 

However, in testing the model, its performance improved up to node number 9, but the 

average absolute error (AAE) started to increase thereafter. Therefore, nine hidden nodes 
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were used in this study to develop the ANN model. It should be noted that different 

network architectures can provide satisfactory performance for the same application.  

 

 

 

 

 

 

 

Figure 6.6 Selection of number of hidden layer nodes for slurries prepared using LSM. 

 

6.5.3. Training Process 

Training a feed-forward back-propagation neural network in order to predict the 

rheological properties of OWC involves teaching the network the relationships between 

the input parameters (admixture dosage, temperature and shear rate) and the overall 

cement slurry rheology. The success of the training process depends on (a) the selection 

of network parameters, (b) the algorithm used for learning, and (c) the validation of the 

model using experimental data available for training along with new testing data 

unfamiliar to the model. Specialized commercial computer software (Demuth et al., 2008) 

was used. Supervised training was implemented in this study by providing the network 

with sets of data (inputs/targets) and the network was instructed what to learn. Parameters 

such as the learning rate and convergence tolerance used for the ANN are presented in 
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consisting of shear stress. The unipolar log-sigmoid (logsig) function and linear function 
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layer. After completion of each learning process, the average sum-squared of all errors 

was calculated and back-propagated through the Levenberg-Marquardt (Demuth et al., 

2008) algorithm to adjust the weights or connection strengths between the processing 

units. The Levenberg-Marquardt algorithm makes the leaning process faster and is based 

on the Jacobian matrix J that contains the first derivative of the network errors of 

corresponding weights. An iteration of the algorithm can be expressed as: 

  eJIJJWW TTkk 11                          (6.9) 

where W
k
 is a vector of current weights, μ is a leaning rate, J is the Jacobian matrix, J

T
 is 

the transpose matrix of J, I is the identity matrix, and e is a vector of network errors. This 

iterative process continues until the network converges and a set of weights that 

minimizes the system error to the desired level or the maximum number of iterations 

(epochs) has been reached. 

6.6 Multiple Regression Analysis 

In the MRA-based approach, the dependent variables yield stress and plastic viscosity 

were correlated to the independent variables; i.e. shear rate, admixture dosage, and test 

temperature using first (linear) and then second (polynomial) order regression models. It 

was found that no substantial improvement was achieved by the polynomial regression. 

Therefore, the linear regression-based approach was used to observe the effect of 

temperature, admixture dosages and shear rate on shear stress. As a consequence, the shear 

stress values versus shear rate, admixture dosage and test temperature, were predicted 

using the following relationship: 

TDhTgDTfDedTcDba AAAA



       (6.10) 

where, a, b, c, d, e, f, g, and h are regression coefficients, and , 


 , DA and T are the shear 

stress, shear rate, dosage of admixture and temperature, respectively.  

In order to perform the regression analysis, a total of 240 data points from down curves of 

the hysteresis loops were used for each of the three admixtures tested (PCH, PCM and 

LSM). Each data point consists of 3 input variables including shear rate, dosage of 

admixture and temperature, and one output parameter: shear stress. The least square 

approach was followed to estimate the coefficients of the model parameters. The 
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interaction between the considered three input parameters and the output parameter were 

also accounted for during the regression analyses and expressed in terms of t and 

probability (Prob.>|t|) values. The probability value indicates the probability that the 

result obtained in a statistical test is due to chance rather than to a true relationship 

between the parameters (Genentech, 2010; Montgomery, 2009). The effects of the input 

parameters on the output parameters are considered highly significant when t values are 

high and probability values are low. The parameter is often considered nonzero and 

significantly influences the response of the model when the probability values are less 

than 5% (Sonebi, 2001; Health and Income Equity, 2010).  

6.7 Model Performance  

The developed models using the ANN and MRA techniques predicted the shear stress of 

the OWC slurries and the acceptability/rejection of the model was evaluated using the 

average absolute error (AAE) given by equation 4 and the correlation coefficient (R
2
).   







n

i measured

predictedmeasured

n
AAE

1

1




                    (6.11) 

where τmeasured and τpredicted are the experimentally measured shear stress value of OWC 

slurries and the corresponding data predicted by the model, respectively, and n is the total 

number of data points. 

6.7.1 Validation of ANN and MRA-Based Models 

The artificial neural network model shown in Fig. 6.5 was trained using 190 training 

(input/target) patterns for each of the admixtures investigated, and tested using 50 

patterns of new data points unfamiliar to the network and not used in the training process. 

Figures 6.7, 6.8 and 6.9 illustrate the performance of the ANN in predicting the shear 

stress of OWC slurries incorporating PCN, PCM, and LSM, respectively. After successful 

completion of the training process, the network performance in predicting the shear stress 

of OWC slurries incorporating PCH was investigated and the results are presented in Fig. 

6.7(a). It can be observed that all data points are located on or in the vicinity of the equity 

line with an AAE of 3.43%. For cement slurries incorporating PCM, the relationship 

between measured and predicted shear stress is presented in Fig. 6.8(a). The model was 

successfully trained to predict the shear flow with an AAE of 3.17%. Similarly, Fig. 6.9(a) 
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represents the performance of the ANN model in predicting the shear stress of cement 

slurries incorporating LSM. It can be observed that the model was able to predict the 

shear stress of the cement slurries satisfactorily since the measured and corresponding 

predicted data points are located along the equity line with an AAE of 2.82%.  

The acceptance/rejection of the ANN model depends primarily on its performance in 

predicting the shear stress of new sets of unfamiliar data within the range of input 

variables of training patterns. In order to validate the developed model, the network was 

presented with 50 new sets of data which were not used in training the network. In this 

case, only input vectors of shear rate, dosage of admixture and temperature were 

presented to the network and no information or knowledge about the corresponding shear 

stress was provided. The response of the neural network is presented in Figs. 6.7(b), 

6.8(b) and 6.9(b) for OWC mixtures made with PCH, PCM and LSM, respectively. The 

model predictions are accurate since the testing points are located slightly over or under 

the equity line but within the cluster of training data with an AAE of 2.76, 2.77 and 2.81% 

for slurries with PCH, PCM and LSM, respectively. 
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Figure 6.7 Measured versus predicted shear stress for OWC slurries incorporating PCH 

(a) Training data and (b) Testing Data 
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Figure 6.8 Measured versus predicted shear stress for OWC slurries incorporating PCM 

(a) Training data and (b) Testing Data 
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Figure 6.9 Measured versus predicted shear stress for OWC slurries incorporating LSM 

(a) Training data and (b) Testing Data  

 

Figure 6.10 (a, b, c) represents the performance of models using the MRA technique in 

predicting the shear stress of OWC slurries incorporating PCH, PCM and LSM, 

respectively. All data points are located on or in the vicinity of the equity line with an 

AAE of 4.83, 6.32 and 5.05% for slurries with PCH, PCM and LSM, respectively. 
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Figure 6.10 Measured versus MRA–model predicted shear stress for OWC slurries 

incorporating (a) PCH, (b) PCM, and (c) LSM.   
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Table 6.4 reveals the relative importance of various parameters as well as their 

interactions in predicting the shear stress of OWC slurries prepared with PCH, PCM and 

LSM. It can be observed that the probabilities of the derived coefficients of all the 

parameters for PCH and PCM are limited to 3.9%. This implies that there is less than 

3.9% chance, or 96.1% confidence limit, that the contribution of a given parameter to the 

tested response exceeds the value of the specified coefficient. In case of LSM, the 

probabilities of the derived coefficients of all the parameters are limited to 4.9%.  

Negative coefficients suggest that an increase of the given parameter results in a reduction 

of the measured response. Moreover, the value/coefficient of the parameter represents the 

importance of the given parameter on the response value. The higher the coefficient of the 

parameter, the greater is its influence.  For example, an increase in temperature increases 

the shear stress for all the admixtures tested, and an increase in the dosage of the 

admixture reduces the shear stress in the case of PCH and PCM, but increases the 

response value in the case of LSM, which is in good agreement with the experimental 

results. Moreover, the admixture dosage was found to have more influence on the model 

response than that of the other parameters. The presence of interactions with coupled 

terms specifies that the influence of the parameter on a particular response is quadratic 

(Sonebi, 2001).  

The derived statistical models using the multiple regression analysis approach for shear 

stress of OWC slurries incorporating PCH, PCM and LSM have been selected based on 

the lowest average absolute error (AAE) and the highest correlation 

coefficient/determination coefficient (R
2
); they are given in Equations  (6.12), (6.13) and 

(6.14), respectively.  

TDTDTDTD AAAA



  002.0256.0001.0076.0279.0075.5013.00.5    (6.12) 

TDTDTDTD AAAA



  002.0220.0002.0085.0429.0849.8022.00.5  (6.13)                  

TDTDDTD AAAA  002.0072.0068.0869.0909.4122.0                  (6.14) 

The accuracy of the ANN- and MRA-based models thus developed was further evaluated 

by comparing the ratio of the measured-to-predicted values of the shear stress of OWC 

slurries. The maximum, minimum and average of the shear stress values, standard 

deviation (SD), and coefficient of variation (COV) and the average absolute error (AAE) 

for all the data are presented in Tables 6.5 and 6.6. The results reveal that both the ANN 



165 

 

 

and MRA have successfully learned to map between input parameters (shear rate, dosage 

of respective admixture, temperature) and corresponding output (shear stress). The 

proposed models satisfactorily predicted the shear stress with acceptable error. However, 

the AAE of the models developed using the ANN approach was found to be lower than 

that of MRA-based models. The better performance of the ANN-based model was also 

supported by the higher correlation coefficient (R
2
) than that provided by the MRA-based 

models.  

6.7.2 Performance of ANN and MRA in Predicting Rheological Properties Of OWC 

Slurries 

Based on the satisfactory performance of the developed ANN and MRA models in 

predicting the shear stress of OWC slurries, the down flow curve for a particular mixture 

was predicted by changing the shear rate and keeping the admixture dosage and 

temperature unchanged. Subsequently, the yield stress and plastic viscosity were 

determined from the model predicted down flow curve using the Bingham plastic model. 

The yield stress was obtained by extrapolating the shear stress-shear rate curve 

corresponding to a zero shear rate, and the plastic viscosity was the slope of the curve. 

One slurry mixture for each of the admixtures was randomly selected from the testing 

data and used to develop the down flow curve at different temperatures (23°C, 45°C, and 

60°C). These OWC mixtures were made with 0.5% of each admixture.  
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Table 6.4 Model Parameters 

 PCH (R2 = 0.991) PCM (R2 = 0.982) LSM (R2 = 0.982) 

Coeff. t Prob.>|t| Coeff. t Prob.>|t| Coeff. t Prob.>|t| 

Intercept 5.000 - - 5.000 - - 0.000 - -

  -0.013 -2.076 0.039 -0.022 -3.439 0.001 0.122 7.395 < 0.0001 

DA -5.075 -2.329 0.021 -8.849 -4.026 < 0.0001 4.909 2.723 0.0148 

T 0.279 10.323 < 0.0001 0.429 15.696 < 0.0001 0.869 12.073 < 0.0001 

 xDA 0.076 6.860 < 0.0001 0.085 7.633 < 0.0001 -0.068 -4.395 0.00158 

 xT 0.001 7.765 < 0.0001 0.002 10.683 < 0.0001 0.000 -1.003 0.174 

DA xT -0.265 -4.407 < 0.0001 -0.220 -3.619 0.000 -0.072 -1.901 0.0495 

 xDAxT -0.002 -7.329 < 0.0001 -0.002 -8.514 < 0.0001 0.002 5.921 < 0.0001 

 

 

Table 6.5 Performance of ANN-based model in predicting the shear stress of cement slurries prepared with different chemical admixtures 

Type of 

admixture 

AAE (%) τmeasured/τpredicted 

Average SD1 COV2 (%) 

Training Testing Training Testing Training Testing Training Testing 

PCH 3.43 2.76 0.984 0.988 0.058 0.040 5.88 4.09 

PCM 3.17 2.77 0.998 1.001 0.062 0.040 6.18 4.01 

LSM 2.82 2.81 1.000 1.000 0.042 0.041 4.23 4.11 
       1SD: standard deviation, 2 100*/ AverageSDCOV   

 

Table 6.6 Performance of MRA-based model in predicting the shear stress of cement slurries prepared with different chemical admixtures 

Type of 

admixture
AAE (%) 

τmeasured/τpredicted

Maximum Minimum Average SD1 COV2 (%) 

PCH 4.83 1.165 0.805 1.006 0.062 6.128

PCM 6.32 1.203 0.864 0.999 0.073 7.348 

LSM 5.05 1.167 0.854 1.018 0.059 5.804 
1SD: standard deviation, 2 100*/ AverageSDCOV   
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Figure 6.11 (a, b) represents the predicted yield stress and plastic viscosity values, 

respectively for OWC slurries incorporating 0.5% of PCH, PCM, and LSM at different 

temperatures, along with the corresponding experimentally measured values. Both the 

yield stress and plastic viscosity values predicted by the ANN- and MRA-based models 

followed a similar trend to that of the experimental data. In addition to test temperatures 

(23°C, 45°C and 60°C), rheological parameters were also determined at 35°C and 52°C in 

order to predict the model’s response within the range of the input data.  It can be 

observed that the yield stress for OWC slurries incorporating PCH was generally lower 

than that for slurries made with PCM and LSM. This is in agreement with findings for 

cement pastes (Al-Martini and Nehdi 2007, Al-Martini 2008). Both the yield stress and 

plastic viscosity were found to be sensitive to the change in temperature; the higher the 

temperature the higher was the yield stress, which is in good agreement with experimental 

results.  

