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Abstract 

Landing gear shimmy remains a challenge in aircraft design despite abundant advances in 

aircraft engineering in the past few decades. Accurate shimmy prediction is closely tied 

to availability of dynamic models with all relevant types of motions and key nonlinear 

elements, a matter which has been accomplished in the present study through including 

rotational, lateral, longitudinal, and axial degrees of freedom and tire, shock absorber, 

and Coulomb friction nonlinearities. Using Multi-Body Dynamic simulations, stability of 

the nose landing gear is studied as a function of key system parameters. Influences of 

nonlinearities are investigated in isolation, with a more in-depth look at the Coulomb 

friction effect, which is modeled as a function of the shock absorber stroke rate and 

rotational shimmy speed. It is found that Coulomb friction is a key factor in determining 

the onset and type of shimmy. The effect of friction parameters is then studied using 

nonlinear sensitivity analyses, and witnessed trends are utilized to draw design 

recommendations. 

Keywords 
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1. Background 

Landing gear (LG) shimmy is described as self-induced torsional and lateral oscillations 

typically in the range of 10-30Hz, arising from the coupling of LG structure, elastic 

tire(s), and the fuselage structure during the aircraft ground operations. Shimmy can 

result in impairing the pilot’s visibility and control, passenger discomfort, gear structural 

damage, and sudden failure of the gear (Krüger et al., 1997). This phenomenon can occur 

on both nose landing gear (NLG) and main landing gear (MLG) during landing, take-off, 
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and taxying, yet it is more common in NLG. It is understood that shimmy mode is excited 

due to transfer of kinetic energy from the moving aircraft to the wheels (Arreaza et al., 

2016), acting as the energy source for the undesired oscillations. Close to 60% of aircraft 

failures are related to LG systems with fatigue due to multi-axial loads (e.g. shimmy 

loads) being the number one cause (Lok et al., 2014). Accidents due to shimmy are 

reported in the literature (Van Der Valk et al., 1993; CIAIAC, 1999; Eret et al., 2015) 

whose root cause is commonly laying in inadequate design. It is crucial to prevent 

reoccurrence of such events through appropriate design decisions. Accurate shimmy 

prediction and its effective suppression is then imperative to ease aviation risk and cost.  

1.1. Shimmy Modeling and Solution Approaches 

LG is intrinsically a nonlinear system. Linearization of the equations (Arreaza et al., 

2016) or calculating equivalent properties from energy methods (Grossman, 1980) 

enables us to employ well-established linear analysis techniques. In terms of model 

degrees of freedom (DoF), while some form of rotational and lateral motion is captured 

in the majority of shimmy models, few of them include longitudinal and axial motions as 

well. Tire-ground interaction is mainly represented by Stretched String tire model (Von 

Schlippe and Dietrich, 1947) and sometimes by alternative approaches such as 

Moreland’s model (Moreland, 1954), Magic Formula (Pacejka, 2009), and Rigid Ring 

tire model (Zegelaar and Pacejka, 1996). Due to nonlinearity and complexity of the LG 

system, closed-form solutions are not pursued and one needs to resort to numerical 

solutions. Numerical integration of nonlinear equations is effective in predicting stable 

and unstable limit-cycles, as well as transient and steady-state response of the system. 

Numerical continuation method, often referred to as Bifurcation Analysis, is employed as 

well (Howcroft et al., 2013; Kewley et al., 2016; Thota et al., 2008, 2010) in which one 

or more of parameters are altered continuously and system stability characteristics are 

inferred from 2D and 3D plots in the parameter space. 

Analytical models are prevalent in the literature (Esmailzadeh et al., 1999; Howcroft et 

al., 2013; Kewley et al., 2016; Sura et al., 2007; Thota et al., 2008) which are frequently 

handled using numerical continuation or time integration. Multi-Body Dynamic (MBD) 

simulation (Gualdi et al., 2008; Khapane, 2003, 2006; Krason et al., 2015; Krüger et al., 

2011) is another versatile tactic to obtain the time response of dynamic systems. The 

MBD model is assembled in a modular manner and it can be modified without the 

necessity to manually update equations of motion. Other methods also employed in 

shimmy studies include Quasi-linear analysis (Krüger and Morandini, 2011), Describing 

Functions (Burton, 1981), Multiple Time Scales (Gordon, 2002), and Harmonic Balance 

(Padmanabhan et al., 2015; Zhou et al., 2005). 

A classification of shimmy models based on state-space formulation order is beneficial to 

understand the contribution of the present work. A third-order LG model by Somieski 

(1997) and a similar one in a study by Airbus (Coetzee, 2007) include the rotational DoF 

and lateral deflection of the tire patch. A study by Boeing (Gordon, 2002) employs a 

similar model but adds rotational freeplay and a fixed Coulomb torque. Atabay and Ozkol 

(2013) reused Somieski’s model and incorporated a magnetorheological damper for 

shimmy suppression. A fifth-order model by Thota et al. (2008) including rotational and 

lateral DoFs incorporates rake angle and effective caster length. Feng et al. (2015) added 
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freeplay with linear and velocity-squared damping to the fifth-order model and found 

freeplay to be destabilizing the system. The model by Sura and Suryanarayan (2007) 

employing Moreland’s tire model and the one by Liu et al. (2015) are also fifth-order. A 

dual-wheel NLG model was used by Eret et al. (2015) to study the effect of noise 

reduction apparatus on stability of the gear. Addition of longitudinal DoF of the gear led 

to the seventh-order NLG model (Thota et al., 2010). Howcroft et al. (2015) presented a 

tenth-order model of the MLG which features two independent wheels, as well as the 

axial DoF.  

