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The influence of the filter shape on scale separation in large-eddy simulation (LES) is inves-
tigated using the eddy-damped quasi-normal Markovian (EDQNM) modelling approach, for
discrete filters of order 2–12. The LES subgrid-scale (SGS) stress tensor is split into a repre-
sented SGS tensor based on the scales resolved by the mesh, and a non-represented SGS tensor
involving the unresolved scales. The investigation of the kinetic energy spectra associated with
these quantities shows that the features of the SGS tensor strongly depend on the filter shape.
In particular, for the second-order filter, the SGS stress tensor dynamics is dominated by the
interactions between the resolved scales. The effective LES cut-off wavenumber is finally eval-
uated and recast in term of efficiency rates in order to estimate the computational cost required
to achieve a given spectral resolution. Sharp cut-off filters appear to be well appropriate to
perform an efficient scale separation in LES.

Keywords: large-eddy simulation; scale separation; filter shape; EDQNM

1. Introduction

Large-eddy simulations (LES) aim at reducing computational cost of flow calculations by sep-
arating the turbulence spectrum into small and large scales; the effects of the small ones being
taken into account through a subgrid-scale model. Such calculations rely on the filtered Navier–
Stokes equations which are obtained by applying a low-pass filter for the length scales to the
Navier–Stokes equations, and are based on the hypothesis that larger scales are flow-dependent
whereas the smaller ones possess a universal behaviour allowing physical modelling valid for a
large variety of turbulent configurations [1].

Scale separation in LES is however a debatable issue since the theoretical framework of the
filtered Navier–Stokes imposes few constraints on the filter [2], whose shape can be freely chosen.
To achieve scale separation, the use of spectral filters seems appropriate since these filters act as
projectors dividing scales in a clear manner. Nevertheless, due to the difficulty to design spectral
operators in complex configurations, the practical implementation of LES commonly makes use
of filters of various shapes such as the top-hat filter or some discrete filters with other formal
order [3, 4]. The transition between completely removed scales and un-removed ones is then
progressive and this transition in the filter transfer function makes classification into small/large,
filtered/unfiltered or resolved/unresolved scales more tedious.
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2 J. Berland et al.

Scale classification can be clarified by introducing the notational convention of Domaradzki
and Adams [5] who explicitly make reference to the spectral filtering performed by the mesh
into the filtered Navier–Stokes equations. This formalism allows us in particular to demonstrate
that the subgrid-scale (SGS) tensor can be decomposed into two contributions, one representing
interactions between scales resolved by the mesh and another taking into account the couplings
involving unresolved scales. It is hence relevant to determine for a given filter shape to what extent
the SGS stress tensor truly represents interactions between scales lying in the inertial range and
displaying a universal behaviour. When it is not the case, the universality assumption allowing
the design of robust SGS models is not fulfilled. Scale separation into small and large ones is
not achieved and SGS modelling becomes similar to RANS (Reynolds-average Navier–Stokes)
techniques since the large scales need to be modelled [6]. The problematic of scale separation also
encompasses the issue of the definition of the wavenumber cut-off of the LES which may have
an influence on the computed statistics [7]. The grid size defines an upper limit for the resolved
wavenumbers, but introducing non-spectral filters into the filtered Navier–Stokes equations may
shift the effective wavenumber cut-off towards larger scales. Using low-dissipation filters, a
wavenumber cut-off at about four grid points per scale can be for instance obtained [8].

Qualitative discussions of the interplay between the SGS energy transfers, the filter shape
and the grid have been proposed for instance by Carati et al. [9], Langford and Moser [10] or
Domaradzki and Loh [11,12]. Piomelli, Moin, and Ferziger [13] carried out numerical experiments
on LES of turbulent channel flows. They demonstrate that the LES filter has a strong influence
on SGS modelling since accurate results were obtained only with some LES filter/SGS model
combinations. Leslie and Quarini [14] moreover showed using theoretical developments that the
magnitude of the subgrid and Leonard stress tensors strongly depends on the filter shape. Yang
and Fu [15] also studied the effect of the filtering on the resolution of the truncated Navier–
Stokes equations and established that the filter type has a direct influence on simulation results.
High-order filters turned out to exhibit accurate results for their calculations. De Stefano and
Vasilyev [6] finally have investigated the influence of the filter shape on subgrid modelling for
the one-dimensional Burger’s equation. Their works show that for smooth filters the SGS stress
tensor can have contribution from the large scales, whereas for sharp cut-off filters the SGS stress
tensor mainly represents small-scale dynamics.

The present work focuses on the study of the influence of the filter transfer function on scale
separation in LES of homogeneous isotropic freely decaying turbulence. In particular, contribu-
tions from resolved and unresolved scales to the SGS stress tensor are quantified in details for
discrete filters of various orders and for optimized filters [3]. Following Domaradzki and Adams
[5] the SGS stress tensor is divided into two parts corresponding respectively to the interactions
between resolved scales and to the interactions involving non-resolved scales. These two compo-
nents are evaluated using the eddy-damped quasi-normal Markovian (EDQNM) approximation
for a Reynolds number Reλ = 2500 based on the transversal Taylor scale. Post-processing of
direct numerical simulation (DNS) data could be performed with the same aim in view as for
instance in Domaradzki and Carati [16]. However, even though stochastic closure models have
some limitations due to their underlying assumptions, they can nevertheless easily provide de-
tailed information on flow physics at high Reynolds numbers while maintaining computational
cost at a reasonable level. The technique was formerly used for instance by Schilling and Zhou
[17]. The contributions from each scale to the SGS stress tensor are thus determined using an
EDQNM approach in order to assess for a given filter whether large-scale dynamics plays a role
into SGS modelling and hence whether scale separation is properly performed. The effective LES
cut-off wavenumber is finally determined by the evaluation of scale contributions to the SGS stress
tensor. It must be emphasized that the present investigation does not tackle with SGS modelling
itself, but rather with the interpretation of the SGS stress tensor for different filter shapes.
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Journal of Turbulence 3

In this paper, the filtered Navier–Stokes and the corresponding EDQNM modelling are
described in Section 2. Results of the EDQNM calculation for a Reynolds number Reλ = 2500,
scale separation and LES effective cut-off are then discussed in Section 3 for several discrete
filters. Concluding remarks are finally drawn in Section 4.