The effect of the admixture dosage at different temperatures on the predicted rheological 

parameters of OWC slurries is illustrated in Fig. 6.12. Some admixture dosages not used 

in experiments were also included in model predictions. Both experimental and predicted 

values of yield stress decreased with PCH and PCM dosage. In the case of LSM, the 

predicted yield stress values increased with the dosage up to 1.5% and then started to 

decrease, which is in good conformity with experimental results. It can be observed that 

the variation of yield stress with admixture dosage was reasonably estimated for all the 

admixtures considered and its predicted values were comparable to the corresponding 

measured data.  

Moreover, the plastic viscosity of OWC slurries was found to be sensitive to the change 

of temperature and admixture dosage (Fig. 12(b)). The plastic viscosity values predicted 

by both the ANN- and MRA-based models showed irregular behaviour, which may be 

associated with the error involved in fitting the curve to the Bingham model. It was 

argued (Al-Martini and Nehdi, 2007) that plastic viscosity measured by fitting the down 

flow curve of the hysteresis loop to the Bingham model does not always truly represent 

the material properties because of the error associated with fitting the curve, which could 

be sometimes high as observed by Saak (2000). 
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Figure 6.11 Variation of (a) yield stress, and (b) plastic viscosity of OWC slurries at 

different temperatures (Dosage of admixture = 0.5% BWOC). 
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Figure 6.12 Variation of (a) yield stress, and (b) plastic viscosity of OWC slurries with 

admixture dosage and at a temperature of 60°C. 
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Figures 11 and 12 reveal that the models were able to recognize and evaluate the effects 

of the admixture dosage and temperature on yield stress and plastic viscosity. The AAE of 

the ANN model predictions was in the range of 1.4 to 15.6% and 0.7 to 11.8% for yield 

stress and plastic viscosity, respectively, and that for the MRA model was in the range of 

1.2 to 17.5% and to 1.3 to 14.5% for yield stress and plastic viscosity, respectively; 

depending on the admixture dosage and temperature tested. The higher values of AAE are 

usually associated with the lower yield stress and plastic viscosity values since small 

prediction errors may result in high AAE in such cases.  

6.8 Conclusion 

In this chapter, the relationships amongst the shear stress, shear rate, temperature, 

admixture type and dosage for OWC slurries have been analyzed. The rheological 

properties of OWC slurries were modeled using a feed-forward back-propagation 

artificial neural network and multiple regression analysis. The models were then used to 

develop flow curves, which were used to calculate the yield stress and plastic viscosity 

values for OWC slurries with different admixtures and at different test temperatures. 

Based on this study, the following conclusions can be drawn: 

 The ANN model developed in this study was able to learn the relationships between 

different shear flow parameters for various OWC slurries and successfully predicted 

their rheological properties of slurries used in the training process. It also 

demonstrated satisfactory performance when input parameters (shear rate, 

temperature, and dosage of admixture) unfamiliar to the ANN were used. The results 

prove that the ANN model is a powerful tool to quantitatively predict the rheological 

properties of OWC slurries within the range of tested admixture dosages and test 

temperatures. 

 The MRA-based models were able to predict the rheological properties of OWC 

slurries with adequate accuracy.  

 The flow curves developed using the ANN- and MRA-based models allowed 

predicting the Bingham parameters (yield stress and plastic viscosity) of OWC 

slurries with an acceptable accuracy and were found to be in good agreement with 

experimental results.  
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 The models proposed by both approaches were found to be sensitive to the effects of 

temperature increase and admixture dosage on the rheological properties of OWC 

slurries. 

 The ANN-based model performed relatively better than the MRA-based model in 

predicting the rheological properties of OWC slurries. 

 The proposed ANN- and MRA-based models can be extended and used to limit the 

number of laboratory trial mixtures and develop OWC slurries with suitable 

rheological properties, thus saving time and reducing the cost of OWC slurry design 

for specific applications.  
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C h a p t e r  7 

ARTIFICIAL INTELLIGENCE MODEL FOR RHEOLOGICAL 

PROPERTIES OF OIL WELL CEMENT SLURRIES 

INCORPORATING SCMs
1
 

7.1 Introduction 

The world's production of portland cement is forecast to continue increasing throughout the 

next 40 years, from the 2.8 billion tons of 2009 to around 3.8 billion tons by 2030, and 4.4 

billion tons by 2050 (Cement Technology Roadmap, 2009). Cement production is not only 

highly energy-intensive, but also causes global ecological problems by consuming substantial 

amounts of natural resources. Producing one ton of cement emits approximately one ton of 

carbon dioxide (CO2) mainly due to the calcination of raw materials and combustion of fuels. 

Growing concerns for reducing CO2 emissions and reduction /recycling of waste materials 

have stimulated the usage of supplementary cementitious materials (SCMs). Such materials 

include fly ash, silica fume, ground granulated blast furnace slag, natural pozzolans, 

metakaolin, etc. Because of differences in their physical and chemical properties, not all 

SCMs act similarly when used as partial replacement for cement. For instance, owing to its 

spherical particle shape and relatively low specific surface, fly ash reduces the water demand 

when used as partial replacement for portland cement. Conversely, silica fume tends to 

increase the water demand due to its very high surface area.  

OWC slurries are complex mixtures consisting of cement, water and a number of chemical 

and mineral additives. In the petroleum industry, cement slurries are pumped to several 

thousand meters into the ground to anchor and seal the casing to the borehole of oil or gas 

wells. They have to achieve specific rheological properties under stringent temperature and 

pressure conditions. Thus, an advanced characterization of the rheology of OWC slurries is 

critical. In order to contend with extreme bottom-hole conditions, various chemical and 

mineral additives are usually used in the slurry composition. Interactions amongst the 

                                                 
1 A version of this chapter has been accepted in Advances in Cement Research, 2011. 
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different ingredients used cause wide variation in the rheological properties, which depend 

on the specific materials and proportions used. 

Many studies have been performed over the last few decades to investigate the rheological 

behaviour of cementitious systems such as, cement paste, mortar, grout, slurry and concrete. 

Determining the rheological properties of OWC slurries in-situ is not always practical. 

Extensive rheological testing requires sophisticated equipment not suitable for on-site 

operation, and is labour intensive and time consuming. Therefore, there is a need for models 

that can predict the rheological properties of OWC slurries with adequate accuracy. A 

number of shear stress-strain rate relationships have been developed for rheological 

properties of cement based systems, among which the power-law, Bingham, and Herschel-

Bulkley models are the most commonly used in the well cementing industry (Guillot 2006). 

However, there exists no model that can account for interactions among the materials used 

for preparing such slurries and test conditions such as temperature. Such models are 

comprised of empirical expressions derived from the analysis of limited experimental data 

and/or based on simplifying assumptions (El-Chabib and Nehdi, 2005). Moreover, they do 

not have true predictive capability outside the experimental domain and/or when different 

materials are used (El-Chabib et al., 2003; 2005) and do not explain the interactions among 

test parameters.  

Artificial neural networks (ANNs) are a powerful computational tool capable of solving 

complex and highly nonlinear functions through self-organization, pattern recognition, and 

functional approximation. ANNs simulate the structure and internal functions of the 

biological brain through computing. The use of ANNs in the field of civil engineering has 

increased over the last decades because of its ability to map between a set of input data and a 

corresponding output, and to perform global optimization for complex, nonlinear, and noisy 

problems. In this study, an ANN model has been developed for predicting the rheological 

properties of OWC slurries and relating the slurry composition (type and dosage of SCM, 

dosage of chemical admixture, etc.) and test conditions (e.g. shear rate, temperature) to the 

predicted rheological properties.  

Four different mineral admixtures including metakaolin (MK), silica fume (SF), rice husk ash 

(RHA) and class F fly ash (FA) were used as partial replacement for API class G OWC in 
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this study. An ANN based model has been developed to predict the shear stress at a given 

shear rate as a function of the temperature, SCM type and dosage, and chemical admixture 

dosage. The ability of the ANN model to evaluate the sensitivity of the rheological properties 

to variations of the shear rate, admixture dosage, and test temperature was investigated. The 

shear stress-shear rate curve for OWC slurries could be predicted at different temperatures 

prior to fitting the data to conventional rheological models. Hence, for the first time, the 

rheological properties of OWC slurries could be predicted as a function of the mixture 

composition and test conditions. The ANN model would help designers selecting optimum 

OWC-SCM combinations considering the predicted rheological performance. It can be 

extended in future research to also account for mechanical strength and durability. 

7.2 Materials and Apparatus  

OWC slurries were prepared using a high sulphate-resistant API Class G OWC with a 

specific gravity of 3.14, along with a new generation polycarboxylate-based high-range water 

reducing admixture (PCH) and different dosages of various SCMs including MK, SF, RHA 

and FA.  The chemical and physical properties of the cement and SCMs are summarized in 

Table 5.1 (Chapter 5). Details of the mixture compositions of the slurries tested are provided 

in Table 5.2 (Chapter 5). Deionized distilled water was used for the mixing, and an 

isothermal container was used to maintain its temperature at 23±1°C.  

The cement slurries were prepared using a variable speed high-shear blender type mixer with 

bottom drive blades as per the ANSI/API Recommended Practice 10B-2 (ANSI/API RP 10B-

2). A high accuracy advanced rheometer (TA instruments AR 2000) (Fig. 4.1), was used 

throughout this study to measure the rheological properties of OWC slurries. The rheometer 

is computer controlled and equipped with a rheological data analysis software, which can fit 

the shear stress-strain rate data to several rheological models. The Bingham model was used 

throughout this study to calculate the rheological properties. It is worth mentioning that 

rheological data depend on the type of rheological model used for fitting the experimental 

data (Nehdi and Rahman, 2004). 
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7.3 Experimental Procedure 

The coupled effects of temperature, PCH dosage and type and amount of SCMs on the 

rheological properties of OWC slurries were investigated. The mixing of slurries was 

conducted at a controlled ambient room temperature of 23±1°C. The prepared slurry was 

then placed in a temperature controlled chamber for preconditioning at the specific test 

temperature (23, 45, or 60°C) and continually agitated at 150 rpm over 20 minutes. The 

rheometer set-up was maintained constant for all tested slurries. The concentric cylinder test 

geometry was preconditioned at the test temperature so as to avoid sudden thermal shock of 

the slurry. After mixing and preconditioning, the OWC slurry sample was placed in the 

coaxial cylinder of the rheometer. Once the temperature has been adjusted to the required 

level, the sample was sheared to a stepped ramp of steady state flow from 5.11 s
-1

 to 511 s
-1

 

with 10 sec at each strain rate level. Subsequently, data were measured at a descending shear 

rate from 511 s
-1

 to 5.11 s
-1

 to obtain the down flow curve. A schematic representation of the 

viscometric testing scheme is illustrated in Fig. 5.1 (Chapter 5).  

7.4 Experimental Results 

Figure 7.1 illustrates typical shear stress-shear rate down curves for OWC slurries 

incorporating 5% SCM and different dosages of PCH at 60ºC. The experimental results 

reveal that the Bingham model (Eq. 1) fits the shear stress-shear rate down curve with a 

correlation coefficient (R
2
) > 0.95.  



  P0                                                                                                                       (7.1) 

where, , 0 , P , and 


  represent the shear stress, yield stress, plastic viscosity, and shear 

rate, respectively. The down-curve better fits the Bingham plastic model than the up-curve 

(Ferguson and Kemblowski, 1991; Al-Martini and Nehdi, 2009), therefore the shear rate–

shear stress down curve was considered in calculating the rheological properties (yield stress 

and plastic viscosity). 

The Bingham parameters (yield stress and plastic viscosity) are very much dependent on test 

variables as observed in Figs. 7.2 to 7.4. In this study, artificial neural networks have been 
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used to predict the shear stress as a function of test variables (temperature, SCM and PCH 

dosage, and shear rate). The predicted flow curve allows in turn to predict the rheological 

properties of OWC slurries using the Bingham or similar models.  
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Figure 7.1 Flow curve of oil well cement slurry incorporating 5% of SCMs and different 

dosage of PCH Admixture at 60ºC, (a) MK; (b) SF; (c) RHA; and (d) FA.  
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Figure 7.2 Variation of rheological properties of OWC slurries with type and dosage of SCM 

but without PCH at 60°C; (a) yield stress and (b) plastic viscosity. 
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Figure 7.3 Variation of rheological properties with temperature for OWC slurries prepared by 

10%  replacement of OWC by SCM (MK, SF, RHA, and FA); (a) yield stress and (b) plastic 

viscosity. 
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Figure 7.4 Variation of rheological properties with dosage of PCH for OWC slurries prepared 

by 10% replacement of OWC by SCM (MK, SF, RHA, and FA) at 60ºC; (a) yield stress and 

(b) plastic viscosity. 

 

7.5 Artificial Neural Network Approach 

Artificial neural networks (ANNs) is a powerful computational tool that simulates the 

biological structure of neurons and the internal functions of the brain. An ANN is capable of 

learning the mapping between a set of input data and its corresponding output. Through 

training, it becomes capable of predicting an output when presented with a new set of data 

within the practical range of the input used in the training process. The feed-forward back-

(b) 

(a) 
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propagation learning algorithm is the most commonly used in engineering applications, 

especially in modelling the behaviour of cement-based materials. ANNs are constructed of 

several linear or nonlinear processing units (neurons) arranged in an input layer, one or more 

hidden layers, and an output layer, and are often connected to neurons in other layers.  Each 

processing unit receives multiple inputs from the neurons in the previous layer through the 

weighted connection, and after performing appropriate computation, transfers its output to 

other processing units or as a network output using an assigned transfer (activation) function 

as shown in Fig. 6.4 (Chapter 6).  