1.2. Dealing with Nonlinearities 

Friction, freeplay, Oleo-pneumatic shock absorber, and the tire dynamics are primary 

sources of nonlinearity in the NLG system. Coulomb friction and Oleo-pneumatic shock 

absorber are frequently disregarded while rotational freeplay has been relatively 

addressed in the literature. Freeplay can have a major influence on LG stability, ranging 

from a shift in the critical shimmy speed to introduction of bi-stable and more complex 

shimmy modes (Howcroft et al., 2013; Sura et al., 2007). Tire nonlinearity is ignored 

whenever a linear tire model is assumed. Nonlinear Oleo-pneumatic shock absorber has 

been implemented in a few works (Gualdi et al., 2008; Khapane, 2003) although its 

definite effect on shimmy is not examined. Substantial friction develops in the Oleo-

pneumatic shock absorber in slip and stick modes (Krüger et al., 1997). Since friction 

dissipates energy it has a stabilizing effect and alleviates the subcritical limit-cycles of 

the nonlinear system (Arreaza et al., 2016; Padmanabhan and Dowell, 2015) as observed 

in physical tests as well (Pritchard, 2001). Coulomb friction is typically modeled as a 

constant torque, while an effective damping coefficient representing Coulomb friction 

(Padmanabhan and Dowell, 2015) and hysteresis characteristic for Coulomb friction 

(Somieski, 2001) have also been proposed.  

Although sources of nonlinearity have been studied to different extents, studies with all 

key nonlinearities and DoFs, along with an investigation of their effects on shimmy 

appears to be lacking from the literature. Especially, to the best of our knowledge, the 

effect of Coulomb friction has only been tackled using simple LG models and without its 

dependency on the nonlinear shock absorber. Therefore, the emphasis of this work is on 

the detailed nonlinear NLG modeling, along with investigating the friction effect based 

on an innovative Coulomb model. 

2. Fundamentals 

2.1. Landing Gear Model: Overall 

The bulk of shimmy studies account for the rotational-lateral dynamics only, assuming 

longitudinal DoF would only weakly couples with it (Van Der Valk et al., 1993; Eret et 

al., 2015; Thota et al., 2010), while the possibility of coupling has been confirmed in 

more recent works (Howcroft et al., 2013). Furthermore, the change in gear length due to 

the shock absorber compression affects the dynamics and structural characteristics (e.g. 

moment of inertia). Hence, inclusion of all four DoFs is imperative for accurate shimmy 

response prediction. 
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The inputs of the NLG model are vertical force from the airframe 𝐹𝑧 and forward velocity 

of the aircraft 𝑉. The outputs sought are rotational and lateral vibrations which comprise 

limit-cycles of this nonlinear system. As shown in the schematic of the dynamic model in 

Figure 1, 𝑃𝑇 is the airframe attachment point while the motion of the bottom of the gear 𝑃𝐵 is of primary interest here. The four structural DoFs designated in Figure 1 are: 

Rotational (𝜓): designates total rotation about the strut axis, of 𝑃𝐵 relative to 𝑃𝑇. 

Lateral (𝛿): designates total rotation about the roll axis X, of 𝑃𝐵 relative to 𝑃𝑇. 

Longitudinal (𝛽): designates total rotation about the pitch axis Y, of 𝑃𝐵 relative to 𝑃𝑇. 

Axial (𝜂): designates total shock absorber piston displacement along the strut axis. 

 

Figure 1. Schematic of the NLG dynamic model with relevant DoFs and inputs 

The governing equations of the proposed NLG model are of the following form: 

 𝐼𝑧�̈� + 𝑘𝜓𝜓 + 𝑐𝜓�̇� + 𝑀𝑇𝜓 + 𝑀𝑍𝜓 + 𝑇𝐶𝐿𝑀 = 0 (1) 

 𝐼𝑥𝛿̈ + 𝑘𝛿𝛿 + 𝑐𝛿𝛿̇ + 𝑀𝑇𝛿 + 𝑀𝑍𝛿 = 0 (2)  

 𝐼𝑦�̈� + 𝑘𝛽𝛽 + 𝑐𝛽�̇� + 𝑀𝑇𝛽 + 𝑀𝑍𝛽 = 0 (3) 

in which 𝑀𝑇𝜓 is the moment term applied by the tire (𝑇) to the rotational (𝜓) DoF which 

includes contributions of the tire’s self-aligning moment and restoring force, as well as 

the tire’s tread damping, all of which are explained in the Tire Dynamics section. Tire 

moments have components applied to lateral and longitudinal motions as well, denoted 

by 𝑀𝑇𝛿 and 𝑀𝑇𝛽 respectively. The vertical force (𝐹𝑧) generates moments along all three 

directions as well, designated by 𝑀𝑍𝜓, 𝑀𝑍𝛿, 𝑀𝑍𝛽 in the equations. The Coulomb friction 

torque 𝑇𝐶𝐿𝑀 is applicable only to the rotational motion. The strokes representing lateral 

and longitudinal motions are given by 𝛿∗ = 𝛿𝑙𝑔 and 𝛽∗ = 𝛽𝑙𝑔.  