2. Governing equations

2.1. Filtered Navier–Stokes equations

2.1.1. Physical space

Scale separation in LES and derivation of the filtered Navier–Stokes equations traditionally rely
on the application of an explicit filtering to the governing equations. In an attempt to define a
framework for the deconvolution approach, Domaradzki and Adams [5] proposed to introduce an
additional projection operator. The projection of a flow solution on a grid indeed leads implicitly
to a spectral filtering of the flow variables at the cut-off wavenumber kc = π/�, where � is the
mesh size. Notations indicating explicitly the spatial filtering as well as the spectral projection
can therefore be used to better understand the influence of the filter shape on further physical
modelling.

Following the works of Domaradzki and Adams [5], flow variables are decomposed into two
contributions

f = f L + f S , (1)

where the spectral truncation at the mesh cut-off wavenumber kc is denoted by the upperscript
L and its complement by S. Spatial filtering is indicated by the common overbar notation.
This theoretical framework gives the opportunity to define some terminology which will be
used in the remainder of this paper. Consider for instance a field f . The following defini-
tions are introduced: f is the unfiltered field, f L is the resolved field and f S is the unre-

solved field. The filtered field is given by f L = f
L = f , the equalities holding true as long as

the support of the transfer function of the filter remains within the spectral resolution of the
mesh.

Assuming that spectral truncation and spatial filtering commute, the filtered Navier–Stokes
equations can be written as

∂uL
i

∂t
+ ∂

∂xj

(
uiuj

L) − 1

ρ

∂pL

∂xi

− ν
∂2uL

i

∂x2
j

= 0. (2)

The nonlinear product uiuj is then decomposed as

uiuj
L = (

uL
i uL

j

)L + [
uL

i uL
j

L − (
uL

i uL
j

)L ] + uL
i uS

j + uS
i uL

j + uS
i uS

j

L
, (3)

so that the subgrid-scale stress tensor includes two terms

τ
rep
ij = uL

i uL
j

L − (
uL

i uL
j

)L
, (4)

τ
nrp
ij = uL

i uS
j + uS

i uL
j + uS

i uS
j

L
. (5)
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4 J. Berland et al.

The tensor τ
rep
ij represents the nonlinear interactions within scales present on the grid whereas

τ
nrp
ij takes into account interactions involving non-resolved scales [5].

2.1.2. Spectral space

Let us now consider the above developments in the spectral space. The Navier–Stokes equations
for an incompressible flow reads in the Fourier space [18](

∂

∂t
+ νk2

)
ûi(k) = Mimn(k)

∫∫
ûm(p)̂un(q)δk−p−q dpdq, (6)

where the integral is performed over R
3 × R

3 and ûi(k) is the Fourier coefficient of the velocity
component ui for the wavenumber vector k = (ki). The projection operators are defined by the
relationships

Mimn(k) = −iPimn(k), (7)

Pimn(k) = (knPim + kmPin)/2, (8)

Pij = δij − kikj /k2. (9)

Assuming that the operators are isotropic, spatial filtering and spectral truncation are re-
spectively equivalent in the spectral space to a multiplication of the Fourier coefficients by the
quantities Gk and Pk , where Gk is the Fourier transform of the filter kernel and Pk is equal to
1 for k ≤ kc and zero otherwise. The filter support is furthermore assumed to remain within the
grid spectral resolution, i.e. Gk = 0 for k > kc, and PkGk = Gk for any wavenumber k.

Applying Gk and Pk to Equation (6) yields the filtered incompressible Navier–Stokes equa-
tions in the spectral space(

∂

∂t
+ νk2

)
[PkGkûi(k)] = PkGkMimn(k)

∫∫
ûm(p)̂un(q)δk−p−q dpdq, (10)

where PkGkûi(k) = ûL
i (k) = ûi(k) corresponds to the filtered velocity field. The right-hand side,

which contains all the triadic interactions (k, p, q), such as k = p + q, can be rewritten by
introducing a decomposition similar to that proposed in Equation (3) in the physical space. One
may indeed write that

PkGk =
γ nl

kpq︷ ︸︸ ︷
PpGpPqGqPk +

γ
rep
kpq︷ ︸︸ ︷(

PpPqGkPk − PpGpPqGqPk

)
+ [

Pp(1 − Pq) + (1 − Pp)Pq + (1 − Pp)(1 − Pq)
]
GkPk︸ ︷︷ ︸

γ
nrp
kpq

. (11)

The derivation of Equation (11) is similar to the analysis of Leslie and Quarini [14] and is deduced
from the SGS stress tensor formulation (3) of Domaradzki and Adams [5] using the following

algebra: f̂ (k) = Gkf̂ (k), f̂ L(k) = Pkf̂ (k) and f̂ S (k) = (1 − Pk)f̂ (k). Equation (10) for the
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Journal of Turbulence 5

filtered velocity hence read as

(
∂

∂t
+ νk2

)
[PkGkûi(k)] = Mimn(k)

∫∫ (
γ nl

kpq + γ
rep
kpq + γ

nrp
kpq

)
ûm(p)̂un(q)δk−p−q dpdq.