There exists a number of network such as Hopfield network (Hopfield, 1982), Bolzmann 

machines (Ackley et al., 1985), the Kohonen network (Kohonen, 1982), and the multilayer 

feed-forward back-propagation neural network (Rumelhart et al., 1986). Among these the 

feed-forward back-propagation learning algorithm is the most commonly used in engineering 

applications, especially in modelling the behaviour of cement based materials.  

Feed-Forward Back-Propagation Neural Network performs nonlinear transformation for 

functional approximation problems, recognize logic functions, and subdivide the pattern 

space for classification. It consists of a number of layers (input layer, hidden layer(s) and 

output layers) and processing units (neurons) in each layer.  The neurons in one layer are 

fully connected between the processing units in adjacent layers with different weight but no 

backward connection is allowed and no connection exists between neurons in the same layer. 

The selection of the optimum number of hidden layers and the processing units (neurons) 

depends on the complexity of the problem. To date there are no well established rule to 

determine the suitable number of hidden layers and neurons (El-Chabib and Nehdi, 2005; 

Elbahy et al., 2010). These numbers are usually determined by trial and error. Fewer neurons 

than the optimum number results in fewer connection in the network which eventually 

reduces the ability of the network to implement nonlinear transformation for functional 

approximation. A premature training may cause unsatisfactory performance because of not 

adequately learning the embedded relationships between inputs and outputs. Over-fitting may 

not only lead to a precise prediction of the training patterns, but can also cause poor 

generalization of new patterns. The training continues until it converges to a desired 

minimum error between its predicted outputs and the desired targets provided in the training 

process. The duration of training can be determined by (a) limiting the number of iterations, 
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called training epochs, (b) setting a desired minimum error, or (c) monitoring the trend of 

error improvement so that training will be stopped when no or little improvement in the 

training error is reported over a given number or epochs. In each iteration, the error (as 

shown in equation 7.2) is compared with the convergence tolerance; if it is not met, the 

iteration continues and the calculated system error is back propagated to the network to 

adjust the weights and thresholds in a gradient search for the desired minimum system error 

(El-Chabib and Nehdi, 2005). 

 
 
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pkpkst ot
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1 1

2)(
1

                  (7.2) 

where, Est is the system error, p is a training pattern, P is the number of training patterns 

assigned to one epoch, and tpk and opk are the predicted output and provided target of pattern 

p at output unit k, respectively.  

The construction of an effective neural network requires considering three important steps: 

selection of database, network architecture, and network training and testing (El-Chabib et 

al., 2003).  

7.5.1. Selection of Database 

The success of ANNs mostly depends on the quality of the database used for training (El-

Chabib et al., 2003; Elbahy et al., 2010). The database should be large enough for the 

training process and should provide complete information about the relationships between 

the inputs and output.  In order to account for the primary aspects that influence the input-

output relationship of rheological properties of OWC slurries and capture the practical range 

of key input parameters (shear rate, dosage of SCM and PCH, and temperature), the network 

should be trained using a large and comprehensive set of reliable experimental data.  The 

database comprised of a total of 900 patterns for each of the four SCMs tested (MK, SF, 

RHA and FA). Among which 780 patterns (660 for training and 120 for cross-validation) 

were used for training the network. One hundred and twenty (120) new data points 

unfamiliar to the model, but within the range of training data, were used to test the 

performance of the network. It should be noted that each flow curve consists of 20 data 

points at equal shear rate intervals starting from 511 s
-1

 to 5.11 s
-1

. Each data pattern consists 



184 

 

 

of an input vector containing the four input parameters and an output vector containing the 

corresponding shear stress value for this input vector. The input parameters are the shear rate, 

dosage of SCM, dosage of PCH and test temperature. Table 7.1 presents the ranges, mean 

values, and standard deviations of all input and output variables in the final database. 

 

Table 7.1 Range, average (Avg.), and standard deviation (SD) of input and output variables 

 Training Data Testing Data 

 Range Average SD* Range Average SD* 

Shear rate (s-1), 
.

  5.11-511 258 153.6 5.11-511 257.9 157.52 

Dosage of SCM, 

% 
5-15 10.00 4.08 0-15 11.2 4.14 

Dosage of PCH, 

% 
0.25-1.5 0.80 0.43 0.25-1.5 0.76 0.48 

Temperature, ºC 

 
23-60 42.67 15.2 23-60 42.67 18.61 

Shear stress, τ 2.17-1057 164.01 159.42 4.54-978.74 247.34 226.49 

* SD: Standard Deviation 

 

7.5.2. Network Architecture 

In this study, a feed-forward back propagation neural network was developed to predict the 

rheological parameters of OWC slurries. As mentioned earlier, there are no rules/guidelines 

to select the architecture or topography of a network. A trial and error method has been used 

to obtain the topography and training parameters for the ANN model. The topography and 

training parameters thus developed are presented in Fig. 7.5 and Table 7.2.  A network that 

consists of one input layer, one hidden layer and one output layer was found to be most 

appropriate. 
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Figure 7.5 Architecture of developed ANN model. 

 

The model parameters were selected based on the lowest training and testing error. For 

example, in order to determine the optimum number of hidden nodes, the network 

performance was evaluated by changing the number of hidden nodes alone and keeping all 

other parameters unchanged. It can be observed in Fig. 7.6 that the performance of the ANN 

was found to improve with the addition of more hidden nodes in the training process, 

whereas in the testing process of the model, its performance improved up to node number 8, 

but the average absolute error (AAE) started to increase thereafter. Therefore, eight hidden 

nodes were used in this study to develop the ANN model. It should be noted that different 

network architectures can provide satisfactory performance for the same application. 

 

Table 7.2 Topography and training parameters for the developed ANN model 

Number of input nodes 

Number of output nodes 

Number of hidden layers 

Number of nodes in hidden layers 

Activation function input-hidden layers 

Activation function hidden-output layers 

Distribution of weights 

Momentum coefficient 

Learning rate 

Convergence  

4 

1 

1 

8 

Log-sigmoid 

Linear 

Gaussian 

0.03 

0.05 

5E-8 
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Figure 7.6 Selection of number of hidden layer nodes for OWC slurries prepared by partial 

replacement of RHA. 

 

7.5.3. Training Process 

Training a feed-forward back-propagation neural network involves teaching the network the 

relationships between the input parameters (shear rate, dosage of SCM, dosage of PCH, 

temperature) and the overall cement slurry rheology, and is usually performed in two stages: 

(i) feed-forward and (ii) back-propagation. The data flows from the input processing units to 

predict the desired network output. The obtained output is then compared with the predefined 

output and the difference is calculated. The error is then back propagated if the difference is 

greater than the predefined tolerance.  

The success of the training process depends on (a) the selection of network parameters, (b) 

the algorithm used for learning, and (c) the validation of the model using experimental data 

available for training along with new testing data unfamiliar to the model. Specialized 

commercial computer software (Demuth et al., 2008) was used. Supervised training was 

implemented in this study by providing the network with sets of data (inputs/targets) and the 
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network was instructed what to learn. Parameters such as the learning rate and convergence 

tolerance used for the ANN are presented in Table 7.2. A training pattern consists of an input 

vector of 4 elements including the shear rate, dosage of corresponding SCM, dosage of PCH 

and temperature, and a corresponding output vector consisting of shear stress. The unipolar 

log-sigmoid (logsig) function and linear function were assigned as the transfer function for 

the processing units in the input-hidden layers and the hidden-output layers, respectively. The 

neurons were fully connected to the neurons in adjacent layers but no backward connection 

exists between neurons. No connection is permitted between neurons in the same layer as 

well. After completion of each learning process, the average sum-squared of all errors was 

calculated and back-propagated through the Levenberg-Marquardt (Demuth et al., 2008) 

algorithm to adjust the weights or connection strengths between the processing units. The 

Levenberg-Marquardt algorithm makes the leaning process faster and is based on the 

Jacobian matrix J that contains the first derivative of the network errors of corresponding 

weights and biases (Nehdi et al., 2001). An iteration of the algorithm can be expressed as: 

  eJIJJWW TTkk 11                     (7.3) 

where W
k
 is a vector of current weights, μ is a leaning rate, J is the Jacobian matrix, J

T
 is the 

transpose matrix of J, I is the identity matrix, and e is a vector of network errors. This 

iterative process continues until the network converges, the mean square error (MSE) of the 

cross validation dataset increases, and a set of weights that minimizes the system error to the 

desired level, or the maximum number of iterations (epochs) provided for early stopping has 

been reached. Over fitting reduces the ability of the network to correctly predict the output of 

the unfamiliar data. Therefore, the network is considered generalized when the MSE of the 

cross validation data is minimized. Figure 7.7 represents the graphical representation of 

change in MSE value of the training and cross validation data patterns in the training process.  

.  
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Figure 7.7 Graphical representation of the change in MSE of the training and cross-validation 

data set in training process. 

 

7.6 Results and Discussion 

A successful ANN is able to predict the corresponding output for new input parameters not 

previously used in the network training, but within the range of training patterns. The success 

of the training process must be evaluated and the quality of the model response to training 

patterns should be analyzed before testing the ANN to determine its ability to predict the 

output for new sets of input parameters involved in the rheology of OWC and SCM system.  

7.6.1 Validation of ANN Model Using Training Data 

The network model shown in Fig. 7.5 was trained using 780 training (input/target) pairs for 

each of the SCMs  investigated, then tested using 120 pairs of data points unfamiliar to the 

network. The ANN model predicted the shear stress of the OWC slurries and the 

acceptability/rejection of the model was evaluated using the average absolute error (AAE) 

given by equation 7.4.   







n

i measured

predictedmeasured

Y

YY

n
AAE

1

1
                (7.4) 

Optimal no of 

iterations
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where Ymeasured and Ypredicted are the shear stress value of OWC slurries measured 

experimentally and the corresponding data predicted by the ANN, respectively, and n is the 

total number of data points.  

Figures 7.8-7.11 illustrate the response of the ANN in predicting the shear stress of OWC 

slurries when OWC was partially replaced by MK, SF, RHA, and FA, respectively.  The 

ANN model was capable of accurately predicting the shear stress corresponding to each set 

of input data. After successful completion of the training process, the network performance 

was checked with the input data set and the response in predicting the shear stress of OWC 

slurries incorporating MK were presented in Fig. 7.8(a). All data points were located on or in 

the vicinity of the equity line with an AAE of 5.44%. Fig. 7.9(a) represents the performance 

of the ANN model in predicting the shear stress of OWC slurries incorporating SF. The 

model was able to predict the shear stress of the cement slurries satisfactorily since the 

measured and corresponding predicted data points are located along the equity line with an 

AAE of 5.79%. For OWC slurries made with RHA as, the relationship between measured and 

predicted shear stress is presented in Fig. 7.10(a). The model was successfully trained to 

predict the shear flow with an AAE of 6.58%. Similarly, the network performance for OWC 

slurries with FA was found satisfactory with an AAE of 5.21% (Fig. 7.11(a)). 
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Figure 7.8 Measured versus predicted shear stress for OWC slurries at different temperature 

and dosage of PCH when MK was used as SCM to prepare slurries (a) Training data and (b) 

Testing Data. 
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Figure 7.9 Measured versus predicted shear stress for OWC slurries at different temperature 

and dosage of PCH when SF was used as SCM to prepare slurries (a) Training data and (b) 

Testing Data. 

 

(a) (b)AAE=5.44% AAE=3.87% 

(a) (b)AAE=5.79% AAE=3.29% 
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Figure 7.10 Measured versus predicted shear stress for OWC slurries at different temperature 

and dosage of PCH when RHA was used as SCM to prepare slurries (a) Training data and (b) 

Testing Data. 
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Figure 7.11 Measured versus predicted shear stress for OWC slurries at different temperature 

and dosage of PCH when FA was used as SCM to prepare slurries (a) Training data and (b) 

Testing Data. 

 

7.6.2 Validation of ANN Model Using Test Data 

The performance of the ANN model to predict the shear stress of new sets of unfamiliar data 

within the range of input variables of the training patterns determines the 

acceptance/rejection of the ANN. In order to validate the developed model, the network was 

(a) (b)AAE=6.58% AAE=5.35% 

(a) (b)AAE=5.21% AAE=3.32% 
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presented with 120 new sets of input data, which were not used during the training process. 

In this case, only an input vector of shear rate, dosage of admixture and temperature was 

presented to the network and no information or knowledge about the shear stress was 

provided. The response of the neural network is presented in Figs.8 (b), 9(b). 10(b) and 11(b) 

for OWC slurries incorporating MK, SF, RHA, and FA, respectively. The model predictions 

were appropriate since the testing points are located slightly over or under the equity line but 

within the cluster of training data with an AAE of 3.87, 3.29, 5.35, and 3.32% for slurries 

with MK, SF, RHA, and FA, respectively.  

 The average, standard deviation (SD), and coefficient of variation (COV) of the measured 

and predicted shear stress of OWC slurries and the average absolute error for all the testing 

and training data are presented in Table 7.3. The results reveal that the ANN model predicted 

the shear stress of OWC slurries incorporating SCMs with acceptable error.  