2.2. Tire Dynamics 

Nonlinear tire dynamic is accounted for based on Stretched String theory (Von Schlippe 

and Dietrich, 1947) which represents the tire as a massless elastic string in contact with 

the ground along a finite length of ℎ referred to as contact patch, as shown in Figure 2. It 
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assumes that the force and moment developed at the tire-ground interface are a function 

of the characteristic deflection of the tire patch. Moreover, an exponentially decaying 

deflection in a region designated as the relaxation length 𝐿 is envisioned (Gordon, 2002; 

Somieski, 1997). Here, the theory is presented based on the formulation of Thota et al. 

(2010) who added to the original formulation the effect of lateral and longitudinal 

motions, as well as the influence of the rake angle 𝜙 on the leading point deformation 𝜆. 

The characteristic tire equation then reads: 

 �̇� + 𝑉𝐿 𝜆 − 𝑉 𝑠𝑖𝑛(𝜓 𝑐𝑜𝑠(𝜙 + 𝛽)) − 𝑙𝑔�̇� 𝑐𝑜𝑠(𝛿) − (𝑒𝑒𝑓𝑓 − ℎ) 𝑐𝑜𝑠(𝜓 𝑐𝑜𝑠(𝜙 + 𝛽)) �̇� 𝑐𝑜𝑠(𝜙 + 𝛽) = 0  (4) 

As shown in Figure 2, the lateral deformation of the leading point is linked to the slip 

angle 𝛼 through 𝛼 = tan−1 𝜆/𝐿. The effective caster length 𝑒𝑒𝑓𝑓  is the distance from the 

center of contact patch to the intersecting point of strut centerline and the ground plane 

(𝑒 = 𝑒𝑒𝑓𝑓  in the case of 𝜙 = 0 and 𝛽 = 0). A self-aligning moment 𝑀𝑘𝛼 and a restoring 

force 𝐹𝑘𝜆 are generated at the interface due to the tire deformation. These terms can be 

approximated using the following relationships (Thota et al., 2010): 

 𝑀𝐾𝛼/𝐹𝑧 = {𝑘𝛼(𝛼𝑚/𝜋) 𝑠𝑖𝑛(𝛼𝜋/𝛼𝑚)          𝑖𝑓 |𝛼| ≤ 𝛼𝑚0                                                   𝑖𝑓 |𝛼| > 𝛼𝑚  (5) 

 𝐹𝐾𝜆/𝐹𝑧 = 𝑘𝜆 𝑡𝑎𝑛−1(7 𝑡𝑎𝑛(𝛼)) 𝑐𝑜𝑠(0.95𝑡𝑎𝑛−1(7 𝑡𝑎𝑛(𝛼))) (6) 

In the above, 𝑘𝛼 and 𝑘𝜆 are self-aligning moment and restoration force coefficients and 𝛼𝑚 is the slip angle limit. Additionally, a moment term due to tire’s tread damping is also 
created (Thota et al., 2010) which is described as: 

 𝑀𝐷𝜆 = 𝑐𝜆�̇�/𝑉 (7) 

in which 𝑐𝜆 is the tire damping coefficient. Both 𝑀𝐾𝛼  and 𝑀𝐷𝜆 moments are assumed to 

be perpendicular to the ground plane. 

 

 

Figure 2. Stretched String representation of the tire (left), and top view of the tire-ground 

contact area (right) 

In the proposed MBD model, the instantaneous tire force and moments are applied at the 

physical location of the tire patch midpoint, leading to precise moments applied to the 

structure in all directions, while nearly all of the existing analytical models simply 

consider the component of the moment about the strut axis. The tire vertical deflection 𝑑𝑡 
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is accounted for too, as it affects moment arms through altering the gear length according 

to: 

 𝑙𝑔 = 𝑙𝑔0 − 𝜂 − 𝑑𝑡 𝑐𝑜𝑠(𝜙 + 𝛽) (8) 

where 𝑙𝑔0  is the gear length in neutral state (𝐹𝑧 = 0), measured along the strut axis from 

fuselage attachment to the ground plane. This dependency is normally neglected due to 

assuming a fixed-length gear. Here the tire model is augmented by incorporating the 

vertical stiffness using available representative force-deflection data shown in Figure 3. 

 

Figure 3. Tire vertical force-deflection curve obtained from NASA report (Daniels, 1996) 

and scaled 5X to reflect the greater range of airframe forces being considered in this work 

2.3. Oleo-pneumatic Shock Absorber 

As suggested by Khapane (2003), the gas spring of the Oleo-pneumatic shock absorber 

can be described by the polytropic expansion law as:  

 𝐹𝑠 = 𝐹0 [1 − ( 𝜂𝜂𝑚)]−𝑛𝑐𝑘
 (9) 

In the above 𝐹𝑠, 𝐹0, 𝜂, 𝜂𝑚, 𝑛, and 𝑐𝑘 are spring force, pre-stress force, spring stroke, 

maximum stroke, polytropic coefficient and its correction factor respectively. The 

damping force from oil flow through orifices is specified as: 

 𝐹𝑑 = 𝑑�̇�2 𝑠𝑖𝑔𝑛(�̇�) (10) 

in which 𝐹𝑑, �̇�, and 𝑑 designate damping force, stroke rate, and damping coefficient 

respectively.  