(12)

Finally, using the assumption that the filter support is restricted to the grid resolution (PkGk = Gk

for any k), Equation (12) is recast into

(
∂

∂t
+ νk2

)
[Gkûi(k)] = Mimn(k)

∫∫ (
γ nl

kpq + γ
rep
kpq + γ

nrp
kpq

)̂
um(p)̂un(q)δk−p−q dpdq, (13)

with

γ nl
kpq = GpGqPk, (14)

γ
rep
kpq = PpPqGk − GpGqPk, (15)

γ
nrp
kpq = [Pp(1 − Pq) + (1 − Pp)Pq + (1 − Pp)(1 − Pq)]Gk. (16)

As in the physical space, the triadic interactions are now divided into three families. The couplings
related to γ nl

kpq represent the interactions between the filtered scales ui , whereas γ
nrp
kpq corresponds

to interactions involving the unresolved scales uS
i . Due to the non-spectral filter shape one has

also to take into account the interactions between the filtered field ui and the resolved field uL
i .

This is done by the term in Equation (12) involving γ
rep
kpq .

The kinetic energy spectrum of the filtered velocity field is finally defined by E(k) =
2πk2G2

k 〈̂ui(k)̂ui(−k)〉 where the brackets denote an ensemble average. The governing equa-
tion for the kinetic energy spectrum is thus obtained by multiplying (12) by 2πk2Gkûi(−k),
summing and averaging,

(
∂

∂t
+ 2νk2

)
E(k) = 4πk2GkMimn(k)

∫∫ (
γ nl

kpq + γ
rep
kpq + γ

nrp
kpq

)
× 〈̂um(p)̂un(q)̂ui(−k)〉δk−p−q dpdq. (17)

The triple velocity correlations into the integral now need to be closed to allow further develop-
ments.

2.2. EDQNM closure

2.2.1. Model derivation

The closure of the triple velocity correlations in Equation (17) is carried out using the EDQNM
approach, which is straightforward since the present theoretical developments are identical to
those of the classical EDQNM theory. The coefficients γkpq are indeed isotropic operators which
can be easily introduced into the modelling process. The derivation of the model is not described
here but further details may be found in the textbook of Lesieur [18] for instance, and a brief
overview of the EDQNM technique is provided in Appendix. The time evolution of the kinetic
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6 J. Berland et al.

energy spectrum is then given by(
∂

∂t
+ 2νk2

)
E(k) = T nl(k) + T rep(k) + T nrp(k), (18)

where time dependency of the variables is omitted for the sake of simplicity. The nonlinear energy
transfers on the right-hand side are related to the γkpq coefficients by

T nl(k) = Gk

∫∫
�k

γ nl
kpqS(k, p, q) dpdq, (19)

T rep(k) = Gk

∫∫
�k

γ
rep
kpqS(k, p, q) dpdq, (20)

T nrp(k) = Gk

∫∫
�k

γ
nrp
kpqS(k, p, q) dpdq. (21)

The integrand S(k, p, q) is given by [18]

S(k, p, q) = 
kpq(t)
E(q)

q
(xy + z3)(k2E(p) − p2E(k)), (22)

where E(k) = 2πk2〈̂ui(k)̂ui(−k)〉 is the kinetic energy spectrum of the unfiltered velocity field
ui . The geometrical coefficients x, y and z, corresponding to the cosines of the interior angles of
the triangle (k, p, q), are given by

x = −piqi

pq
, y = −kiqi

kq
, z = −piki

pk
. (23)

The integrations in Equations (19)–(21) are performed on the domain �k defined by

�k = {(p, q) | k + q ≥ p ≥ |k − q|} = {(p, q) | |z| ≤ 1}. (24)

k

k

k

k kc

kc

p p

q q

∆ k

∆>
k k c

∆<
k k c

(a) (b )

Figure 1. Sketch in the (p, q)-plane of the integration domains used to compute the nonlinear transfers for
the EDQNM calculations. (a) Full domain and (b) separation into a resolved and a non-resolved domain
given a cut-off wavenumber kc.
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Journal of Turbulence 7

A sketch of this set is given in Figure 1(a). The triple correlation relaxation time deduced from
the EDQNM assumptions is provided by


kpq(t) = 1 − exp[−µkpqt − ν(k2 + p2 + q2)t]

µkpq + ν(k2 + p2 + q2)
, (25)

with µkpq = µk + µp + µq . Modelling of the eddy damping rate µk is carried out by the formu-
lation proposed by Lesieur [18]

µk = 0.19C3/2
η

[∫ k

0
k′2E(k′) dk′

]1/2

(26)

with a Kolmogorov constant [19] equal to 1.4.
As already pointed for the filtered velocity in Equation (12) in spectral space, gain and loss

of energy at a wavenumber k are due to three kinds of triadic interactions. The quantity T nl(k) is
referred to as the filtered nonlinear transfers and takes into account the interactions between filtered
scales ui . The represented SGS nonlinear transfers T rep(k) represent the couplings between the
filtered field and the resolved field uL

i and the non-represented SGS nonlinear transfers T nrp(k)
involve the unresolved field uS

i . While performing a LES, the filtered nonlinear transfers can
be computed based only from knowledge of the filtered velocity. Determining the two other
SGS quantities T rep(k) and T nrp(k) requires however knowledge of both the resolved and the
unresolved fields uL

i and uS
i . One can furthermore note that the sum of the represented SGS

and non-represented SGS transfers corresponds to the classical subgrid-scale transfers, which are
based on the definition τij = uiuj − ui uj .

