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A uniform description is given of a method of measurement using a Michelson interfero­

meter for measuring the linear motion quantities acceleration, velocity and displacement, 

and a diffraction grating interferometer for measuring the circular motion quantities an­

gular acceleration, angular velocity and rotation angle. The paper focusses on an analysis 

of the dynamic behaviour of an interferometric measurement system based on the counting 

technique with regard to the measurement errors due to deterministic and stochastic dis­

turbing quantities. The error analysis and description presented are aimed at giving some 

rules, mathematical expressions and graphical presentations that have proved to be helpful 

in recognizing the errors in interferometric measurements of motion quantities, optimizing 

the measurement conditions (e.g., filter settings), obtaining corrections and estimating the 

uncertainty of measurement. 

INTRODUCTION 

The manufacturers and users of vibration and shock 

measuring instrumentation are increasingly required 

to establish and ensure traceability to a national stan­

dard that represents the respective physical quan­

tity. The common terms vibration and (mechanical) 

shock are defined as special variations with time of 

a physical quantity which is descriptive of the mo­

tion or excitation of a mechanical system. The quan­

tities whose realization and dissemination are exten­

sively required for establishing traceability are the lin­

ear motion quantities acceleration, velocity and dis­

placement, and the circular motion quantities angular 

acceleration, angular velocity and rotation angle. To 
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achieve the required level of traceability, the calibra­

tions of reference or working standards (e.g., a refer­

ence standard accelerometer) and the tests of ordinary 

measuring instruments must be carried out with time 

variations that are relevant to the conditions of applica­

tion (e.g., sinusoidal vibration or shock-shaped accel­

eration), and with sufficient accuracy to be expressed 

by the uncertainty of measurement. 

Note. The measurement uncertainty is understood in 

this article as the expanded uncertainty (coverage fac­

tor 2) defined by the Guide to the Expression of Un­

certainty in Measurement (ISO, 1993) which repre­

sents an international convention (Taylor and Kuyatt, 

1993). 
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Several national laboratories such as NIST cur­

rently provide, among other calibration services, 

steady-state sinusoidal calibration of pick-ups by laser 

interferometry using the methods stated in ISO 5347/0 

(1997) and 534711 (1993) (Harris and Crede, 1987). 

The calibration shall be carried out by measuring dis­
placement amplitude and frequency. To measure the 

displacement amplitude, the ISO standards specify the 

"fringe-counting method" (counting of the zero cross­

ings of the Michelson interferometer signal) in the fre­

quency range from 20 to 800 Hz, and the "minimum­

point method" (adjusting the vibration to a level which 

makes the nth harmonic component zero) at frequen­

cies from 800 to 5000 Hz. 

Both methods have proved in various accelerometer 

round robins to be the most accurate calibration meth­

ods. In particular, the worldwide round robin orga­

nized and reported by Serbyn (1990) revealed, among 

other things, that the state of the art in application of 

the fringe counting method allows a measurement un­

certainty of 0.1 % to be achieved in acceleration am­

plitude measurements and accelerometer calibrations 

at middle frequencies (reference conditions: frequency 

160 Hz and acceleration amplitude 10 mls2). The cor­

responding displacement amplitude of about 10 /Lm 
is usually seen as the lower displacement limit mea­

surable with the conventional fringe-counting method 

because its amplitude measurement error can run up 

to "A/4 (wavelength "A = 632.8 nm for a He-Ne laser). 
However, to the surprise of some experts, the round 

robin mentioned above demonstrated the applicabil­

ity of the counting method - in a modified version 

presented by Von Martens (1987) - over a widely ex­

tended frequency range from 0.5 Hz to 20 kHz at dis­

placement amplitudes ranging from 0.5 m down to 

5nm. 
The powerful capabilities of the fringe-counting 

method have been recognized and exploited by the 

author because of the well-known drawbacks of the 

minimum-point method (e.g., variation of the acceler­

ation level in the measurement of accelerometer sensi­

tivity as a function of frequency). 

A hierarchy.scheme for realizing and disseminat­

ing the unit of the physical quantity of accelera­

tion, based on two-beam interferometry and count­

ing technique has been presented by Von Martens and 

Rogazewski (1987). 

In recent years at the PTB, the measurement method 

based on two-beam interferometry and the counting 

technique has been further developed allowing both 

linear and circular motion quantities to be measured 

with sinusoidal and other time dependences, such as 

shock-shaped accelerations and angular accelerations. 

A uniform description of the uniform method cov­

ering a variety of six motion quantities and various 

time dependences is given by Von Martens and Taub­

ner (1994). Using the novel diffraction grating inter­

ferometer developed for measuring circular motion 

quantities, the (modified) fringe-counting method is 

being applied to rotation angle amplitudes from 10-7 

to more than 10 rad. 