2.3.1. Shock Absorber Coulomb Friction  
The calculation of the net Coulomb friction force is presented here following Fled’s 
analysis (Fled, 1990) who computed the equivalent viscous damping contributed by 

friction in shock absorber bearings and pressure seals. Bearing friction force depends on 

the normal force acting on it, which is in turn a function of the gear dynamics (Pritchard, 

2001). The friction torque resisting the piston’s rotational motion is: 

 𝑇𝐶𝐿𝑀 = 𝑟𝑝𝐹𝑡 (11) 

where 𝐹𝑡 is the tangential component of the friction force and 𝑟𝑝 is the piston radius. The 

axial component of the friction force 𝐹𝑎 resists the axial motion of the piston inside the 

cylinder. As depicted in Figure 4, the total friction force can be written as: 
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 �⃗� = 𝐹𝑡𝑒𝜃 + 𝐹𝑎𝑒𝑧 (12) 

 |�⃗�| = 𝜇𝑁 + 𝐹𝑠 (13) 

in which 𝜇 and 𝑁 are the coefficient of friction and time-varying normal force at the 

bearing respectively. 𝐹𝑠 is the force applied by the pressure seal at the bearing location 

and is assumed to be constant (Fled, 1990). The instantaneous components of the friction 

force are obtained based on the velocity constituents as: 

 𝐹𝑡 = |𝐹| −𝑉𝑡√𝑉𝑡2+𝑉𝑎2 = (𝜇𝑁 + 𝐹𝑠) −𝑟𝑝�̇�𝑙√𝑟𝑝2�̇�𝑙2+�̇�2 (14) 

 𝐹𝑎 = |𝐹| −𝑉𝑎√𝑉𝑡2+𝑉𝑎2 = (𝜇𝑁 + 𝐹𝑠) −�̇�√𝑟𝑝2�̇�𝑙2+�̇�2 (15) 

where 𝑉𝑡 and 𝑉𝑎 are the tangential and axial components of velocity. The total velocity of 

a point on the piston (lower strut) relative to the cylinder (upper strut) is then given by �⃗⃗� = 𝑉𝑡𝑒𝜃 + 𝑉𝑎𝑒𝑧 as depicted in Figure 4. The axial motion is simply captured by the 

NLG axial DoF (𝜂), hence 𝑉𝑎 = �̇�. The tangential displacement is given by 𝑟𝑝𝜓𝑙 where 𝜓𝑙 is the lower strut rotation, therefore 𝑉𝑡 = 𝑟𝑝�̇�𝑙  describes the tangential velocity.  

The Coulomb torque is then given by:  

 𝑇𝐶𝐿𝑀 = 𝑟𝑝(𝜇𝑁 + 𝐹𝑠) −𝑟𝑝�̇�𝑙√𝑟𝑝2�̇�𝑙2+�̇�2 = 𝑟𝑝(𝜇𝑁 + 𝐹𝑠) −1√1+( �̇�𝑟𝑝�̇�𝑙)2 (16) 

As the �̇�/𝑟𝑝�̇�𝑙 ratio grows, the Coulomb torque decreases. Thus, the Coulomb torque 

reaches its maximum magnitude when the shock absorber is locked axially. However, 

this is not the scenario in actual ground operations, in which the stroke varies with time. 

 

Figure 4. Schematics of shock absorber cylinder- piston motion and their relative velocity 

2.3.2. The Influence of Shock Absorber Stroke Rate 
One can presume a simple sinusoidal shimmy behavior to take an in-depth look at the 

effect of piston closure rate on the Coulomb torque. For such a case, the following 

describes the rotational oscillations: 

 𝜓𝑙 = 𝛹 𝑠𝑖𝑛(𝜔𝑡) (17) 

 �̇�𝑙 = 𝜔𝛹 𝑐𝑜𝑠(𝜔𝑡) (18) 

Assuming a fixed normal force 𝑁, the Coulomb torque may be expressed as:  
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 𝑇𝐶𝐿𝑀 = 𝑟𝑝(𝜇𝑁 + 𝐹𝑠) −𝑟𝑝𝜔𝛹cos(𝜔𝑡)√𝑟𝑝2𝜔2𝛹2 cos2(𝜔𝑡)+�̇�2 = 𝑇𝐶𝐿𝑀𝑚𝑎𝑥 − cos(𝜔𝑡)√cos2(𝜔𝑡)+( �̇�𝑟𝑝𝜔𝛹)2 (19) 

The normalized Coulomb torque is plotted for various values of 𝜎 = �̇�/𝑟𝑝𝜔𝛹 in Figure 5. 