The explicit formulations (19)–(21) can be directly used to evaluate the nonlinear energy
transfers T nl(k), T rep(k) and T nrp(k). However, according to the limited support of the filter and
of the spectral truncation, these energy transfers can be simplified. Consider first the resolved
nonlinear transfers T nl(k) given by

T nl(k) = Gk

∫∫
�k

GpGqPkS(k, p, q) dpdq. (27)

Since the filter transfer function Gk and the grid spectral truncation Pk equal to zero for k > kc,
the integration domain can be reduced to the surface �<

k|kc
defined by

�<
k|kc

= {(p, q) ∈ �k | p ≤ kc and q ≤ kc}. (28)

A schematic view of this domain is presented in Figure 1(b). On this domain, Pp and Pq are
furthermore equal to 1. The same remarks hold for the represented nonlinear energy transfers
T rep(k). Concerning the subgrid contribution T nrp(k) of the non-resolved scales, one can note
that the quantity

[Pp(1 − Pq) + (1 − Pp)Pq + (1 − Pp)(1 − Pq)], (29)

equals 1 on the surface �>
k|kc

defined by

�>
k|kc

= {(p, q) ∈ �k | p > kc or q > kc}, (30)
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8 J. Berland et al.

and is null elsewhere. The nonlinear energy transfers are finally given by

T nl(k) = Gk

∫∫
�<

k|kc

GpGqS(k, p, q) dpdq, (31)

T rep(k) = Gk

∫∫
�<

k|kc

(Gk − GpGq)S(k, p, q) dpdq, (32)

T nrp(k) = G2
k

∫∫
�>

k|kc

S(k, p, q) dpdq. (33)

The nonlinear energy transfers T SGS(k) associated with the classical SGS stress tensor is
furthermore introduced as

T SGS(k) = Gk

∫∫
�k

(Gk − GpGq)S(k, p, q) dpdq (34)

and is such as T rep(k) + T nrp(k) = T SGS(k).
Finally, some results will be interpreted in terms of the normalized spectral eddy viscosity [19]

defined for any energy transfers T (k) by

ν+
t (k/kc) = T (k)

−2k2E(k)

√
kc

E(kc)
. (35)

The quantity ν+
t (k/kc) is an effective eddy viscosity acting on modes of wavenumber k. The

investigation of the evolution of ν+
t (k/kc) with k can provide details on the physics underlying

the energy transfers [25].

2.2.2. Detailed scale contribution to nonlinear energy transfers

Given a nonlinear energy transfer T (k) of the form

T (k) =
∫∫

�k

γkpqS(k, p, q) dpdq, (36)

it is interesting to determine which scales have a major contribution to the energy exchanges. Such
a quantification can be performed using the following procedure. While computing an energy
transfer, one can reduce the domain of integration and take into account only interactions between
scales with wavenumbers p and q in (36) smaller than a given wavenumber k′. The surface of
integration is hence reduced to �<

k|k′ which is defined by Equation (28). The integration on �<
k|k′

removes the contribution from the couplings between ‘small’ scales which are in this context
scales with wavenumbers larger than k′. The results of the integration is denoted T <(k, k′):

T <(k, k′) =
∫∫

�<
k|k′

γkpqS(k, p, q) dpdq. (37)
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The differentiation with respect to k′ is denoted by ζ (k, k′) and is defined by

ζ (k, k′) = ∂

∂k′ [T
<(k, k′)]. (38)

The quantity ζ (k, k′) dk′ represents the net effect on the nonlinear energy transfer T (k) when
scales with wavenumbers between k′ and k′ + dk′ are taken into account.

The investigation of the evolution of ζ (k, k′) for a given wavenumber k as the cut-off k′ is
varied permits to estimate which scales mostly contribute to the nonlinear energy transfer at a
wavenumber k. It is referred to as the detailed scale contribution.

2.2.3. Numerical resolution of the EDQNM model

The numerical resolution of the integro-differential system (18) is achieved using a logarithmic
wavenumber mesh given by

ki = kmin2(i−1)/F , for i = 1, . . . , N, (39)

where kmin is the minimum wavenumber of the mesh, F is the number of points per decade and
N is the total number of points. The algorithm of Leith [20] is used to evaluate the integrals
defining the nonlinear transfers. The corrective term of Lesieur [18] is furthermore implemented
to take into account non-local triadic couplings which are poorly resolved by Leith’s scheme.
Time stepping is performed using the Euler method and the time step is given by the relationship
�t < 1/(νk2

N ).
The initial spectrum is provided by [17]

E(k) = 16

√
2

π

v2
0

k0

(
k

k0

)4

exp

[
−2

(
k

k0

)2 ]
. (40)

The wavenumber k0 corresponds to the maximum of energy and v0 is a typical velocity.
The Reynolds number is evaluated using the Taylor scale λ as Reλ = λv0/ν so that the

viscosity ν is set in order to obtain a given Reynolds number. The non-dimensional time is
denoted by t∗ and is given by t∗ = k0v0t .

2.2.4. EDQNM run parameters

A single calculation is considered at Reλ = 2500 with the following parameters k0 = 1, v0 = 1
and ν = 10−5. The wavenumber mesh is chosen so that all the turbulent scales are well resolved.
Mesh characteristics are hence set to kmin = 1/32, F = 8 and N = 165.

Results are evaluated at t∗ = 8 when self-similar decay of the kinetic energy spectrum occurs.
This was ensured by checking that the eddy turnover time q/ε (where ε is the dissipation and
q = ∫

E(k) dk is the total kinetic energy) increases as a power of law with time.
In order to improve the resolution of the results while calculating the nonlinear energy transfers

at t∗ = 8, the kinetic energy spectrum is linearly interpolated on a wavenumber mesh which is
two times finer than the original mesh, with the following characteristics: kmin = 1/32, F = 16
and N = 328.
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10 J. Berland et al.