 

Table 7.3 Performance of ANN in predicting the shear stress of cement slurries prepared with 

different supplementary cementitious materials  

Type of 

admixture 

AAE (%) 
Ymeasured/Ypredicted 

Average SD1 COV2 (%) 

Training Testing Training Testing Training Testing Training Testing 

MK 5.44 3.87 0.978 0.997 0.011 0.040 1.12 4.21 

SF 5.79 3.29 1.013 1.001 0.080 0.110 7.89 10.99 

RHA 6.58 5.35 0.983 0.989 0.012 0.089 1.22 8.99 

FA 5.21 3.32 1.029 1.004 0.140 0.052 13.60 5.10 
1SD :standard deviation, 2 100*/ AverageSDCOV   

7.6.3 Sensitivity Analysis of ANN in Predicting Rheological Properties of OWC slurries 

The ANN model thus developed showed satisfactory performance in predicting the shear 

stress of OWC slurries incorporating MK, SF, RHA or FA. In order to examine the ability of 

the developed model to capture the effects of the individual input parameters on the desired 

output shear stress as well as on other rheological parameters such as yield stress and plastic 

viscosity, an attempt has been made to use the trained ANN to develop the down flow curve 

by randomly selecting one database pattern from the training data and subsequently creating 

other database patterns by changing the shear rate from 511 s
-1

 to 5.11 s
-1

 and keeping all 

other input parameters such as the PCH dosage, level of SCM and temperature unchanged. 
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The predicted shear stress versus shear rate curve thus obtained can be used to predict 

rheological properties such as the yield stress and plastic viscosity using the Bingham plastic 

model.  

The sensitivity of the proposed model to temperature was first evaluated and one slurry 

mixture incorporating 10% for each of the SCMs with a PCH dosage of 0.5% was selected 

and used to develop the down flow curve by changing the shear rate from 511 s
-1

 to 5.11 s
-1

 

for each of the temperature considered. The yield stress and plastic viscosity were determined 

using the Bingham plastic model. The yield stress was obtained by extrapolating the shear 

stress-shear rate curve corresponding to a zero shear rate, and the plastic viscosity was the 

slope of the curve. In addition to test temperatures (23°C, 45°C and 60°C), rheological 

parameters were also determined at 35°C and 52°C in order to predict the model’s response 

within the range of input data.  

Figure 7.12 illustrates the predicted yield stress and plastic viscosity values for OWC slurries 

when OWC was replaced by 10% SCM at different temperatures. A different scale was used 

so as to better predict the variation of experimental and model-predicted data for each SCMs. 

Both yield stress and plastic viscosity values predicted by the ANN followed the same trend 

as that of the experimental data. The yield stress and plastic viscosity were found to be 

sensitive to the change in temperature; the higher the temperature the higher was the yield 

stress and plastic viscosity, which is in good agreement with experimental results.  
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Figure 7.12 Variation of rheological properties with temperature for OWC slurries prepared 

with 10% replacement of OWC by (a) MK, (b) SF, (c) RHA, and (d) FA with 0.5% PCH. 

 

In order to evaluate the sensitivity of the proposed model to the effect of the dosage of SCM 

on the predicted rheological parameters of cement slurries, input parameters such as the shear 

rate and dosage of SCM were varied from 511 s
-1

 to 5.11 s
-1

, and 5 to 15%, respectively, 

while the temperature and PCH dosage were kept constant at 60ºC and 0.5%, respectively.  

Figure 7.13 illustrates the variation of yield stress and plastic viscosity of OWC slurries at a 

temperature of 60°C. SCM dosages (7 and 12%) not used in experiments were also included 

in ANN model predictions. The yield stress was found to decrease when the API Class G 

OWC was partially replaced by FA and RHA and to increase when replaced by SF and MK, 

which conforms to findings of the experimental investigation. The plastic viscosity of OWC 

(d) 

(a) 

(c) 

(b) 
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slurries was found to increase with the incorporation of MK, SF and RHA as partial 

replacement for OWC and to decrease with the use of FA, which is in accordance with the 

experimental results.  
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Figure 7.13 Variation of rheological properties with dosage of SCM for OWC slurries 

prepared by partial replacement of (a) MK, (b) SF, (c) RHA, and (d) FA at 60ºC and with 

0.5% PCH. 

 

Figure 7.14 reveals the sensitivity of the ANN model to the PCH dosage for OWC slurries 

incorporating 10% SCM at 60ºC. Predicted values of yield stress decreased with higher PCH 

dosage, which is in good conformity with experimental results. It can be observed that the 

variation of yield stress with admixture dosage was reasonably estimated for all PCH dosages 

considered and the predicted values were comparable to the corresponding measured data. 

Moreover, the plastic viscosity of OWC slurries was found to be sensitive to the PCH 

dosage. Plastic viscosity was found to decrease with higher PCH dosage for all the SCM 

(d) 

(a) 

(c) 

(b) 
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considered, except when OWC was replaced by MK. In the case of MK, plastic viscosity 

continued to decrease up to a PCH dosage of 1% and then started to increase, which is in 

good agreement with the experimental findings.  
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Figure 7.14 Variation of rheological properties of OWC slurries with dosage of PCH at 60ºC 

and 10% replacement of OWC by (a) MK, (b) SF, (c) RHA, and (d) FA.  

 

 

Figures 7.12 to 7.14 illustrate that the ANN-model was able to recognize and evaluate the 

effects of temperature, dosage of SCM and PCH on yield stress and plastic viscosity of OWC 

slurries with an AAE in the range of 1.11 to 8.07% and 0.92 to 15.87% for yield stress and 

plastic viscosity, respectively. The higher values of AAE are usually associated with the 

(d) 

(a) 

(c) 

(b) 
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lower yield stress and plastic viscosity values since small prediction errors may result in high 

AAE in such cases.  

 

7.7 Conclusion 

The relationships amongst the shear stress, shear rate, temperature, type and dosage of 

supplementary cementitious material, and dosage of PCH admixture for OWC slurries have 

been analyzed and the rheological properties were modeled using a feed forward back-

propagation artificial neural network. The model was then used to develop flow curves, 

which were used to calculate the yield stress and plastic viscosity values for OWC slurries 

with different SCMs and at different test temperatures. Based on this study, the following 

conclusions can be made: 

 The feed-forward back-propagation ANN architecture that resulted in optimum 

performance was selected based on a trial-and-error approach.  

 The trained ANN accurately learnt the relationships between the different shear flow 

parameters for various OWC slurries incorporating SCMs such as metakaolin, silica 

fume, rice husk ash and fly ash, and successfully predicted the rheological properties 

of OWC slurries used in the training process.  

 The ANN model also showed satisfactory performance in predicting the rheological 

properties when input parameters (shear rate, temperature, and dosage of SCM and 

PCH admixture) unfamiliar to the neural network were used as input. 

 The flow curves developed using the ANN model allowed predicting the Bingham 

parameters (yield stress and plastic viscosity) with an acceptable accuracy and were 

found to be in good agreement with experimental results.  

 The neural network proved to be a powerful tool to quantitatively predict the 

rheological properties of OWC within the range of tested admixture dosages and test 

temperatures. 
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 A sensitivity analysis was performed to study the effects of individual input 

parameters on the rheological properties of OWC slurries. Irrespective of the type and 

dosage of SCM used, the ANN model successfully captured the rheological bahavior 

of OWC slurries with variation of input parameters.   

 The ANN model was found to generalize its predictions beyond the training data to 

new slurries incorporating different dosages of admixtures (PCH and SCM) and 

considering different temperatures within the practical range of training data.  

 Based on the performance of the developed ANN-model, it can be used to develop 

OWC slurries with desirable rheological properties without the need for an exhaustive 

number of trial batches as in the case in current practice.  

 The predictive capability of the ANN model is limited to data located within the 

boundaries of the training range. However, the model can be retrained to a wider data 

range of input variables when new experimental data becomes available.   
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C h a p t e r 8 

OPTIMIZATION OF RHEOLOGICAL PROPERTIES OF OIL WELL 

CEMENT SLURRIES USING EXPERIMENTAL DESIGN 

8.1 Introduction 

The rheology of oil well cement (OWC) slurries affects the primary oil well cementing job. 

Thus, a fundamental knowledge of the rheology of OWC slurry is necessary to evaluate the 

mix-ability and pump-ability of the slurry, optimize mud removal and slurry placement, and 

to predict the effect of wellbore temperature on slurry placement (Guillot, 2006). The 

rheology of cement slurries is complex since it is a manifestation of various interactions 

between the cement particles, water and other constituents, time and temperature. Cement 

slurries are visco-elastic materials that exhibit properties characteristic of both elastic solids 

and viscous fluids.  

To characterize the rheology of a cement slurry, rheological parameters such as the yield 

stress, apparent viscosity, plastic viscosity, shear thinning, or shear thickening behaviour 

need to be studied. The Bingham plastic model and the Power law are widely used to 

describe the rheological properties of cement slurries (Guillot 2006). The Bingham plastic 

model includes both yield stress, y and a limiting viscosity, P  at finite shear rates. The 

yield stress indicates the minimum effort needed for a material to start moving and is the 

intercept of the flow curve (shear stress vs. shear rate) with the shear stress axis. Below the 

yield stress, a material behaves like a solid. Yield stress is the contribution of the skeleton, i.e. 

it is a manifestation of friction among solid particles (Ferraris and Larrard, 1998). Plastic 

viscosity governs the flow after it is initiated and is the contribution of suspending liquids 

resulting from viscous dissipation due to the movement of water in the sheared material 

(Ferraris and Larrard, 1998, Laskar and Talukdar 2008). Plastic viscosity is the slope of the 

fitted straight line of the flow curve. The plastic viscosity of a cement slurry is usually 

evaluated using the linear portion of the down curve of the hysteresis loop.  

Supplementary cementitious materials (SCMs) are increasingly being used considering their 

significant sustainability and economic benefits. Moreover, chemical admixtures play an 
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important role in controlling the early-age and hardened properties of cement based systems. 

However, because of their different physical and chemical properties, not all SCMs act in a 

similar manner with respect to rheological properties. For example, owing to its spherical 

particle shape, fly ash (FA) reduces the water demand when used as a partial replacement for 

cement. Conversely, silica fume (SF) increases the water demand by adsorbing water due to 

its very high surface area. Indeed, rheological parameters can exhibit an increase or decrease 

depending on the type of cement, time and temperature, admixture used, particle shape and 

size distribution, type, replacement level, and loss on ignition of the SCM used. 

A number of researches have been performed over the last few decades to characterize the 

properties of cement based materials incorporating SCMs. Nonetheless, information 

regarding the influence of SCMs on the rheological properties of OWC slurries is less 

abundant. For instance, the current knowledge on metakaolin (MK) is generally centered on 

its pozzolanic behaviour and effect on cement hydration and concrete properties. It was 

reported that MK had adverse effects on the workability of concrete (Sabir et al. 2001). 

Golaszewski et al. (2005) performed Two-Point Workability tests on modified mortar and 

found that the addition of MK had lower influence on yield stress than on plastic viscosity. 

The degree of such an influence depends on the type of cement, properties of the 

superplasticizer, and the metakaolin content. The effects of other SCMs, such as SF and FA, 

on the rheological properties were also investigated. It was found that MK had less influence 

on rheological properties than SF and FA.  

It was argued that there exists a threshold value of SF partial replacement for cement, beyond 

which both yield stress and plastic viscosity of concrete increase with increasing SF content 

(Tattersall, 1991). Faroug et al. (1991) observed that yield stress increased up to a 20% SF 

replacement level and then started to decrease. Plastic viscosity was found to decrease up to 

10% SF and then it started to increase at higher levels of SF (Faroug et al., 1991). Park et al. 

(2005) found that both yield stress and plastic viscosity exhibited steep increases with the 

increase in condensed SF up to 15% replacement level. Nehdi et al. (1998) found that SF, 

when used as partial replacement for cement, increased the amount of superplasticizer needed 

to maintain a constant workability. Similar finding was also observed by Ferraris et al. (2001) 

who reported that the replacement of cement by SF significantly increases the high range 

water reducing (HRWR) admixture dosage at a given yield stress and plastic viscosity. 
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Laskar and Talukdar (2008) studied the effect of RHA on the rheological properties of 

Ordinary Portland Cement (OPC) concrete and found that yield stress decreased and plastic 

viscosity increased when RHA was used as partial replacement for OPC. Nehdi et al. (2003) 

found that the replacement of cement by RHA resulted in increased water demand and 

reduced concrete workability. However the water requirement for all RHA samples tested 

was lower than that of SF mixtures despite that some RHAs had higher surface area than that 

of SF.  

The flow behaviour of pure FA paste is similar to that of cement paste (Sybert and Reick 

1990). Sybert and Reick (1990) found that rheological properties vary linearly when cement 

is partially replaced by FA. A small change in the FA ash properties can cause large changes 

in the flow properties. Bunn et al. (1990) investigated the effect of temperature on FA ash 

slurry rheology and found that the apparent viscosity decreased with increasing temperature. 

Ferraris et al. (2001) found that partial replacement of cement by FA led to a decrease in the 

HRWR admixture dosage at a given yield stress and plastic viscosity. Tattersall (1991) found 

that yield stress decreased moderately, while the plastic viscosity decreased slightly when FA 

was used as partial replacement for cement. Banfill (1994) found that both yield stress and 

plastic viscosity decreased with the increase in FA content. Laskar and Talukdar (2008) 

report that the addition of increasing levels of up to 30% FA led to a decrease in the yield 

stress of concrete, then yield stress slightly increased up to a 50% FA level. The plastic 

viscosity was found to exhibit an irregular behviour. It increased up to 10% FA and then 

decreased gradually up to 30% FA. Beyond this level, change in plastic viscosity was not 

significant (Laskar and Talukdar, 2008).  