It is evident that for 𝜎 = 0 the torque is a square wave, while it approaches a straight line 

as 𝜎 grows. The conventional modeling of Coulomb torque as 𝑇𝐶𝐿𝑀 = 𝑇𝐶𝐿𝑀𝑚𝑎𝑥  sign(�̇�) 
is then only representative for the case of no axial motion.  

 

Figure 5. Shock absorber Coulomb torque as a function of 𝜎 = �̇�/𝑟𝑝𝜔𝛹 

3. Multi-Body Dynamic (MBD) Implementation 

The dynamic model described in the previous section is implemented in Matlab’s 
SimScape MBD environment for numerical solution. Figure 6 shows the model in the 

SimScape’s Model Explorer, along with the schematic of the MBD model constituents.   
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Figure 6. MBD model of NLG in SimScape’s Model Explorer in various views (top) and 

schematic of the MBD constituents (bottom)  

The numeric values used by Thota et al. (2008, 2010) are the source for structural, 

geometry, and tire parameters while shock absorber and Coulomb friction parameters are 

based on the curves and data presented by Khapane (2003) and Fled (1990) but tuned to 

accommodate the mid-size NLG data set of Thota et al. (2008, 2010). Table 1 lists all 

baseline model parameters utilized. 

Table 1. Parameter definition and values used in the NLG model 

Parameter Description Value  Unit 

Inputs   𝑉 Forward velocity - 𝑚𝑠−1 𝐹𝑧  Vertical force - 𝑁 

Responses   𝜓 Total rotation of strut end about strut axis - rad 𝛿 Total rotation of strut end about roll axis - rad 𝛽 Total rotation of strut end about pitch axis - rad 𝜂 Total displacement of shock absorber piston along strut axis - 𝑚 𝜆 Tire lateral deflection - 𝑚 𝛿∗ Total lateral stroke - 𝑚 𝛽∗ Total longitudinal stroke - 𝑚 

Structure    𝑙𝑔0  Gear height from fuselage attachment to the ground in neutral state 2.5 𝑚 𝜙 Rake angle 0.1571  rad 𝑒 Caster length 0.12  𝑚 𝐼𝑧 Strut moment of inertia about strut axis 100.0  𝑘𝑔𝑚2 𝐼𝑥 Strut moment of inertia about roll axis 600.0  𝑘𝑔𝑚2 𝐼𝑦 Strut moment of inertia about pitch axis 750.0  𝑘𝑔𝑚2 𝑘𝜓 Torsional stiffness of strut 3.8 × 105  𝑁𝑚rad−1 
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𝑘𝛿  Lateral stiffness of strut 6.1 × 106  𝑁𝑚rad−1 𝑘𝛽 Longitudinal stiffness of strut 5.5 × 106  𝑁𝑚rad−1 𝑐𝜓 Torsional damping of strut 300.0  𝑁𝑚𝑠rad−1𝑐𝛿  Lateral damping of strut 300.0  𝑁𝑚𝑠rad−1𝑐𝛽 Longitudinal damping of strut 300.0  𝑁𝑚𝑠rad−1
Tire   𝑅 Radius of wheel 0.362  𝑚 𝐿 Tire relaxation length 0.3  𝑚 ℎ Length of tire contact patch 0.1  𝑚 𝑘𝛼 Self-aligning coefficient of elastic tire 1.0  𝑚rad−1 𝛼𝑚 Slip angle limit 0.1745  rad 𝑘𝜆 Restoration coefficient of elastic tire 0.002  rad−1 𝑐𝜆 Damping coefficient of elastic tire 570.0  𝑁𝑚2rad−1
Shock Absorber   𝐹0 Pre-stress force 1000 𝑁 𝜂𝑚 Maximum stroke (gas length) 0.6 𝑚 𝑛 Polytropic coefficient 1.18 - 𝑐𝑘  Correction factor for polytropic coefficient 1 - 𝑑 Oleo square damping coefficient 7.5 × 105 𝑁𝑠2𝑚−2 𝑟𝑝 Piston radius 0.07 𝑚 𝐹𝑠 Oleo pressure seal force 5000 𝑁 𝜇 Oleo bearing dry friction coefficient 0.08 - 

 

To verify the model with existing numerical results in literature, a reduced version of the 

MBD model equivalent to the analytical model presented by Thota et al. (2008) is 

analyzed first. This version is a fifth-order model with only rotational and lateral DoFs in 

which all parameters match that of the reference source. As presented in Figure 7, there is 

a very tight match between the two sets of results for amplitude of lateral and rotational 

shimmy versus forward velocity.  