2.3. Filter transfer functions

Discrete filters commonly used for LES are considered in this work. Filtering the variable f on a
uniform mesh can be performed using the central (2Nf + 1)-point algorithm, yielding

f (x) = f (x) −
Nf∑

j=−Nf

djf (x + j�), (41)

where dj are the scheme coefficients and � is the mesh size. Taking the spatial Fourier transform
of (41) provides the transfer function of the filter

Gk =
{

1 − d0 − ∑Nf

j=−Nf
2dj cos(jk�), if k� ≤ π

0, otherwise.
(42)

The formal order of the filter represents the rate at which the transfer function converges to 1
when k tends to zero. The coefficients of the standard filters are obtained thanks to a Taylor series
by maximizing the formal order [4], which is then equal to 2Nf . The transfer functions of the
second- and tenth-order standard filters are presented in Figure 2 as an illustration. For both filters
Gk converges towards 1 as k tends to zero. Compared to the low-order filter, the tenth-order filter
exhibits a sharper slop so that the transition between the filtered and the unfiltered scales lies over
a narrower wavenumber interval.

Note that the formal order of the filters can be reduced so that some coefficients are freely
chosen. An optimization in the Fourier space can then be performed to design a filter with given
spectral properties [3]. Such algorithms are widely used in the aeroacoustic community [21–23]
because of their wide accuracy range.

10
-1

10
0

10
10.0

0.2

0.4

0.6

0.8

1.0

c

G
k

Figure 2. Transfer function of various filters as functions of the wavenumber k/kc normalized by the grid
cut-off wavenumber kc. – – –, second-order filter; ——, 10th-order filter; . . . . . ., spectral filter.
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Figure 3. Time evolution of the kinetic energy spectrum E(k) obtained by the EDQNM calculation
(Reλ = 2500). . . . . . ., initial spectrum at t∗ = 0; – – –, t∗ = 2; ——, t∗ = 8.

3. Results

3.1. Evolved kinetic energy spectrum

An overview of the time evolution of the EDQNM calculation in provided in Figure 3 where
the kinetic energy spectrum is plotted for different time positions. The initial spectrum shows
in particular a spectral content mainly clustered around the energy-containing scales at k = k0.
An intermediate spectrum obtained at t∗ = 2 is also represented and exhibits a developing
inertial range. As the computation is advanced in time, the initial spectrum converges towards
a fully turbulent spectrum as the spectrum calculated for t∗ = 8, which contains a maximum of
energy in the neighbourhood of k = k0 and an inertial range lying between k = 1 and k = 103.
Above k = 103, a strong decrease of the kinetic energy is observed up to the Kolmogorov scale
kη = 2π (ε/ν)1/4, which is around k = 1.7 × 104 at t∗ = 8.

3.2. Scale separation

The present EDQNM calculation is now used to quantify the nonlinear energy transfers defined
in Section 2 for various filters. All the results presented in what follows are obtained with a grid
cut-off wavenumber set to kc = 32 and are evaluated at time t∗ = 8.

As an illustration, the nonlinear energy transfers calculated for the fourth-order standard filter
are first presented in Figure 4 as functions of the wavenumber k/kc normalized by the grid cut-off.
The filtered nonlinear transfers T nl(k), representing nonlinear interactions between filtered scales,
exhibit a typical shape [24]. The negative values for T nl(k) at large scales around k/kc = 1/32 and
the positive values at smaller scales, with k/kc > 10−1, correspond to the drain of energy from
large to small scales due to the turbulence energy cascade. As expected, the non-represented and
represented SGS energy transfers are negative since they aim at dissipating the energy produced
at high wavenumbers by the triadic interactions.

Further details on the energy transfers are obtained by studying the normalized spectral eddy
viscosities ν+

rep(k/kc) associated with the represented energy transfers T rep(k) corresponding
to the couplings between the resolved scales uL

i . The spectral eddy viscosity ν+
nrp(k/kc) is also
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0.02

c

T
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)

Figure 4. Snapshot of the nonlinear transfers at t∗ = 8 for the fourth-order standard filter as functions of
the wavenumber k/kc normalized by the grid cut-off. – ·– ·–, T nl(k); – – –, T nrp(k); ——, T rep(k).

considered. It is deduced from the non-represented energy transfers T nrp(k) due to the interactions
involving the unresolved scales uS

i . These two quantities are plotted in Figure 5 as functions of
k/kc for the standard fourth-order filter under investigation. The non-represented SGS eddy
viscosity ν+

nrp(k/kc) shows a plateau for low wavenumbers corresponding to long-range triadic
interactions between small scales sufficiently separated from the large scales [25]. Due to the
filtering of the higher part of the spectrum, the classical cusp [19] close to the mesh cut-off is
however no longer visible, and ν+

nrp(k/kc) smoothly goes to zero when k tends to kc. Figure 5
demonstrates in addition that the non-represented and the represented SGS eddy viscosities have
similar shapes for the present filter. One can also note that the amplitude of the represented

10
-3

10
-2

10
-1

10
00.0

0.2

0.4

0.6

0.8

1.0

c

ν+
(

c)

Figure 5. SGS nonlinear transfers at t∗ = 8 for the fourth-order standard filter in terms of spectral eddy
viscosity ν+ as functions of the normalized wavenumber k/kc. ——, ν+

rep(k/kc); – – –, ν+
nrp(k/kc).
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Figure 6. Represented scale spectral eddy viscosity ν+
rep(k/kc) as functions of the normalized wavenumber

k/kc, at t∗ = 8 and for kc = 32. Results for standard filters of order from 2 to 12 are presented.

SGS transfers is significant since it is about two times larger than the non-represented SGS
contributions.