A number of researches (e.g. Menezes et al., 2010; Yahia and Khayat, 2002; Sonebi, 2001, 

2002, 2010; Nehdi et al., 1997, Khayat et al., 1999) used statistical approaches to select 

mixture proportioning for cementitious systems. For example, Al-Darbi
 
et al. (2006) used 

factorial design of experiments to evaluate the effects of human hair fibers on the reduction 

of shrinkage cracking of mortar considering the cement/sand ratio, water/cement ratio, and 

human hair fibers content as design parameters. These statistical methods provide greater 

efficiency and confidence in the results obtained, and could optimize the tested systems with 

a minimum number of experiments. Using this approach in the oil well cementing and 

petroleum industry is fairly new. For instance, Cestari et al. (2009) used 2
3
 full-factorial 
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design to study the effects of temperature and HCL concentration on the adsorption of HCL 

onto API class A cement slurries.  

The present study aims at evaluating the effects of temperature, superplasticizer dosage, and 

the type and level of SCM partial replacement for cement on the rheological properties of 

OWC slurries using a statistical approach and design of experiments. The statistical model 

thus developed could be used to evaluate the effects of experimental parameters and their 

interactions on the rheological properties of OWC slurries. It can also be used for tailoring 

OWC slurry mixtures to meet specific rheological requirements.  

The optimization of OWC slurries often requires a number of trial batches to achieve 

adequate rheological properties. This is usually labor intensive and time consuming. A 

factorial experimental design approach was used in this study to determine the influence of 

temperature and key mixture design parameters such as the superplasticizer dosage and type 

and level of SCM used as partial replacement for cement, along with interactions between 

these parameters on the rheological properties of OWC slurries. A predictive model has been 

developed, which can simplify the test protocol required to achieve an optimum balance 

among various parameters for achieving a specific rheological performance of OWC slurries. 

8.2 Materials 

The OWC slurries tested in this study for developing a predictive statistical model were 

prepared using a high sulphate-resistant API Class G OWC with a specific gravity of 3.14. 

De-ionized distilled water was used for the mixing, and its temperature was maintained at 

23±1°C using an isothermal container. The incorporated SCMs included MK, SF, RHA, and 

low calcium FA with an OWC partial replacement level ranging from 5 to 15%. The 

chemical and physical properties of the cement and SCMs are summarized in Table 5.1 

(Chapter 5). A new generation polycarboxylate-based high-range water reducing admixture 

(PCH) was used as the chemical admixtures to prepare the OWC slurries at a water-to-

cement mass ratio (w/c) of 0.44.  
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8.3 Test Procedure 

The OWC slurries were prepared using a variable speed high-shear blender type mixer with 

bottom drive blades as per the ANSI/API Recommended Practice 10B-2 (2005) at a 

controlled ambient room temperature of 23±1°C. The prepared slurry was then placed into 

the bowl of a mixer for preconditioning (at 150 rpm) over 20 minutes at the specific test 

temperature (23°C, 45°C, or 60°C). The total time between the beginning of mixing and the 

start of the rheological tests was kept constant for all slurries to avoid the effects of 

exogenous variables on the results.  

A high accuracy advanced rheometer (TA instruments AR 2000) (Fig. 4.1 (Chapter 4)), 

capable of continuous shear rate sweep, stress sweep and strain sweep was used throughout 

this study to measure the rheological properties of cement slurries. The rheometer set-up was 

also maintained constant for all tested slurries. The concentric cylinder test geometry was 

maintained at the test temperature so as to avoid sudden thermal shock of the slurry. The 

cement slurry sample was placed in the coaxial cylinder of the rheometer after mixing and 

preconditioning. The sample was subjected to a stepped ramp or steady state flow once the 

temperature of the rheometer was adjusted to the required level, and rheological 

measurements were taken at 20 different shear rates starting from 5.11 s
-1

 up to 511 s
-1

 after a 

continuous rotation of 10 sec at each level. The data were also measured at a descending 

shear rate from 511 s
-1

 to 5.11 s
-1

 to obtain the down flow curve. The schematic 

representation of the viscometric testing scheme illustrated in Fig. 5.1 (Chapter 5) has been 

used in this study.               

8.4 Experimental Results 

The Bingham plastic model (equation 8.1) was used in this study to calculate the yield stress 

and plastic viscosity from the shear rate-shear stress down-curve. The down-curve was 

chosen since it better fits to the Bingham plastic model than the up-curve (Ferguson and 

Kenblowski 1991). 

.


  Py                     (8.1) 
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Where, , y , P , and 


  represent the shear stress, yield stress, plastic viscosity, and shear 

rate, respectively.  

The effect of the type and dosage of SCM on the yield stress and plastic viscosity of OWC 

slurries at different test temperatures, namely 23, and 60°C are presented in Figs. 8.1 and 8.2, 

respectively. It is revealed that the Bingham parameters (yield stress and plastic viscosity) are 

very much dependent on test variables such as the temperature, type and level of SCM and 

PCH dosage. For instance, the yield stress was found to increase with the addition of MK or 

SF and to decrease with the incorporation of RHA or FA. Incorporating FA caused the plastic 

viscosity of OWC slurries to decrease, while this value increased with the addition of other 

SCMs. Due to such variations, individual statistical models have been developed for each of 

these SCMs.  

Figure 5.6 (Chapter 5) illustrates the variation of yield stress of OWC slurries incorporating 

varying dosages of SCMs and PCH at a w/b ratio of 0.44. Different scales have been used to 

represent results for FA and RHA due to their much lower yield stress values compared to 

those for MK and SF. It can be observed that for all SCMs used, yield stress generally 

decreased with PCH addition and this decrease was generally gradual until reaching a 

saturation dosage. However, for each SCM, the saturation dosage depended on the SCM 

dosage and temperature. It can be further observed from Fig. 5.6 that regardless of the dosage 

of SCM and PCH, the higher the temperature, the higher was the yield stress, which is due to 

the higher rate of hydration reactions at higher temperature. Yield stress decreased with PCH 

addition for all SCMs, yet the dosages required were higher in the case of SF and MK. 

Plastic viscosity values of the OWC slurries were measured as the slope of the down flow 

curve of the hysteresis loop and plotted in Fig. 5.7 (Chapter 5). In general, plastic viscosity 

was found to increase with the increase of test temperature and to decrease with the increase 

of PCH dosage. 
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8.5 Factorial Design Approach 

A second order 2
k
 central composite response surface model was used in this study to 

evaluate the influence of two different levels for each variable on the rheological properties 

of OWC slurries. The three experimental parameters for the rheological model are the PCH 

dosage, type and level of SCM, and temperature. Considering the nonlinear interactions 

between the variables, a second order central composite design (CCD) was selected to 

quantify the predicted responses (yield stress and plastic viscosity) for each SCM used using 

the following relationships: 

 
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where, 0a , ia , iia , ija , 0b , ib , iib , and ijb are regression coefficients, and 0 , p , ε, x1, x2 

and x3 are yield stress, plastic viscosity, noise or error observed in the responses, temperature, 

level of SCM, and dosage of PCH, respectively.   
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Figure 8.1 Variation of yield stress of OWC slurries with type and dosage of SCM at  

(a) 23°C, and (b) 60°C. 
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Figure 8.2 Variation of plastic viscosity of OWC slurries with type and dosage of SCM at  

(a) 23°C, and (b) 60°C. 
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This two-level factorial design requires a minimum number of tests. In this study k = 3; thus 

the total number of factorial points is 2
3 

= 8. The error in predicting the responses increases 

with the distance from the center of the modeled region (Montgomery, 2009). Therefore, the 

use of the models is limited to the area bounded by the coded values ranging from –α to +α. 

In order to provide a reasonably consistent and stable variance of the predicted response, the 

model needs to be rotable. CCD is made rotable by the choice of α, which in turn depends on 

the number of slurries in the factorial design. It has been reported (Montomery, 2009) that α 

= (nf)
1/4

 produces a rotable central composite design where nf is the number of points used in 

the factorial portion of the design. In the present study, the two values of α were chosen as 

±1.68, and the coded variables of the mixtures ranged between -1.68 to +1.68 as summarized 

in Table 8.1. Parameters were carefully selected to carry out CCD to evaluate the effect of 

each factor at five different levels in codified values of ±α (axial points), ±1 (factorial points), 

and center point.  

 

Table 8.1 Coded and absolute values for investigated parameters 

Parameter -1.68 -1 Center point +1 +1.68 

Dosage of PCH (%) 

Dosage of SCM  (%) 

Temperature (ºC) 

 

0.00 

1.60 

10.50 

0.25 

5.00 

23.00 

 

0.88 

10.00 

41.50 

1.50 

15.00 

60.00 

1.92 

18.50 

72.50 

 

 

The results of single replication for yield stress and plastic viscosity from a total of 40 

mixture combinations of OWC slurry for each type of SCM were considered in the 

experimental design of OWC slurries to calculate the coefficients of the regression equations. 

Iterations were conducted until reliable statistical models were obtained for yield stress and 

plastic viscosity as a function of the PCH dosage, level of SCM, and temperature. Five 

replicate center points were used to calculate the noise or degree of experimental error for the 

modelled responses. Then six different slurry mixtures (Table 8.2) were used to verify the 

accuracy of the model. The coded factors of variables are calculated as follows: 

Coded factor = (Absolute value-Factor mean)/(Range of the factorials values/2)           (8.4) 

Coded value of dosage of PCH = (Absolute value-0.875)/0.625                        (8.5) 
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Coded value of dosage of SCM = (Absolute value-10)/ 5             (8.6) 

Coded value of temperature = (Absolute value-41.5)/ 18.5             (8.7) 

 

Table 8.2 Coded and absolute values for mixture proportions used in validation models 

 

 Dosage of PCH Dosage of SCM Temperature 

Mix Absolute Coded Absolute Coded Absolute Coded 

46 60 1.00 5 -1 1 0.20 

47 45 0.19 15 1 1.5 1.00 

48 50 0.46 7.5 -0.5 0.5 -0.60 

49 23 -1.00 10 0 1 0.20 

50 30 -0.62 12.5 0.5 0.75 -0.20 

51 60 1.00 15 1 1.25 0.60 

 

8.6 Discussion  

The yield stress and plastic viscosity of OWC slurries resulting from the experimental 

program were analysed using a statistical software package (Design-Expert 8.0.3, 2010). The 

statistical analysis involved the fitting of mathematical equations to the experimental results 

to get the entire response surface of yield stress and plastic viscosity for each of the SCMs 

used. Subsequently, validation of the model was carried out through an analysis of variance 

(ANOVA).  

The second order response surface model for the yield stress and plastic viscosity of OWC 

slurries using CCD with two-level factorial design of three independent variables 

(temperature (Temp), level of SCM (SCM) and PCH dosage (PCH)) is as follows: 

PCHTempaSCMTempaPCHaSCMaTempaa  5432100  

 2

9

2

8

2

76 PCHaSCMaTempaPCHSCMa                                 (8.8) 

PCHTempbSCMTempbPCHbSCMbTempbbp  543210  

 2

9

2

8

2

76 PCHbSCMbTempbPCHSCMb                                 (8.9) 
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where, 0a and 0b  denote the overall mean of the total effect estimates of all factors for yield 

stress and plastic viscosity, respectively; coefficients a1 to a9 and b1 to b9 refer to the 

contribution of the corresponding factor to the response, which is calculated as one half of 

the corresponding factor effect estimates; and ε is the random error term representing the 

effects of the uncontrolled variables.  

The least square approach was used to estimate the coefficients of the model parameters. 

Power transformation of the corresponding responses (yield stress or plastic viscosity) was 

used to accommodate large differences between minimum and maximum values of the 

response variable. A maximum-to-minimum ratio of less than 3 usually has less influence on 

the power transfer, whereas transformation is required when the ratio is greater than 10 

(Design-Expert 8.0.3, 2010). Different transformation factors have been used in this study 

based on a Box-Cox plot (Montgomery 2009). The interaction between the considered three 

input parameters and the responses were also accounted for during the regression analyses 

and expressed in terms of t values and probability (Prob.)>|t| values. The probability value 

indicates the likelihood that the result obtained in a statistical test is due to chance rather than 

to a true relationship between the parameters (Genentech, 2010; Montgomery, 2009). The 

effects of the input parameters on the output parameters are considered highly significant 

when t values are high and probability values are low. The parameter is often considered 

nonzero and significantly influences the response of the model when the probability values 

are less than 5% (Montomery, 2009).  

The ANOVA of derived statistical models for yield stress and plastic viscosity of OWC 

slurries prepared using SCM (MK, SF, RHA and FA) is presented in Tables 3 and 4, 

respectively. The coded coefficient and (Prob.)>|t| values provide a comparison of the effects 

of various parameters as well as their interactions on the modelled responses. ANOVA is 

used to test the significance of the model regression; and t test values based on student’s 

distribution are used to identify the significant variables and second order interactions of the 

variables involved. The (Prob.)>|t| value of the model term is considered significant when the 

values are less than 0.05, and insignificant when the value is greater than 0.10. A negative 

coefficient indicates that an increase of a given parameter causes a reduction of the measured 

response. For example, increasing the temperature and MK dosage increased the yield stress 

of OWC slurries, whereas an increase in the PCH dosage reduced the yield stress value 
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(Table 8.4). A higher coefficient signifies greater influence on the response and vice versa.  

The presence of parameter interactions with coupled terms (e.g. TempTemp ) indicates that 

the influence of the parameter is quadratic. The effects of second order interaction between 

parameters (e.g. Temp-SCM, Temp-PCH or SCM-PCH) on rheological properties are 

discussed later in this text.  