 

Figure 7. Predicted shimmy amplitudes using MBD model versus results from Thota et 

al. (2008)  

4. Numerical Simulation Results and Discussion 

The MBD model constructed in SimScape is numerically solved using built-in Matlab 

solver 𝑜𝑑𝑒23𝑡𝑏. System inputs are applied in the form of step functions and the 

dynamics is simulated for 30 seconds. The amplitude plots and shimmy maps are 

constructed based on the steady-state response with 𝜓(𝑡=0) = 0.02 rad ≈ 1° as the initial 

condition. A linear stability analysis based on eigenvalue calculation is presented at the 

beginning, which highlights the shimmy trends and key parameter influences. 
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Case 1: Linear analysis  

The equations of motion of the fifth-order NLG model are linearized as follows to 

perform the linear analyses: 

 𝐼𝑧�̈� + 𝑘𝜓𝜓 + 𝑐𝜓�̇� + 𝑀𝑇𝜓 + 𝑀𝑍𝜓 = 0 (20) 

 𝐼𝑥𝛿̈ + 𝑘𝛿𝛿 + 𝑐𝛿𝛿̇ + 𝑀𝑇𝛿 + 𝑀𝑍𝛿 = 0 (21) 

 �̇� + 𝑉𝐿 𝜆 − 𝑉𝜓 𝑐𝑜𝑠(𝜙) − 𝑙𝑔𝛿̇ − (𝑒𝑒𝑓𝑓 − ℎ)�̇� 𝑐𝑜𝑠(𝜙) = 0 (22) 

where the terms are given as: 

 𝑀𝑇𝜓 = (𝑘𝛼𝐹𝑧 𝜆𝐿 + 𝑒𝑒𝑓𝑓(7𝑘𝜆𝐹𝑧 𝜆𝐿) + 𝑐𝜆𝑉 �̇�) 𝑐𝑜𝑠𝜙 (23) 

 𝑀𝑍𝜓 = −𝐹𝑧𝑒𝑒𝑓𝑓𝜓 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛 𝜙 (24) 

 𝑀𝑇𝛿 = (𝑘𝛼𝐹𝑧 𝜆𝐿 + 𝑒𝑒𝑓𝑓(7𝑘𝜆𝐹𝑧 𝜆𝐿) + 𝑐𝜆𝑉 �̇�) 𝑠𝑖𝑛 𝜙 + 𝑙𝑔𝐹𝑘𝜆 𝑐𝑜𝑠 𝜙 (25) 

 𝑀𝑍𝛿 = −𝐹𝑧𝑒𝑒𝑓𝑓𝜓𝑐𝑜𝑠2 𝜙 (26) 

The state-space representation of the linear system reads:  

[  
   
   �̇��̈��̇��̈��̇�]  

   
   =

[  
   
   
 0 1 0 0 0−𝑘𝜓 + 𝐹𝑧𝑒𝑒𝑓𝑓 cos𝜙 sin 𝜙𝐼𝑧 −𝑐𝜓 − (𝑐𝜆/𝑉) cos𝜙𝐼𝑧 0 0 −𝐹𝑧(𝑘𝛼 + 7𝑒𝑒𝑓𝑓𝑘𝜆) cos 𝜙𝐼𝑧𝐿0 0 0 1 0𝐹𝑧𝑒𝑒𝑓𝑓 cos2 𝜙𝐼𝑥 −𝑐𝜆 sin 𝜙𝐼𝑥𝑉 −𝑘𝛿𝐼𝑥 −𝑐𝛿𝐼𝑥 −𝐹𝑧 (𝑘𝛼 sin𝜙 + 7𝑘𝜆(sin 𝜙 + 𝑙𝑔 cos𝜙))𝐼𝑥𝐿𝑉 cos 𝜙 (𝑒𝑒𝑓𝑓 − ℎ) cos𝜙 0 𝑙𝑔 −𝑉𝐿 ]  

   
   
 

[  
   
   
𝜓�̇�𝛿�̇�𝜆 ]  

   
   
 

  (27) 

Figure 8 presents the stability boundary for baseline system parameters (corresponding to 

Table 1). For each forward velocity value, a big enough vertical force, designated here as 

Critical Vertical Force can lead to shimmy. Towards the end of the landing (as speed 

reduces), a bigger vertical force is experienced by the gear as a result of near-zero lift 

force from the wings while the Critical Vertical Force is also reduced. Therefore, shimmy 

is likely to be observed at that situation. Figure 9 shows the sensitivity of the stability 

boundary as the rotational stiffness and damping are altered. Reducing either of these two 

properties will shrink the stable zone. Changing the rotational stiffness mostly affects the 

low-speed region while altering the rotational damping causes a vertical shift in the 

stability boundary, with a more pronounced effect in the high-speed region. This is 

significant since shimmy dampers are designed to boost the rotational damping and 

stiffness of the gear, and the presented trends are valuable in the design of next 

generation shimmy dampers. Lateral stiffness and damping were found to have no 

significant influence on the stability boundaries. 

Rake angle and caster are typically incorporated in the NLG design to improve the gear 

stability. The stability boundaries shown in Figure 10 showcases the gains from these 

features. Increasing the rake angle raises the Critical Vertical Force almost uniformly for 

most of the forward velocity range. Caster length features a more dominant effect in 

changing the stable region size, with the effect being more noticeable for higher forward 

velocities.  
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Figure 8. Stability map based on linear analysis of the fifth-order model 

 

 

Figure 9. Sensitivity of stability boundary with respect to rotational stiffness 𝑘𝜓 (top) and 

rotational damping 𝑐𝜓 (bottom) 
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Figure 10. Sensitivity of stability boundary with respect to rake angle 𝜙 (top) and caster 

length 𝑒 (bottom) 