Similar results are observed for most of the other standard filters. The represented SGS
spectral eddy viscosity ν+

rep(k/kc) is for instance plotted in Figure 6 for standard filters with
order of accuracy ranging from 2 to 12. It turns out that with filters from 4th to 12th order, the
represented SGS eddy viscosity displays the same typical shape: a plateau at large scales and
a smooth decrease to zero close to the grid cut-off. A decrease of the spectral eddy viscosity
is also visible as the formal order of the filter is higher, with plateau values around 0.6 for the
fourth-order filter down to 0.3 for the 12th-order filter. The represented SGS tensor is indeed
null for spectral filters because the spatial filtering and the spectral truncation are then identical
implying that τ

rep
ij given by Equation (4) is null. Taking a sharp cut-off transfer function therefore

tends to nullify ν+
rep(k/kc). Consider now the second-order filter. The represented SGS eddy

viscosity does not exhibit a plateau for large scales, but rather a bump shape spanning a broad
range of wavenumbers (10−3 < k/kc < 1) and reaching high values with ν+

rep(10−2) 	 1.8 at
its maximum. Thus, it seems that the second-order filter introduces a fundamentally different
dynamics inside the represented SGS stress tensor τ

rep
ij .

A deeper investigation of the represented SGS tensor can be carried out by studying the
contribution to the energy transfers scale-by-scale with the technique reported in Section 2.2.2.
The focus is hence put on the detailed scale contribution

ζ rep(k, k′) = ∂

∂k′

[∫∫
�<

k|k′
γ

rep
kpqS(k, p, q) dpdq

]
(43)

of the represented SGS energy transfers T rep(k). This quantity is represented in Figure 7 for k = 1
as a function of k′/kc for the standard filters with order from 2 to 12. For filters from 4th to 12th
order, the detailed contributions are similar: they are close to zero for low wavenumbers and
show negative values in the vicinity of the grid cut-off wavenumber. This demonstrates that for
these filters the represented SGS energy transfers at k = 1 are dominated by interactions between
scales belonging to the higher part of the energy spectrum. Non-zero values of the detailed
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Figure 7. Detailed scale contribution ζ rep(k, k′) to the represented nonlinear energy transfers for a reference
wavenumber k = 1 as a function of k′/kc, at t∗ = 8 and for kc = 32. Results for standard filters of order
from 2 to 12 are presented.

contribution ζ rep(k, k′) are furthermore seen to be more and more clustered around the grid cut-
off wavenumber as the order of the filter is increased. Concerning the second filter, the detailed
contribution to the represented SGS energy transfers T rep(k) exhibits in Figure 7 non-negligible
values over a large range of wavenumbers 3 × 10−3 < k′/kc < 1 and reaches a negative minimum
for k′/kc = 5 × 10−3 in the neighbourhood of the energy-containing scales. The represented SGS
energy transfers T rep(k) at k = 1 is thus dominated by large-scale interactions for the second-order
filter.

Detailed contributions can be more precisely investigated in Figure 8(a) which presents
|ζ rep(k, k′)| for k = 1 in logarithmic scales as a function of k′. Note that the modulus of ζ rep

is taken since it is mainly negative. The influence of the filter order is clearly observed with a
progressive decrease of the contribution of low wavenumbers when the order is increased. For
sharper cut-off filter, the detailed contribution ζ rep(k, k′) is indeed seen to be more clustered
around the grid cut-off wavenumber and a steeper convergence to zero is observed when k′

tends towards large scales. Figure 8(b) presents ζ rep(k, k′) for a reference wavenumber k = 4,
corresponding to k/kc = 0.125, in logarithmic scales as a function of k′. It turns out that the
trends are identical to those obtained for the case k = 1. Increasing the filter order makes small-
scale interactions dominate the represented SGS energy transfers T rep(k). The second-order filter
is also found to lead to represented SGS energy transfers mainly driven by large scales since
ζ rep(k, k′) is maximum for k/kc 	 0.15 for instance in Figure 8(b).

The formal order of the filter is thus directly related to the physical interpretation of the
represented SGS stress tensor τ

rep
ij . For the second-order filter, the present results demonstrate

that the tensor τ
rep
ij is dominated by large-scale dynamics. This point breaks the very basis of

LES which rely on the assumed universal behaviour of small-scale interactions contributing to
the SGS stress tensor. Stefano and Vasilyev [6] already mentioned this trend during their study of
the filtered Burger’s equation. The second-order filter therefore does not seem to be an adequate
choice. Increasing the order of accuracy nevertheless permits to make the represented SGS stress
tensor be dominated by interactions between scales lying in the upper part of the energy spectrum,
so that the universality hypothesis of the SGS stress tensor is fulfilled.
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Figure 8. Detailed scale contribution |ζ rep(k, k′)| to the represented nonlinear energy transfers for two
reference wavenumbers k as a function of k′/kc, at t∗ = 8 and for kc = 32, in logarithmic scales. Standard
filters of order from 2 to 12 are presented. (a) k = 1; (b) k = 4. The dotted line indicates where the reference
wavenumber is located on the axis k′/kc.

3.3. Effective LES cut-off wavenumber

Scale separation hence appears strongly dependent on the filter shape, an attempt is now conducted
to quantify at which scale the spectrum is split into two parts by the filter.