The derived quadratic models for the yield stress and plastic viscosity of OWC slurries 

incorporating four different SCMs (MK, SF, RHA and FA) as partial replacement for OWC 

are presented in Table 8.5, where Temp, SCM and PCH are given in coded values. 

Comparing the values of the model coefficients in Table 8.5, it can be deduced that the yield 

stress of OWC slurries increased with temperature and decreased with higher PCH dosage 

for all SCMs used. Moreover, the addition of SCM can increase or decrease the yield stress 

value depending on the type of SCM. The yield stress of OWC slurries increased in the case 

of MK and SF addition, and decreased in the case of RHA and FA. Likewise, plastic 

viscosity increased with the increase of temperature, irrespective of the type of SCM used.  

The significance of the derived models was evaluated by comparing the F test values (Table 

8.6) to the 
21 ,,05.0 F values tabulated in the Fisher distribution (Montgomery, 2009), where ν1 

and ν2 are the degree of freedom of the model and model error, respectively. For a 95% 

confidence interval, the 5,9,05.0F value is 8.81. All the F values presented in Table 8.6 were at 

least six fold higher than the tabulated values, which implies that the developed models are 

significant in describing the coupled effects of temperature, PCH and SCM. The (Prob.)>F 

value indicates that there is only 0.01% chance that such a "Model F-Value" could occur due 

to noise. 

The average measured response of the five replicate slurries for each SCM along with the 

estimated errors with 95% confidence intervals for each response are presented in Table 8.7. 

The estimated errors provide information about the relative experimental errors and 

repeatability of the test results for yield stress and plstic viscosity of OWC slurries 

incorporating SCMs.  
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                                                 Table 8.3 ANOVA of yield stress for OWC slurries with different SCMs 

 
 Metakaolin Silica Fume Rice hush ask Fly ash 

R2=0.962 R2=0.954 R2=0.961 R2=0.972 

Coefficient (Prob.)>|t| Coefficient (Prob.)>|t| Coefficient (Prob.)>|t| Coefficient (Prob.)>|t| 

Intercept 1.7670   2.5510   1.1890   0.6890   

A-Temp 0.1900 0.0026 0.4350 < 0.0001 0.3470 < 0.0001 0.0470 < 0.0001 

B-SCM 0.4690 < 0.0001 0.7340 < 0.0001 -0.3800 < 0.0001 -0.0590 < 0.0001 

C-PCH -1.5720 < 0.0001 -1.3790 < 0.0001 -1.2490 < 0.0001 -0.2150 < 0.0001 

AB -0.0160 0.8157 -0.0630 0.3772 -0.0400 0.4320 -0.0070 0.3261 

AC -0.6550 < 0.0001 -0.3120 0.0007 -0.0760 0.2165 0.0200 0.0239 

BC -0.3930 < 0.0001 -0.5190 < 0.0001 -0.0120 0.8480 0.0060 0.4991 

A2 0.1180 0.2662 0.2590 0.0190 0.0370 0.6270 -0.0340 0.0025 

B2 0.4380 < 0.0001 0.2140 0.0413 -0.1480 0.0478 0.0140 0.1575 

C2 1.2960 < 0.0001 0.5710 < 0.0001 0.7990 < 0.0001 -0.0940 < 0.0001 

 

 

Table 8.4 ANOVA of plastic viscosity for OWC slurries with different SCMs 

 
 Metakaolin Silica Fume Rice hush ask Fly ash 

R2=0.932 R2=0.968 R2=0.959 R2=0.952 

Coefficient (Prob.)>|t| Coefficient (Prob.)>|t| Coefficient (Prob.)>|t| Coefficient (Prob.)>|t| 

Intercept -0.3700   0.8900   1.2350   0.2660   

A-Temp 0.0510 0.0031 0.0110 < 0.0001 0.0840 < 0.0001 0.0630 < 0.0001 

B-SCM 0.2200 < 0.0001 0.0120 < 0.0001 0.1100 < 0.0001 -0.0480 < 0.0001 

C-PCH -0.2500 < 0.0001 -0.0520 < 0.0001 -0.2670 < 0.0001 -0.2290 < 0.0001 

AB 0.0520 0.0111 0.0000 0.8984 0.0020 0.8848 -0.0320 0.0046 

AC -0.0470 0.0491 -0.0100 < 0.0001 0.0000 0.9958 -0.0390 0.0037 

BC -0.0620 0.0108 -0.0080 0.0009 -0.0200 0.1338 0.0460 0.0009 

A2 0.0020 0.9521 0.0050 0.0542 -0.0280 0.1024 0.0350 0.0329 

B2 0.1600 < 0.0001 -0.0010 0.7720 -0.0270 0.0962 -0.0140 0.3517 

C2 0.1400 < 0.0001 0.0220 < 0.0001 -0.0480 0.0084 0.1550 < 0.0001 

  Values of "Prob > |t|" less than 0.0500 indicate model terms are significant.   

  Values greater than 0.1000 indicate the model terms are not significant.   
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            Table 8.5 Derived quadratic models for the yield stress and plastic viscosity of OWC slurries incorporating four different SCMs  

 

MK 

0  
PCHMKPCHTempPCHMKTemp  393.0655.0572.1469.019.0767.1  

22 296.1438.0 PCHMK   

(8.10) 

p  
PCHTempMKTempPCHMKTemp  047.0052.025.022.0051.037.0   

22 14.016.0062.0 PCHMKPCHMK   

(8.11) 

SF 

0  
PCHSFPCHTempPCHSFTemp  519.0312.0379.1734.0435.0551.2   

222 571.0214.0259.0 PCHSFTemp   

(8.12) 

p  
PCHSFPCHTempPCHSFTemp  008.001.0052.0012.0011.089.0  

 
22 022.0005.0 PCHTemp   

(8.13) 

RHA 

0  22 799.0148.0249.138.0347.0189.1 PCHRHAPCHRHATemp   (8.14) 

p  

22 027.0028.0267.011.0084.0235.1 RHATempPCHRHATemp   

 
2048.0 PCH  

(8.15) 

FA 

0  

2034.002.0215.0059.0047.0689.0 TempPCHTempPCHFATemp    

2094.0 PCH  

(8.16) 

p  
PCHTempFATempPCHFATemp  039.0032.0229.0048.0063.0266.0  

22 155.0035.0046.0 PCHTempPCHFA   

(8.17) 
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Table 8.6 ANOVA for significance of regression models  

  SS DF F Value (Prob.)> F R2 

MK YS 87.300 9 97.550 <0.0001 0.962 

PV 3.580 9 53.060 <0.0001 0.932 

SF YS 74.920 9 81.730 <0.0001 0.954 

PV 0.074 9 118.240 <0.0001 0.968 

RHA YS 46.030 9 98.240 <0.0001 0.961 

PV 2.090 9 92.100 <0.0001 0.959 

FA YS 1.230 9 136.730 <0.0001 0.972 

PV 1.610 9 77.500 <0.0001 0.952 

 

 

Table 8.7 Repeatability of test results based on 5 replicate center points 

 MK SF RHA FA 

 YS 

(Pa) 

PV 

(Pa.s) 

YS 

(Pa) 

PV 

(Pa.s) 

YS 

(Pa) 

PV 

(Pa.s) 

YS 

(Pa) 

PV 

(Pa.s) 

Mean 7.55 0.37 17.91 0.42 4.16 0.77 2.53 0.29 

Estimated error 

(95% confidence 

limit) 

0.21 0.01 0.31 0.01 0.11 0.02 0.19 0.01 

COV (%) 7.31 8.09 8.68 6.77 5.69 7.14 6.36 7.99 

YS : yield stress, PV : plastic viscosity, COV = coefficient of variation 
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8.6.1  Accuracy of The Proposed Model 

The proposed models were used to predict the yield stress and plastic viscosity of OWC 

slurries and the acceptability/rejection of such models was evaluated using the average 

absolute error (AAE) (given by equations 18 and 19) and by comparing the predicted-to-

measured values obtained with six randomly selected mixes for each group of SCM.  







n

i measured

predictedmeasured

n
AAE

1

1




              (8.18) 







n

i measuredp

predictedpmeasuredp

n
AAE

1

1




             (8.19) 

where measured ,
measuredp , τpredicted, and 

predictedp  are the experimentally measured yield stress 

and plastic viscosity values of OWC slurries and the corresponding data predicted by the 

model, respectively, and n is the total number of mixtures used in verification for each group 

of SCM. The maximum, minimum and average of the predicted-to-measured values for yield 

stress and plastic viscosity, standard deviation (SD), coefficient of variation (COV) and AAE 

for all the mixtures used in the validation of the models are presented in Tables 8.8 and 8.9, 

respectively. The results reveal that the ratio between the predicted and measured values 

ranged from 0.97 to 1.04, and 0.97 to 1.12, respectively, for yield stress and plastic viscosity 

of OWC slurries incorporating SCMs, which indicates an excellent accuracy of the proposed 

models in predicting the yield stress and plastic viscosity of OWC slurries prepared using 

different SCMs.  
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Table 8.8 Performance of proposed model in predicting the yield stress of cement slurries 

prepared with different SCM 

Type of 

admixture 
AAE (%) 

τmeasured/τpredicted

Maximum Minimum Average SD1 COV2 (%) 

MK 8.85 1.17 0.87 0.99 0.11 10.89 

SF 12.48 1.19 0.88 0.99 0.13 12.74 

RHA 6.48 1.05 0.92 0.97 0.02 2.35 

FA 7.64 1.13 0.93 1.04 0.08 8.24 
1SD: standard deviation, 2 100*/ AverageSDCOV   

 

 

Table 8.9 Performance of proposed model in predicting the plastic viscosity of cement 

slurries prepared with different SCM 

Type of 

admixture 
AAE (%) 

τmeasured/τpredicted

Maximum Minimum Average SD1 COV2 (%) 

MK 13.50 1.26 0.90 1.12 0.13 11.46 

SF 7.91 1.10 0.86 0.98 0.09 9.70 

RHA 7.11 1.15 0.99 1.08 0.06 5.97 

FA 5.47 1.06 0.88 0.97 0.06 6.36 
1SD: standard deviation, 2 100*/ AverageSDCOV   

 

8.6.2  Isoresponse of The Proposed Model 

The proposed quadratic models thus obtained can be used to evaluate the effect of different 

parameters/variables on the rheological properties of OWC slurries with SCM partial 

replacement for OWC. The response surface methodology was used to draw the isoresponse 

surface and contour diagrams for yield stress and plastic viscosity of SCM based OWC 

slurries from the parameters under study (temperature, level of SCM, PCH dosage) over the 

experimental domain. The models also permit optimizing the effects of the parameters 

involved.  

For example, the effect of temperature and MK dosage on yield stress and plastic viscosity of 

OWC slurries at two different PCH dosages (0.25 and 0.75%) are presented in Figs. 8.3 and 

8.4, respectively. Both yield stress and plastic viscosity increased with the MK addition and 

decreased significantly with increasing PCH dosage. Yield stress and plastic viscosity tended 

to increase with the increase of temperature regardless of the MK level. However, the effect 

of temperature was more pronounced at higher MK dosage. For a particular dosage of PCH 

(0.25%), the increase in temperature from 23 to 60ºC caused an increase in yield stress of 1.9 
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and 2.2 times when OWC was partially replaced by 5% and 15% MK, respectively. The 

increase in temperature from 23 to 60ºC resulted in 1.17 and 1.61 times increase in plastic 

viscosity when the OWC replacement level was 5% and 15%, respectively.   

.   

    

    

 

 

Figure 8.3 Response surface of yield stress of OWC slurries prepared by MK with PCH 

dosage of (a) 0.25% and (b) 0.75%.  

 

 

 

 

 

 

 

 

 

 

(b)

(a)
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Figure 8.4 Response surface of plastic viscosity of OWC slurries prepared by MK with PCH 

dosage of (a) 0.25% and (b) 0.75%.  

 

8.6.2.1 Yield stress 

Equations 8.10, 8.12, 8.14 and 8.16 in Table 8.5 show the effect of temperature, PCH dosage 

and level of SCM on the yield stress of OWC slurries with partial replacement of OWC by 

MK, SF, RHA, and FA, respectively. It can be observed that not all SCMs used acted 

similarly on the rheological properties of OWC slurries. Because of their different physical 

(a)

(b)
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and chemical properties, SCMs exhibited completely different behviour at a given 

temperature and PCH dosage. However, yield stress was influenced, in order of magnitude, 

by the PCH dosage, dosage of SCM and temperature. The PCH dosage was found to have 

highest effect on the yield stress, which is due to its steric and electrostatic repulsions 

induced among cement particles, which is responsible for their deflocculation. Increasing 

level of SCM resulted in increased yield stress in the case of MK and SF, whereas yield 

stress values decreased with the addition of RHA and FA.  

Figures 8.5-8.8 illustrate yield stress isoresponse curves for OWC slurries with increasing 

temperature and PCH dosage, when OWC was partially replaced by MK, SF, RHA and FA, 

respectively at two different levels (5% and 15%). The yield stress was found to decrease 

significantly with the increase of PCH dosage for all SCMs tested. Regardless of the type and 

dosage of SCM, the higher the temperature, the higher was the value of yield stress for a 

particular dosage of PCH, which is due to the higher rate of hydration at higher temperature. 

For a given PCH dosage and temperature, the yield stress was found to increase when the 

MK level increased from 5 to 15% (Fig. 8.5(a,b)). Similar behviour was observed for SF (Fig. 