Case 2: Fifth-order nonlinear model  

The fifth-order MBD model follows the description of the Fundamentals section, except 

it excludes the longitudinal and axial DoFs. The nonlinearity of this model rises from two 

sources: the tire’s nonlinear force and moment terms, and the moment terms created by 
the vertical force (𝑀𝑍𝜓, 𝑀𝑍𝛿). The former is the characteristic of the tire model used and 

the latter is due to the fact that the moment arms involve trigonometric functions of the 

strut rotational and lateral angles. Figure 11 showcases amplitude plots obtained using 

this model. The dark blue area common between both rotational and lateral maps 

designates the stable (no-shimmy) region corresponding to practically zero vibration 

amplitudes. In the rest of the parameter space both types of shimmy exist; however, only 

one of the types is dominant. The rotational-dominant region is well signified in the 

middle of the parameter space, encapsulating large rotational and small lateral 

amplitudes. The lateral-dominant shimmy region is extended towards high-forward-

velocity and high-vertical-force side of the map and is characterized by large lateral 

shimmy amplitude. 
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Figure 11. Amplitude plot of rotational (top-left: top view, bottom-left: 3D) and lateral 

(top-right: top view, bottom-right: 3D) shimmy vibrations for fifth-order nonlinear model 

Although similar 3D amplitude plots may be generated for all case studies, comparisons 

are better achieved using 2D contour maps designating the boundaries of stable, 

rotational-dominant, and lateral-dominant regions. Figure 12-top features such stability 

boundaries for Case 2, in which two contour lines are depicted to designate the stable 

(no-shimmy) and rotational-dominant shimmy regions.  

Comparing results of the linear model with Case 2, once realizes that the linear model 

over-predicts the stable region, while the overall shape of the boundary resembles the no-

shimmy line of Case 2. More importantly, the nonlinear model has the advantage of 

distinguishing between the two types of shimmy. This is key from a design perspective, 

since it enables design engineers to take preventive measures tailored towards the specific 

type of oscillations anticipated.  

Three points from the parameter space (marked on Figure 12-top) are chosen to showcase 

example oscillation time histories. These points are located in characteristically different 

regions of the parameter space, featuring oscillations responses that are qualitatively 

distinct. As presented in Figure 12-bottom, for point A in the stable region, the 

oscillations in both DoFs attenuate rapidly and shimmy does not develop. Points B and C 

are both located in the unstable region, for which stable limit-cycle oscillations are 

predicted to develop. However, they exemplify the two different shimmy regimes, in 

which rotational (for Point B) or lateral (for Point C) type of shimmy is dominant.  



 15 

 

 

Figure 12. Shimmy boundaries for linear and Case 2 models (top) and time histories of 

Case 2 oscillations for three different input sets (bottom) 

Case 3: Ninth-order nonlinear model   

The addition of longitudinal and axial DoFs (including the shock absorber sub-model) to 

the Case 2 model leads to a ninth-order model with all four DoFs. The nonlinearity of this 

model stems from nonlinear spring and damper relationships of the shock absorber, in 

addition to nonlinearity sources of Case 2. In the present case, the LG length varies due to 

the shock absorber compression and tire vertical compliance. As depicted in Figure 13-

top, the no-shimmy line is same as that of Case 2 except for very low and very high 

speeds, whereas the rotational-dominant region has considerably expanded in Case 3. 

That is, while addition of axial and longitudinal DoF have not influenced the onset of 

shimmy in a substantial way, the type of shimmy observed in the unstable region is 

affected. 

Time histories for three parameter instances (marked on Figure 13-top) are shown in 

Figure 13-bottom. After some time has elapsed, the longitudinal oscillations vanish in all 

three cases, suggesting that longitudinal stiffness and damping values assumed are high 
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enough to prevent emergence of Gear Walk oscillations. The axial displacement plateaus 

after a few seconds due to having a fixed vertical force. However, the contribution of the 

axial dynamics to the rotational-lateral response may be acknowledged, noting that due to 

the shock absorber compression the effective gear length decreases, the strut moment of 

inertia changes, and moment terms based on the vertical force vary.    

 

 

Figure 13. Shimmy boundaries for linear, Case 2 and Case 3 models (top), and time 

histories of Case 3 oscillations for three different input sets (bottom) 

Case 4: Ninth-order nonlinear model with Coulomb torque 

In Case 4 model, Coulomb torque is added to the nonlinear ninth-order model of Case 3. 

This addition is done through a separate module in the MBD model which applies equal 

amount of torque in opposite directions to the upper and lower struts. The magnitude of 

the torque is a function of the system dynamics, as per the relationships presented in the 

Fundamentals section. At all times, the torque is applied in a direction which opposes the 
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relative rotational motion between the strut pieces. Figure 14-top shows the shimmy 

boundaries for this model based on the friction parameters assumed in Table 1. Compared 

to the no-friction case (Case 3) the stable region is expanded, especially for moderate 

range of speeds. Moreover, the rotational-dominant region is significantly shrunk. This is 

understood to be due to the resistance from the Coulomb torque which tends to hinder 

rotational oscillations. Time histories of oscillations for three points (marked on Figure 

14-top) are displayed in Figure 14-middle. The histories of Case 4 feature the same shape 

and trends as Case 3, which is anticipated since the points remain in the same shimmy 

regimes as in Case 3. However, there are slight changes to the severity of the oscillations 

observed in Figure 14-bottom, which zooms into the first 4 seconds of rotational 

oscillations only. For point A in the stable region, Coulomb torque causes the vibrations 

to vanish more rapidly.  Point B in the rotational-dominant shimmy region features stable 

shimmy limit-cycles as before, but the amplitude of the oscillation has reduced as a result 

of the energy dissipated through friction. The effect of Coulomb friction on the 

oscillation of point C is more subtle, which is understood to be due to being located in the 

lateral-dominant region.  