Scale separation is illustrated by Figure 9(a) where the detailed scale contribution |ζ SGS(k, k′)|
is plotted for the total SGS energy transfers T SGS(k) = T rep(k) + T nrp(k) as a function of k′, at
k = 1 and for the standard filters of order 4–12. The detailed scale contribution is seen to
be split into two parts. Above the grid cut-off wavenumber, for k′/kc > 1, it is filter inde-
pendent and contributes to the non-represented SGS energy transfers T nrp(k) involving unre-
solved scales uS

i . For k′ < kc it is dependent on the filter shape, and contributes to the rep-
resented SGS energy transfers T rep(k) due to the resolved scales uL

i . Note that the left-side
part of the curves is identical to the plots of Figure 8(a). Therefore, as pointed out in the
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Figure 9. Detailed scale contribution |ζ SGS(k, k′)| to the classical SGS energy transfers for a reference
wavenumber k = 1 as a function of k′/kc, at t∗ = 8 and for kc = 32, in logarithmic scales. (a) Standard
filters of order from 4 to 12 and (b) optimized filters of Bogey and Bailly [3]: – – –, 11-point filter; ——,
13-point filter.

former section, one can observe that a wide range of scales, including resolved ones, partic-
ipates to the SGS stress tensor. High-order filters nevertheless lead to a sharp cut-off at high
wavenumbers.

Increasing the order of the filtering is hence an efficient technique to allow a better use of the
mesh spectral support. For sufficiently large stencil filters, the formal order can also be reduced,
and the filter transfer function can be optimized in the Fourier space [3]. Figure 9(b) presents for
instance the detailed scale contribution |ζ SGS(k, k′)| for the total SGS stress tensor as a function
of k′, at k = 1 and for the 11-point second-order and the 13-point fourth-order filters of Bogey
and Bailly [3]. Below the grid cut-off wavenumber, for k′ < kc, a sharp cut-off is visible on the
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detailed contributions for both optimized filters. This cut-off is steeper than the cut-off observed
for the 12th-order standard filter in Figure 9(a).

Evaluating the effective LES cut-off wavenumber requires to elaborate a criterion defining
which scales participate or not to the SGS stress tensor. Based on Figure 9(a), this can be done by
introducing an arbitrary criterion on the contribution amplitude. The present work makes use of
the following criterion: ks is determined as the smallest wavenumber such as |ζ SGS(k, ks)| > 10−6.
The effective LES cut-off is then defined as ks/kc which tends to 1 for sharp cut-off filters. The
quantity ζ SGS(k, ks) however depends on the reference wavenumber k so that the cases k = 1,
k = 2 and k = 4 are studied here to check whether the proposed definition of the effective LES
cut-off is robust or not.

The effective LES cut-off wavenumber ks/kc is plotted in Figure 10(a) as a function of
the number of points of the algorithm, for the standard and optimized filters and for reference
wavenumbers k equal to 1, 2 and 4. The curves obtained for the three values of k show little
dispersion and demonstrate that the proposed definition for ks/kc is robust. As already pointed
out in Section 3.2, increasing the order of the filter makes the effective LES cut-off wavenumber
larger, with, for k = 1 for instance, values ranging from ks/kc = 0.05 for the second-order filter
and up to ks/kc = 0.4 for the 12th-order scheme. The ratio between these two extrema is about
8. In term of point-per-wavelength, the 10th and 12th filters lead to a scale separation at about 5
points per wavelength. Concerning the two optimized filters, they exhibit the largest effective LES
cut-off wavenumbers with ks/kc equal to 0.45 and 0.5 for the 11-point and 13-point schemes,
respectively. These limits correspond to approximately 4 point-per-wavelength waves. It is worth
noting that optimization of the filters was precisely performed in order to yield filters with a
cut-off lying at 4 point-per-wavelength waves [3].

The efficiency of the filters in terms of computational cost is furthermore a matter of interest.
The efficiency rate es of a discrete filter is defined in this work as the inverse of the total number
of operations that would be required to perform a scale separation at kc instead of ks . The number
of operations is first proportional to the number of points 2Nf + 1 of the algorithm. Then, to shift
the scale separation ks towards kc, the mesh size must be divided by kc/ks so that the number
of points is multiplied by (kc/ks)3 for a three-dimensional grid. The efficiency rate of a discrete
filter is therefore defined here as

es = 1

(2Nf + 1) (kc/ks)
3
. (44)

The efficiency rates of the standard and optimized filters are shown in Figure 10(b) as a
function of the number of points of the algorithm for reference wavenumbers k equal to 1, 2 and
4. Note that the efficiency rates are normalized by the value obtained for the 13-point optimized
filter of Bogey and Bailly [3]. The results indicate that increasing the filter order widens the
spectral resolution in an efficient manner since the efficiency rate increases monotonically with
the formal order: from 0.0001 for the second-order filter to about 0.5 for 12th-order one. The
efficiency rates also show that the optimization of the filters leads to a relevant gain since the rates
of the optimized filters are about two times larger than those obtained with the standard filters
using the same number of points.

Finally, the influence of the criterion used to evaluate the effective LES cut-off wavenumber is
investigated for the standard schemes. The results previously reported are based on the assumption
that the LES cut-off wavenumber ks is the smallest wavenumber k′ such as |ζ SGS(k, k′)| > A,
with a threshold A = 10−6. One may nevertheless choose another values for A. The effective
cut-off wavenumbers ks/kc are then plotted in Figure 11(a) for the standard filters using the
thresholds A = 10−8, A = 10−7, A = 10−6 and A = 10−5. The efficiency rates of the standard
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Figure 10. (a) Effective LES cut-off ks/kc and (b) efficiency rates es for the standard and optimized filters
as function of the number of points 2Nf + 1 of the algorithm. ——, standard filters; . . . . . ., optimized filters.
Reference wavenumber: ◦, k = 1; , k = 2; �, k = 4.

filters are also represented in Figure 11(b) for these values of A. As expected, the LES cut-off
wavenumbers differs with the value of the threshold A. The main trend is nonetheless the same
and is consistent with previous conclusions: the effective cut-off wavenumber increases with
the order of the scheme. The efficiency rates in Figure 11(b) further support this point because
high-order algorithms exhibit the higher efficient rates for the four values of the threshold A.
The case A = 10−5 however exhibits some discrepancies. The 11-point discrete filter is for
instance observed to be more efficient than the 13-point algorithm. Nevertheless, the detailed
scale contribution |ζ SGS(k, k′)| of the total SGS stress tensor reaches a maximum of about
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Figure 11. (a) Effective LES cut-off ks/kc and (b) efficiency rates es for the standard filters as a function
of the number of points 2Nf + 1 of the algorithm, and for several scale separation criteria: ——, A = 10−5;
. . . . . ., A = 10−6; – – –, A = 10−7; – ·– ·–, A = 10−8. The reference wavenumber is k = 1.