8.6(a,b)). This is likely due to the associated increase in the water demand induced by the 

addition of high surface area MK and SF. It was reported that SF has the ability to 

immobilize a significant amount of water due to inherent hydrogen bonds on its surface 

(Winhab, 2000).  

Comparing Figs. 8.5(a,b) and 8.6(a,b), it can be observed that the yield stress values of 

OWC-SF slurry were greater than those of the OWC-MK slurry, a behaviour also observed 

by others (Caldarone et al., 1994, Caldarone and Gruber, 1995, Ding and Li, 2002). It was 

found that MK provided better workability than did SF for a given mixture proportions (Ding 

and Li, 2002) and less HRWR admixture was required for concrete mixtures modified by 

MK than that of SF mixtures (Caldarone et al., 1994, Caldarone and Gruber, 1995). Unlike 

MK and SF, RHA was found to gradually reduce the yield stress value with an increasing 

replacement level (Fig. 8.7(a,b)). A similar finding was also observed by Laskar and 

Talukdar (2008), while others (Habeeb and Fayyadh, 2009, Cordeiro et al., 2009, Nehdi et al., 

2003) found that the replacement of cement by RHA resulted in increased water demand and 

reduced concrete workability. This discrepancy appears to be due to differences in the 

average particle size of the RHA used. Yield was also found to decrease with increased 
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addition of FA (Fig. 8.8(a,b)). This is due to the spherical shape of FA, which reduces 

frictional forces among angular cement particles due to the so called ‘‘ball bearing’’ effect. 

 

            

             

 

Figure 8.5 Variation of yield stress with dosage of PCH and temperature for OWC slurries 

incorporating MK ((a) 5% replacement level; and (b) 15% replacement level).  

 

(a) 

(b) 
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Figure 8.6 Variation of yield stress with dosage of PCH and temperature for OWC slurries 

incorporating SF ((a) 5% replacement level; and (b) 15% replacement level). 

 

(a) 

(b) 



224 

 

 

 

 

              

               

 

Figure 8.7 Variation of yield stress with dosage of PCH and temperature for OWC slurries 

incorporating RHA ((a) 5% replacement level; and (b) 15% replacement level). 

 

 

(a) 

(b) 
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Figure 8.8 Variation of yield stress with dosage of PCH and temperature for OWC slurries 

incorporating FA ((a) 5% replacement level; and (b) 15% replacement level). 

 

 

(a) 

(b) 
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8.6.2.2 Plastic viscosity 

Eqs. 8.11, 8.13, 8.15 and 8.17 in Table 8.5 describe the effect of temperature, PCH dosage 

and level of the corresponding SCM on the plastic viscosity of OWC slurries with partial 

replacement of OWC by MK, SF, RHA, and FA, respectively. The PCH dosage had the 

greatest influence on plastic viscosity. Temperature and the SCM replacement level influence 

the plastic viscosity value in different order depending on the SCM considered. Temperature 

was more influential for FA, while the SCM dosage was more significant for MK, SF and 

RHA. However, the degree of influence varied with the type of SCM used.  

Figures 8.9 to 8.12 represent isoresponse curves for the plastic viscosity of OWC slurries 

with increasing temperature and PCH dosage, when OWC was partially replaced by different 

SCMs at two different levels (5% and 15%). An increase in PCH dosage led to a decrease in 

plastic viscosity values for all SCMs considered. An increase in temperature induced an 

increase in plastic viscosity values. It can also be observed that for a particular PCH dosage 

and at a particular temperature, plastic viscosity increased with the increase of MK, SF and 

RHA, whereas the value decreased with increasing FA level. Table 8.10 represents a 

comparison of plastic viscosity values for a particular PCH dosage (0.25% and 1%) at two 

different levels of SCM (5% and 15%) at a temperature of 60°C.  For a particular dosage of 

PCH and SCM, the plastic viscosity of OWC-RHA slurries was higher than that of the other 

slurries investigated. This is probably because of the irregular and flaky shape of RHA 

particles and the absorption of more PCH by the un-burnt carbon content of RHA. 

 

Table 8.10 Comparison of plastic viscosity values for PCH dosages of 0.25% and 1% at two 

different levels of SCM (5% and 15%) at 60°C 

 
SCM 5% 15% 

0.25% PCH 1% PCH 0.25% PCH 1% PCH 

MK 0.51 0.235 1.25 0.55 

SF 0.56 0.25 0.86 0.32 

RHA 1.10 0.56 1.59 0.78 

FA 0.76 0.26 0.56 0.17 
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Figure 8.9 Variation of Plastic viscosity with dosage of PCH and temperature for OWC 

slurries incorporating MK ((a) 5% replacement level; and (b) 15% replacement level). 

 

 

(a) 

(b) 
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Figure 8.10 Variation of plastic viscosity stress with dosage of PCH and temperature for 

OWC slurries incorporating SF ((a) 5% replacement level; and (b) 15% replacement level). 

 

(a) 

(b) 
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Figure 8.11 Variation of plastic viscosity stress with dosage of PCH and temperature for 

OWC slurries incorporating RHA ((a) 5% replacement level; and (b) 15% replacement level). 

 

 

(a) 

(b) 
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Figure 8.12 Variation of plastic viscosity stress with dosage of PCH and temperature for 

OWC slurries incorporating FA ((a) 5% replacement level; and (b) 15% replacement level). 

 

 

(a) 

(b) 
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8.6.2.3 Trade off between dosage of PCH and SCM  

The proposed statistical model can be used to generate contour responses showing the 

influence of PCH dosage and level of SCM on the rheological properties of OWC slurries. 

Figure 8.13 illustrates the effect of the PCH dosage and SCM on the yield stress of OWC 

slurries at 60ºC. It can be observed that for given PCH and SCM dosages, the use of FA as 

partial replacement for OWC resulted in the lowest yield stress. For example, for a PCH 

dosage of 0.75% and SCM of 10%, the yield stress values were 10, 25, 7 and 2.6 Pa for MK, 

SF, RHA and FA, respectively. 

 

 

 

 

Figure 8.13 Isoresponse curve of yield stress of OWC slurries incorporating (a) MK, (b) SF, 

(c) RHA, and (d) FA as replacement of OWC at 60ºC.  

 

(a) (b)

(c) (d)

A

B

B

A



232 

 

 

For OWC slurries made with MK, to maintain the yield stress at about 10 Pa, the PCH 

dosage is expected to increase from 0.75 to 0.95% when the amount of MK is increased from 

10 to 15% (Fig. 8.13(a). A yield stress of 10 Pa with OWC-SF slurry can be obtained with a 

PCH dosage of 1.2% and 10% SF (point A) or PCH dosage of 1.49% and 15% SF (point B) 

(Fig. 8.13(b)). It is observed in the figure that, increasing the dosages of RHA and FA 

reduced the yield stress value. The combination of PCH and RHA dosages can be 0.625 and 

10% (point A) or 0.4 and 15% (point B) for a yield stress value of 10 Pa as observed in Fig. 

8.13(c). Hence, several PCM-SCM combinations are possible to achieve a given yield stress. 

Figure 8.14 illustrates the effect of PCH dosage and SCM on plastic viscosity of OWC 

slurries at 60ºC. Similar to yield stress, different combinations of PCH and SCM are possible 

to obtain a given plastic viscosity. Figure 8.14(a) suggests that in order to produce a plastic 

viscosity of 0.5 Pa.s at 60ºC, it is possible to use 0.5% PCH and 10% MK (point A), or 1.5% 

PCH and 15% MK (point B). Similarly, a slurry can have the same plastic viscosity value 

with a combination of 0.5% PCH and 5% SF (point A) or 0.7% PCH or 15% SF (point B) 

(Fig. 8.14(b)). Other possible combinations that lead to the same plastic viscosity values are 

1.35% PCH and 5% RHA (point A on Fig. 8.14(c)) or 0.5% PCH and 15% FA (point A on 

Fig. 8.14(d). The difference in PCH requirement is probably due to the difference in particle 

shape, surface area and carbon contents of the SCMs used in each study. For the particular 

PCH dosage of 0.75%, an increase of OWC replacement level by MK from 5 to 10% led to 

an increase in plastic viscosity from 0.28 to 0.37 Pa.s. At a similar PCH dosage, plastic 

viscosity increased from 0.37 to 0.45 Pa.s when the SF dosage increased from 5 to 10%. On 

the other hand, increasing the FA dosage led to a decrease in plastic viscosity from 0.5 to 

0.42 Pa.s at a similar PCH dosage. Thus, an optimum OWC slurry having the desired yield 

stress and plastic viscosity value can be obtained by number of combinations of PCH and 

SCM depending on the type of SCM. Other mechanical strength and durability 

considerations have to be taken into consideration in the final selection of the OWC slurry 

mixture. 
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Figure 8.14 Isoresponse curve of plastic viscosity of OWC slurries incorporating (a) MK, (b) 

SF, (c) RHA, and (d) FA as replacement of OWC at 60ºC.  

 

 8.7 Conclusion 

A second order 2
k
 central composite response surface model was developed to study the 

influence of temperature and key mixture parameters such as the PCH dosage, type and level 

of SCM and interactions between these parameters on the slurry rheological properties. 

Based on this work, the following conclusions can be drawn: 

1. The proposed statistical models are capable of determining the influence of key 

parameters on the rheological properties of OWC slurries and can be used to predict 

(a) (b)

(c) (d)
A

B

AA
B

A
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the influence of the various parameters on yield stress and plastic viscosity of OWC 

slurries.  

2. The derived models reveal that the measured yield stress and plastic viscosity of 

OWC slurries are influenced by the PCH dosage, replacement of OWC by different 

types and dosages of SCMs, temperature and several coupled effects of these 

parameters.  

3. The PCH dosage had the greatest influence on the yield stress and plastic viscosity of 

OWC slurries. An increase in the PCH dosage led to significant reduction in yield 

stress and plastic viscosity values. 

4. Yield stress and plastic viscosity values are also affected by the type and dosage of 

SCM used as partial replacement for OWC. The yield stress increased with increasing 

dosage of MK and SF and decreased with increasing dosage of RHA and FA.  

5. Plastic viscosity increased with the addition of MK, SF and RHA and decreased with 

increasing amount of FA.  

6. At a given SCM dosage, the yield stress of OWC slurries without any chemical 

admixture follows the order: SF>MK>RHA>FA at all test temperatures. 

7. Temperature had a significant influence on the rheological properties of OWC 

slurries. Both yield stress and plastic viscosity increased with increasing temperature. 

However, the degree of influence varied with the type and dosage of SCM used.  

8. The response contours provide an effective means for selecting optimum 

combinations of PCH and SCM at different temperatures to produce a given yield 

stress and plastic viscosity. Several mixture proportions of OWC slurries with similar 

rheological properties are possible by varying the type and level of SCM and dosage 

of PCH.  

9. The proposed statistical model can reduce the number of trial mixtures needed to 

optimize OWC slurries with tailor-made rheological properties using different SCMs, 

and thus can simplify the test protocol and saves time and cost. 
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10. The proposed model for OWC slurries is valid for OWC partial replacement levels by 

SCMs ranging from 5 to 15% by MK, SF, RHA or FA and PCH dosages ranging 

from 0.25 to 1.5% at different temperatures ranging from 23 to 60ºC.  

11. Although the model is based on a given set of materials and focused only on the 

Bingham properties of OWC slurries, it is possible to study other properties such as 

the thickening time, fluid loss, compressive strength, etc. The model can easily be 

extended to include such properties, along with other materials such as ground 

granulated blast furnace slag, limestone powder, diatomaceous earth, and different 

types of additives such as accelerators or retarders, fluid loss control additives, 

viscosity modifying admixtures, etc. 
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C h a p t e r  9 

SUMMARY AND CONCLUSIONS 

9.1 Summary 

Oil wells are drilled up to depths of thousands of meters. The productivity of oil wells is 

affected by the well cementing quality. The rheology, stability, and durability of the cement 

slurry used are major requirements for successful oil well cementing. In particular, the 

rheological behaviour of OWC slurries must be optimized to achieve an effective well 

cementing operation. The rheological properties of an OWC slurry determine the quality of 

the final product and help predicting its end use performance and physical properties during 

and after processing.  

Rheological tests can determine the flow properties of the cement slurry such as its plastic 

viscosity, yield point, gel strength, thixotropic behaviour, etc. The rheology of cement 

slurries is a manifestation of the interactions between cement particles, water and other 

constituents, which makes its characterization difficult. Cement slurries are visco-elastic 

materials; they exhibit properties characteristic of both elastic solids and viscous fluids. To 

characterize the rheology of a cement slurry, rheological parameters such as the yield stress, 

apparent viscosity, plastic viscosity, shear thinning, or shear thickening behaviour have been 

studied. The Bingham plastic model and the Power law are widely used to describe the 

rheological properties of cement slurries (Guillot, 2006). The Bingham plastic model 

includes both yield stress, 0 and a plastic viscosuty, P  at finite shear rates. The yield stress 

indicates the minimum effort needed for a material to start moving and is the intercept of the 

flow curve (shear stress vs. shear rate) with the shear stress axis. Below the yield stress, a 

material behaves like a solid. Yield stress is the contribution of the skeleton, i.e. it is 

manifestation of friction among solid particles (Ferraris and Larrard, 1998). The plastic 

viscosity governs the flow after it is initiated and is the contribution of suspending liquids 

resulting from viscous dissipation due to the movement of water in the sheared material 

(Ferraris and Larrard, 1998; Laskar and Talukdar, 2008). 
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Oil well cement slurries are usually subjected to high levels of pressure and temperature 

depending on the height and density of the column of material above, which makes the 

characterization of their rheological properties even more complicated than that of normal 

cement pastes or grouts. A number of admixtures have thus been developed to alter the 

chemical and physical properties of OWC slurries as required for flowability, stability of the 

slurry, and long-term performance of wells. The conventional admixtures which have been 

developed in areas with moderate temperatures for cementing work above ground, may lead 

to disappointing results when exposed to high temperature during oil well cementing. Uses of 

supplementary cementing materials are also being encouraged in the petroleum industry as a 

sustainable solution. Mineral and chemical admixtures play an important role in controlling 

the physical and chemical properties of both fresh cement slurries and hardened cementitious 

systems. However, very scant information can be found on the rheological properties of oil 

well cement slurries when SCMs are used as partial replacement for cement. Moreover, the 

coupled effects of temperature, chemical admixtures and mineral admixtures on the 

rheological properties of oil well cement slurries remain largely unexplored. 