The evaluation and expression of the measurement 

uncertainty to be stated for measurement and calibra­

tion results obtained with these methods for measuring 

linear and circular motion quantities may· be viewed 

from two different aspects. One of them is the prop­

agation of errors and uncertainties from the interfero­

metrically measured characteristic (e.g., acceleration 

amplitude) to the calibration result (e.g., sensitivity 

or phase lag of an accelerometer). The error and un­

certainty propagation demonstrated by Von Martens 

and Rogazewski (1987) for the hierarchy scheme pre­

sented there is considered relevant in this context. The 

other aspect is the evaluation of the individual error 

components in the interferometric measurements, due 

to the dynamic behaviour of the interferometer in con­

junction with the photoelectric measuring chain under 

the influence of disturbing quantities. The investiga­

tion of this aspect is the subject of this article. Because 

of the complexity of an uncertainty description cover­

ing various time dependences this article focusses on 

the special case of sinusoidal motion quantities with 

no or low nonlinear distortions. 

In the next section a brief description ofthe interfer­

ometric method of measuring both linear and circular 

motion quantities is given. The concept of the evalu­

ation of the error and uncertainty components is out­

lined in the following section. The section further be­

low describes and discusses the error and uncertainty 

components due to the dynamic behaviour of the inter­

ferometer in conjunction with the photoelectric mea­

suring chain. Some applications are characterized and 

conclusions drawn in the final section. 

MOTION QUANTITY MEASUREMENT BY 

TWO-BEAM INTERFEROMETRY 

To measure the linear and circular motion quantities, 

two-beam interferometry has been applied making use 

of a single-frequency laser, a beam splitter, two reflec­

tors (reflective sine phase gratings, if need be) and a 

single photoreceiver (cf. Figs. 10-13). The light beam 

emitted by the laser is split into two beams. After hav­

ing been reflected (and, if need be, diffracted), these 

two beams are superimposed with the optical arrange­

ment. This yields a light intensity whose significant 

component after photoelectric transformation can be 



expressed by the relationship 

u(t) = U cos C{J(t), (1) 

where u is the interferometer signal (electric voltage) 

and u its amplitude. The total phase of the interfero­

meter signal is 

C{J(t) = C{JM(t) + C{Jo(t) + C{Jc(t), (2) 

where C{JM is the phase term being proportional to the 

measurand, C{Jo is a simulated zero phase (cf. subsec­

tion entitled Error due to quantization) and C{JC is a 

frequency-converting phase which can be optionally 

used (Von Martens, 1993). The phase term C{JM III 

Eq. (2) can generally be expressed by 

set) 
C{JM(t) = 2n-. 

I1s 
(3) 

In this relationship, set) is the displacement sensed 

by the interferometer and I1s its quantization interval. 

The latter is A/2 in the case of a Michelson interfer­

ometer. In the case of the diffraction grating interfer­

ometer described by Von Martens and Ttiubner (1994), 

the expression 

<I>(t) 
C{JM(t) = 2n--, 

11<1> 
(4) 

can be obtained from Eq. (3). <I>(t) is the rotation an­

gle to be measured, 11 <I> the angle quantization interval 

corresponding to one interferometer signal period and 

N3600 the total number of signal periods (impulses) 

counted while in an interferometer calibration mode, 

the moving part rotates a full 3600 (N3600 = 1.5 X 106 , 

corresponding to 11<1> = 0.864 arcsec in the ver­

sion with a holographically manufactured circular sine 

phase grating used by the author). To give a uniform 

description covering both linear and circular motion, 

both the displacement s and the rotation angle <I> will 

be denoted by the "deflection" x, and the quantization 

intervals I1s and 11<1> by I1x. Thus, Eqs. (3) and (4) 

are uniformly expressed by 

x(t) 
C{JM(t) = 2n-. 

I1x 
(5) 

The interferometer signal processing method intro­

duced for measuring linear and circular motion quan­

tities as is described by Von Martens and Ttiub­

ner (1994), is based on identifying the signal zero 

crossings as "marks" of the deflection. By counting 

the zero crossings and measuring the time intervals 
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between them, measurement points of the deflection­

time relation can be determined. From the measure­

ment results of the deflection x, the velocity or angular 

velocity is obtained by derivation 

. dx 
x(t) = dt' (6) 

and the acceleration or angular acceleration by double 

derivation 
d 2x 

x(t) = -2. 
dt 

(7) 

Special methods and algorithms leading, in the case of 

non-sinusoidal motion, from the measurement points 

Xi, ti to the derivatives x(t) or x(t) have been pre­

sented by Von Martens and Ttiubner (1994). 