Nonlinear sensitivity studies on the friction parameters are also performed in this section 

and the collective results are shown in Figure 15. The sub-cases explored are:  

Case 4a: No pressure seal force: 𝐹𝑠 = 0 N, 𝜇 = 0.08, 𝑟𝑝 = 0.070 m 

Case 4b: Half friction coefficient: 𝐹𝑠 = 5000 N, 𝜇 = 0.04, 𝑟𝑝 = 0.070 m  

Case 4c: Half piston radius: 𝐹𝑠 = 5000 N, 𝜇 = 0.08, 𝑟𝑝 = 0.035 m  

According to Figure 15, friction coefficient is predicted to have minimal effect on the 

extent of the stable region while this boundary is shifted by removing the pressure seal 

force and halving the piston radius. The rotational-dominant shimmy boundary features a 

qualitatively similar effect, in that halving the friction coefficient has a marginal effect in 

expanding the rotational-dominant region. Reducing the piston radius appears to have a 

more significant impact on the rotational-dominant boundary while ignoring the pressure 

seal force features a stronger effect. These observations are relevant for the specific 

parameter values used in the case studies and qualitatively different trends may be 

predicted for a different set of values. Nevertheless, these case studies reveal the 

importance of detailed modeling of the Coulomb effect in NLG dynamics, from which 

one can draw design recommendations. For instance, a bigger piston radius is favorable 

with respect to stability, assuming other design constraints pertaining to the shock 

absorber are satisfied. One also needs to be aware of the calibration of pressure seals and 

the choice of piston material and its surface finish. Effects of such choices on the stability 

needs to be carefully examined by the design team to guarantee the required stability 

performance for the full range of operation. The nonlinear sensitivity studies are then 

inevitable to estimate the onset and extent of vibrations and to devise effective shimmy 

suppression strategies. 
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Figure 14. Shimmy boundaries for linear, Case 3 and Case 4 models (top), time histories 

of Case 4 oscillations for three different input sets (middle), and comparison of rotational 

shimmy amplitudes of Case 3 and Case 4 (bottom) 

 

 

Figure 15. Stable regions (top) and rotational-dominant shimmy regions (bottom) for 

three sub-cases with different Coulomb parameter sets  

5. Conclusion 

A detailed MBD model of the NLG system inclusive of all relevant DoFs and significant 

nonlinearities is presented in this work. The LG industry can benefit from the proposed 

framework to ensure a shimmy-free design or to minimize the unstable range for new 

concept designs. The superiority of shimmy maps produced with this approach over 

conventional stability charts based on linear and quasi-linear analyses is in that first, any 

nonlinearity can be dealt with using the numerical integration solution and second, using 

the 3D amplitude maps one has direct access to the severity of the oscillations in addition 

to the stability boundaries. The importance of the latter is that in practice, oscillations 

below a threshold might be tolerable and be suppressed with a shimmy damper. To 

consider this, one cannot merely rely on the stability boundaries and needs to consult the 
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oscillation amplitudes data. The major contribution of the present work is then proposing 

an innovative scheme to generate nonlinear 3D shimmy maps and 2D stability charts 

based on a fully nonlinear NLG model equipped with a novel Coulomb friction sub-

model. These maps offer a wealth of information on the gear stability characteristics. 

Another key contribution is to model the shock absorber Coulomb friction in 

considerably more detail than the standard approach. The inclusion of this sub-model 

based on time-varying normal force and shock absorber stroke rate in the fully nonlinear 

MBD model is a novel work which allows a closer look at the influence of this hard 

nonlinearity. A particularly innovative aspect of the present study is identifying the effect 

of Coulomb torque parameters on the gear stability. The nonlinear sensitivity plots 

highlight the role of each friction parameter, which can be expanded to a more 

comprehensive Design of Experiment (DoE) study addressing the interactive impact of 

the parameters. Accounting for the tire vertical flexibility, time-varying length of the gear 

and using it in calculation of forces and moments, along with the change of structural 

properties as a function of the shock absorber compression are also important 

contributions which allow for more accurate and reliable prediction of shimmy 

oscillations in early stages of the NLG design. 

The ongoing extension of this work includes utilizing the MBD model for transient 

analysis of NLG ground operations which will reveal valuable information on the onset 

and severity of shimmy oscillations in practical circumstances. Data from ground 

operation tests needs to be used as time-varying inputs in such simulations. Ultimately, 

this work will close the gap between numerical simulation and physical testing of 

shimmy phenomena in NLGs by providing realistic predictions and permitting thorough 

investigation of design parameters. The envisioned framework whose fundamental 

methods and analyses are unfolded in this paper delivers a comprehensive view of the 

NLG stability characteristics and offers strategies for shimmy-free NLG design. 
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