The current study aimed at formulating recommendations for the effective use of chemical 

and mineral admixtures in oil well cements at high temperature, which should enhance the 

rheological properties of cement slurries in oil well cementing operations. Chapters two and 

three summarize the basic concepts involved in oil well cementing, the chemical and physical 

properties of oil well cements and the effects of related additives and chemical admixtures on 

oil well cement slurry rheology. Chapter four investigated the effects of various chemical 

admixtures on the rheological properties of cement slurries at high temperature using an 

advanced shear-stress/shear-strain controlled rheometer. The combined influence of the 

chemical admixtures and supplementary cementitious materials on the rheological properties 

of OWC slurries was investigated in Chapter five. An artificial neural network model was 

developed to simulate the influence of various types and dosages of chemical admixtures on 

the flow behaviour of OWC slurries in Chapter six. Empirical equations for predicting the 

shear flow curve of OWC slurry mixtures incorporating various superplasticizers at various 

temperatures were developed using multiple regression analysis and presented in Chapter six. 

These flow curves were used to calculate the Bingham yield stress and plastic viscosity 

values for the various OWC slurries investigated. The coupled effects of chemical 
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admixtures and supplementary cementitious materials were also modeled using artificial 

intelligence in Chapter seven. A parametric study was performed to evaluate the effects of 

temperature, and dosage of chemical admixtures and supplementary cementitious materials 

on the calculated yield stress and plastic viscosity values. Chapter Eight was devoted to 

developing empirical equations and response surface models using a statistical design 

approach and design of experiments to evaluate the effects of the dosage of chemical 

admixture, dosage and type of supplementary materials on the rheological properties of 

OWC slurries at different temperatures.  

9.2 Conclusions 

The experimental results in chapter four demonstrated that the rheological properties of 

OWC slurries are highly dependent on temperature; both yield stress and plastic viscosity 

increased nonlinearly with temperature. The rheological properties of OWC slurries also 

depended on the type of admixture used. The new generation polycarboxylate-based high-

range water reducing admixture (PCH), polycarboxlate-based mid-range water reducing 

admixture (PCM) and  hydroxylated carboxylic acid-based retarding admixture (HCR) 

improved fluidity at all test temperatures and for all dosages used, while slurries 

incorporating a lignosulphonate-based mid-range water reducing admixture (LSM) required 

more energy to initiate slurry flow since the yield stress increased at all dosages tested. The 

admixture dosage had a significant effect on the slurry rheology. At lower dosages, the 

phosphonate-based set retarding admixture (SRA), HCR and rheoplastic solid admixture (RA) 

acted as accelerators, thus enhancing the thixotropic behaviour of OWC slurries. This was 

more pronounced at higher temperature. At lower dosage, the adsorbed layer of admixture 

might not be sufficiently effective to act as a barrier to prevent the contact of water and 

cement grains, which promotes the acceleration of hydration reactions. This could be the 

reason why relatively higher yield stress and viscosity values were observed at low dosages 

of LSM, SRA and RA. Beyond certain threshold dosages, such admixtures became effective 

dispersants and reduced the extent of cement slurry thixotropy. However, PCH was found to 

be more effective at improving the rheological properties of OWC slurries at all test 

temperatures, even at relatively lower dosages, compared to the other admixtures tested.  
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Thixotropy measurements of OWC slurries showed that at lower dosage of admixtures 

(except for LSM), the higher the temperature the higher was the degree of thixotropy. The 

explanation of the phenomenon is that, at lower dosages, the admixtures are not effective to 

disperse the structures formed as a result of the acceleration of the cement hydration 

reactions at higher temperature. Thixotropy values were observed to decrease with increasing 

admixture dosage, indicating that higher dosages reduced the degree of stiffening. The results 

of chapter four indicated that the conventional admixtures, which have been developed in 

countries with moderate temperature for cementing jobs above ground, may lead to 

disappointing results when exposed to high temperature and need to be validated before 

formulating recommendations specific to oil well cementing.  

Chapter five substantiated that rheological properties of OWC slurry are largely dependent 

on the type and dosage of supplementary cementitious materials (SCM) used. However, 

regardless of the type and dosage of SCM, both yield stress and plastic viscosity of OWC 

slurries were found to increase nonlinearly with the increase of temperature. The fly ash (FA) 

and rice husk ash (RHA) used in the present study reduced yield stress, which can have a 

positive influence on the pump-ability of OWC slurries. However, metakaolin (MK) and 

silica fume (SF) increased yield stress when used as partial replacement for API Class G 

OWC. At a given dosage, yield stress values for OWC slurries incorporating SCMs and 

without any chemical admixtures followed the following order: SF>MK>RHA>FA at all test 

temperatures. The slurries prepared with a larger fraction of spherical particles should have 

lower viscosity, which is evident in the case of slurries prepared with FA. But in the case of 

SF, yield stress and viscosity were found to be greater with increasing SF amount, likely 

because of higher surface area ,which increases the water demand to produce a similar 

fluidity to that of mixtures made without SF. The OWC slurries prepared with RHA showed 

a different behaviour than that expected. Instead of increasing yield stress, the values were 

found to decease gradually with the increasing replacement level of RHA. 

PCH was found to enhance the shear thickening behaviour of OWC slurries and the intensity 

of this effect varied with the type and amount of SCM (amplified with metakaolin, reduced 

by SF, unchanged with FA, and showed an irregular behaviour with RHA). The explanation 

of this phenomenon is linked to the primary mechanism, i.e. steric hindrance by which PCH 

disperses cement particles. When polycarboxylate polymers adsorb on to the hydrating 
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cement grains, repulsive interactions occur as a consequence of the elastic and mixing 

mechanisms. The elastic and mixing mechanisms are a function of the thickness and density 

of the polymer adsorption layer, respectively (Yamada et al. 1998). In order to be dispersed, 

the distance between two cement particles should be equal to or higher than double the 

thickness of the polymer adsorption layer. When cement particles try to approach each other, 

the elastic component of the steric hindrance exhibits repulsive forces. On the other hand, the 

mixing component of the steric hindrance produces resistance when two neighbouring 

polymers approach each other (Yamada et al. 1998). As a consequence, the resistance of the 

mixing component of the steric hindrance increases with the increase of PCH dosage. This is 

possibly the reason why the exponent n-value increased with the increase on PCH dosage and 

the slurry behaviour converged towards shear thickening. 

The measured plastic viscosity does not always truly represent the material properly and 

sometimes could be misleading because of the high error involved in fitting the flow curve to 

the Bingham model (Saak, 2000). However, plastic viscosity was measured and presented in 

this thesis because it is very difficult to create mechanical models for the deformation 

behaviour of cement paste using the apparent viscosity at each shear rate point (Nehdi and 

Rahman, 2004). It was reported that plastic viscosity of cement slurries generally decreases 

with an increase in temperature (Ravi et al., 1990 and Ramachandran et al., 1997). But such 

a conclusion cannot be supported based on the current study and data reported in chapter four. 

In order to evaluate the reproducibility of test results, some selected tests were performed 

several times and the results were reproducible within a variability of 5%. At 23°C, plastic 

viscosity decreased with increased admixture dosage up to a certain level and then started to 

increase in the case of PCH, PCM, and RA at associated dosages of 0.50%, 0.50% and 4.0%, 

respectively. Plastic viscosity gradually increased with increased dosage in the case of LSM, 

whereas it decreased with increased SRA dosage. In the case of HCR, plastic viscosity 

generally decreased with increased dosage. At 45°C, admixtures showed almost similar 

behaviour in terms of plastic viscosity, except for LSM. At 60°C, slurries incorporating PCH 

did not exhibit a regular behaviour and plastic viscosity increased with increased admixture 

dosage. In the case of PCM, SRA and HCR, plastic viscosity increased up to a certain limit 

and then started to decrease at associated critical dosages of 0.50%, 0.75% and 0.50%, 

respectively. However, it was not possible to provide a simple correlation of the effect of 
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chemical admixtures and temperatures on the plastic viscosity based on the present study, 

which was also noted previously for ordinary cement pastes (Nehdi and Al-Martini, 2007, 

Al-Martini, 2008). In chapter five, regardless of the type and dosage of SCM, plastic 

viscosity values for OWC slurries were found to increase nonlinearly with the increase of 

temperature. The plastic viscosity of OWC slurries increased with the incorporation of MK, 

SF and RHA as partial replacement for OWC and decreased with the addition of FA.  

Chapter six was devoted to developing a predictive model to simulate the influence of 

various types and dosages of chemical admixtures and SCMs on the flow behaviour of OWC 

slurries using Artificial Neural Networks. The ANN model developed in this study was able 

to learn the relationships between different shear flow parameters for various OWC slurries 

and successfully predicted the rheological properties of slurries used in the training process. 

It also demonstrated satisfactory performance when input parameters (shear rate, temperature, 

and dosage of admixture) unfamiliar to the ANN were used. The results prove that the ANN 

model is a powerful tool to quantitatively predict the rheological properties of OWC slurries 

within the range of tested admixture dosages and test temperatures.  

Empirical equations for predicting the shear flow curves of OWC slurry mixtures 

incorporating various superplasticizers at various temperatures were also developed using 

multiple regression analysis and presented in Chapter six. The flow curves developed using 

the ANN- and MRA-based models allowed predicting the Bingham parameters (yield stress 

and plastic viscosity) of OWC slurries with an acceptable accuracy and were found to be in 

good agreement with experimental results. However, the ANN-based model performed 

relatively better than the MRA-based model in predicting the rheological properties of OWC 

slurries. The ANN-based model also captured the coupled effects of chemical admixture and 

supplementary cementitious materials in chapter seven. A sensitivity analysis was performed 

to study the effects of individual input parameters on the rheological properties of OWC 

slurries. Irrespective of the type and dosage of SCM used, the ANN model successfully 

captured the rheological behaviour of OWC slurries with the variation of input parameters. 

The model was also found to generalize its predictions beyond the training data to new 

slurries incorporating different dosages of admixtures and SCMs and considering different 

temperatures within the practical range of the training data.  
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A statistical design approach based on a second order central composite response surface 

model was developed in chapter eight to predict the rheological properties of OWC slurries 

with addition of SCMs such as: metakaolin silica fume, rice husk ask or fly ash. Optimization 

of OWC slurry often requires a number of trial batches to achieve adequate rheological 

properties, which is labour intensive, time consuming and thus costly. A factorial design 

approach was used in this study to determine the influence of temperature and key mixture 

parameters such as the dosage of superplasticizer, type and amount of SCMs and their 

interactions on the relevant rheological properties. The proposed model can simplify the test 

protocol and reduce the number of required tests to achieve an optimum balance among the 

various parameters involved and to gain a better understanding of trade-offs between key 

mixture parameters such as the dosage of superplasticizer and amount of supplementary 

cementitious materials.  

9.3 Recommendations For Future Research 

It should be noted that the findings reported in this study are valid for the oil well cement, 

supplementary cementitious materials and chemical admixtures used herein. Other 

cement/SCM/admixture combinations can exhibit different characteristics. Even admixtures 

from the same category, but from different source, could behave differently, and thus need to 

be investigated separately. 

The prediction capability of the developed ANN model are valid for the types of materials 

tested and within the range of parameters investigated in this study. However, the model can 

be retrained to a wider data range of input variables when new expanded data becomes 

available.  

The multiple regression analysis and design of experiments based models are also valid for 

the types of materials tested and within the range of parameters investigated in this study. 

Therefore, further experimental research is needed to extend the proposed predictive 

equations beyond the limits of the material types and proportions, and ranges of test 

parameters used in the present study. 

Further research is also needed to investigate the effects of possible hybrid blends of various 

chemical admixtures and mineral admixtures (supplementary cementitious materials) at high 
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temperature versus time and to assess the compatibility between various admixtures and a 

wide scope of cementitious blends to optimize binder-admixture formulations for effective 

and sustainable use in oil well cementing applications. 

Pressure also plays an important role, though of usually less importance than that of 

temperature, on the rheology of oil well cements. It is recommended that the present work be 

extended and validated using advanced rheological testing that captures both the effects of 

temperature and pressure variations. 

The mechanical properties and durability of hardened cementitious materials are critical for 

its end use in the field. The rheological properties of cement-based materials determine the 

quality of the hardened cementitious matrix and help predicting its end use performance and 

its physical properties during and after processing. The effects of temperature, chemical 

admixture, type and dosage of supplementary cementitious materials on the rheological 

properties of oil well cement slurries have been investigated in this thesis. Thus, a logical 

next step would be to study the mechanical properties and long-term durability properties of 

hardened oil well cementitious matrices incorporating conventional chemical admixtures and 

supplementary cementitious materials and subjected to high temperature and pressure to 

make final recommendations for oil well cementing. 
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