2 × 10−5 for the 11- and 13-point schemes. Taking A equal to 10−5 is thus a rather high value
for the threshold, and the scale separation criterion may loose its relevancy.

4. Conclusion

Following Domaradzki and Adams [5], explicit reference to the spectral truncation associated
with the projection of the velocity field on a grid has been used to derive the filtered incompressible
Navier–Stokes equations. The classical SGS stress tensor has been decomposed into a so-called
represented SGS tensor representing nonlinear interactions between scales present on the grid,
and into a non-represented SGS tensor taking into account interactions involving non-resolved
scales.

An EDQNM model for the filtered incompressible Navier–Stokes has been proposed to
evaluate the represented and non-represented stress tensor for standard and optimized discrete
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filters for a Reynolds number Reλ = 2500. In order to determine which scales contribute mostly
to the SGS tensors, a procedure allowing us to compute contributions scale-by-scale to nonlinear
energy transfers has been elaborated. The technique has been applied to the non-represented stress
tensor. For the second-order standard filter, it turned out that the non-represented stress tensor
is dominated by large-scale interactions. The universality assumption of the SGS stress tensor
hence cannot be fulfilled. This is fortunately not the case using filters with order greater than four,
for which the non-represented stress tensor is mainly driven by interactions between scales close
to the mesh cut-off. Based on these observations, the effective LES cut-off wavenumber has been
evaluated for the standard filters and for two optimized filters. The spectral resolution is found
to widen with the order of the filter as well as with the optimization of the transfer function. The
effective cut-off wavenumber has been recast in terms of efficiency rates to take into account the
computational effort to achieve a given spectral resolution. The results reveal that the efficiency
rate increases with the order of the filter. In addition, the optimized filters, which exhibit the
higher efficiency rates, seem to be well appropriate to achieve sharp and efficient scale separation
in LES.

Considering this, using spectral filters for practical large-eddy simulations appears to be
the most suitable filtering technique. Discussions on the interpretation of the SGS tensor or on
the effective cut-off wavenumbers are then circumvented. When spectral operators cannot be
designed for the flow configuration studied, discrete filters, with smooth transfer functions, are to
be implemented. The filter shape must then be sharp enough to ensure that the SGS stress tensor
is dominated by small-scale dynamics. In addition, the computational cost and the effective LES
cut-off wavenumber need to be balanced.
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Appendix. The EDQNM modelling
The EDQNM (eddy-damped quasi-normal Markovian) theory, which has been first formalized by
Orszag [26], is a spectral stochastic closure applied to homogeneous isotropic incompressible turbulence.
Some of the hypotheses can be relaxed, as for instance in [27] and [28], but more evolved models are
not needed for the present study. The EDQNM method aims at determining the time evolution of the
kinetic energy spectrum E(k, t). Starting from the Navier–Stokes equations in spectral space, schematically
written as

(
∂

∂t
+ νk2

)
u = uu, (45)

one can show that the governing equations of the double- and triple-velocity correlations are given by

(
∂

∂t
+ 2νk2

)
〈uu〉 = 〈uuu〉, (46)[

∂

∂t
+ ν(k2 + p2 + q2)

]
〈uuu〉 = 〈uuuu〉, (47)

where 〈·〉 is an ensemble average. The kinetic energy spectrum E(k, t) is directly related to the double-
velocity correlations 〈uu〉. Resolution of Equation (46) is hence of special interest but as shown in (47), the
triple correlations 〈uuu〉 on the right-hand side of (46) are unclosed terms which need to be modelled.

The quasi-normal hypothesis is first introduced. The velocity field is assumed to be close to a
Gaussian state and the fourth-order moments 〈uuuu〉 can then be expressed in terms of the double-velocity
correlations with 〈uuuu〉 = ∑〈uu〉〈uu〉. Eddy damping is necessary to ensure the realizability of the
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kinetic energy spectrum. Based on these assumptions, Equation (47) now reads as,[
∂

∂t
+ ν(k2 + p2 + q2)

]
〈uuu〉 =

∑
〈uu〉〈uu〉 − (µk + µp + µq )〈uuu〉, (48)

where µk is the eddy-damping rate for a wavenumber k. Integration of the above equation with respect to
time variable t yields,

〈uuu〉(t) =
∫ t

0

∑
〈uu〉〈uu〉e−�kpq t dt, (49)

with �kpq = µk + µp + µq + νk2 + νp2 + νq2. Further simplification can be achieved by assuming that
the time scale of the second-order moments 〈uu〉 is large compared to that of the eddy-damping (the
Markovian process). The equation for the triple-velocity correlations finally reads as

〈uuu〉(t) = 
(t)
∑

〈uu〉〈uu〉, (50)

where 
(t) = ∫ t

o
e−�kpq t dt is a relaxation time. Introducing closure (50) into the governing Equation (46)

of the double-velocity correlations 〈uu〉 finally permits to calculate the time evolution of the kinetic energy
spectrum E(k, t).

In the framework of the present study, the explicit formulation (50) for the triple-velocity correlations
can be directly introduced into the right-hand side of the governing Equation (17) for the kinetic energy
E(k, t) of the filtered velocity field.