In the special case of sinusoidal time dependence, 

x(t) = i cos(wt + C{Jx), (8) 

with w = 2n!M, the following expressions result from 

Eqs. (6) and (7): 

x(t) = i cos(wt + C{Ji), (9) 

with i = wi, C{Ji = C{Jx + n /2, and 

x(t) = i cos(wt + C{Jx), (10) 

with i = w2i, C{Jx = C{Jx + n. In these relationships, 

i is the amplitude of x, C{Jx the zero-phase angle of x 

and !M the frequency of the measurand. 

If the vibration is sinusoidal, the continuous time 

interval measurement can be dispensed with because 

there is a priori information on the time dependence. 

Time measurement can be restricted to discrete pa­

rameters such as period duration or frequency. As is 

known from the conventional fringe counting method 

stated in ISO 5347/0 (1987) and ISO 5347/1 (1993), 

the amplitude of the displacement or rotation angle can 

be obtained through the relation 

A N 
x = -l1x 

4M ' 
(11) 

where N is the number of zero crossings counted dur­

ing M vibration periods. 

MEASUREMENT ERROR TREATMENT AND 

UNCERTAINTY ESTIMATION 

The dynamic behaviour of the interferometer, when 

influenced by significant disturbing quantities, has 
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been investigated in conjunction with the Doppler sig­

nal processing subsystem. The part of this subsys­

tem which is of particular interest is the photo-electric 

measuring chain that basically consists of a photore­

ceiver with a signal conditioner (including amplifier), 

a filter and a counter with a trigger. The interferometer 

can be described as a phase-analogous system which 

transfonns a deflection into a proportional phase varia­

tion of the light intensity that illuminates the photore­

ceiver. The photoreceiver (if appropriately selected), 

the signal conditioner and the filter can be considered 

in tenns of systems theory, linear systems described by 

their frequency characteristics (amplitude and phase 

characteristics). The counter with its trigger is a non­

linear system whose trigger level and trigger hysteresis 

are significant characteristics. 

In principle, a signal-processing method which is 

based on the counting of the zero crossings of the in­

terferometer signal is sensitive to stochastic and de­

terministic (time dependent) disturbing quantities. The 

theoretical investigation concentrated in particular on 

the effects from 

- quantization of the input quantity (deflection) 

into "quantization intervals"; 

- filtering of the interferometer signal (e.g., 

low-pass and high-pass filter); 

- electric noise (e.g., low-pass limited white 

noise); 

- sinusoidal voltages (e.g., hum, high-frequency 

laser light intensity modulation); 

- trigger hysteresis; 

- disturbing phase shifts (variations in the optical 

path difference); 

- disturbing motions of the measuring reflector 

(e.g., harmonics from nonlinear distortion of a 

vibration exciter, random vibration from ground 

motion); 

- other error sources. 

The tenn error of measurement is defined in the In­

ternational Vocabulary of Basic and General Terms 

in Metrology (VIM, 1993) as the result of a measure­

ment minus the true value of the measurand. In the 

context of error analysis which is the subject of this 

paper, as a conventional true value, that measurement. 

result is used which would exist if there were no dis­

turbing quantity (e.g., electric noise voltage). Treat­

ing an error as a random variable, its expected value 

as expressed in the following section is included as a 

systematic error, allowing the optimum measurement 

conditions to be recognized and if necessary, the result 

of measurement to be corrected. The error's variance 

(or standard deviation) characterizes an individual un­

certainty among all those that have to be taken into 

account as possible contributions to the total measure­

ment uncertainty (cf. the note in the introduction and 

the final section). 

THEORETICAL ERROR DESCRIPTION 

Error Due to Quantization 

The following expression has been established by Von 

Martens and Taubner (1983) to describe the quantiza­

tion error: 

~x for 

f..Lrr::::; qJO < (f..L+ 1/2)rr -2rrl~xl/~x, 
-~x + (sgn~x)~x/4 for 

(f..L + 1/2)rr - 2rrl~xl/ ~x ::::; 
eQ = qJo < (f..L+ 1/2)rr+2rrl~xl/~x, 

~x for 

(f..L + 1/2)rr + 2rrl~xl/ ~x ::::; 
qJO < (f..L + l)rr, 

(12) 
where ~x = x - xo, xo = (2v + 1)~x/4, 

v = intC:x), 

and f..L = 0, ±1, ±2, .... The probability calculus 

can be used to demonstrate that, under certain condi­

tions, Eq. (11) remains valid down to small amplitudes 

x < ~x. When the zero-phase angle qJO of Eq. (2) 

is considered a random variable with probability den­
sity ftpo(qJo), the interferometer signal given by Eq. (1) 

can be characterized by the joint distribution density 

fu,u(u, u) between the voltage u and its derivative 

u = du/dt. The probability ~F that a positive zero 

crossing occurs in a time interval t} < t < t} + ~t can 

be expressed by the relation 

(13) 

where UT is the trigger threshold voltage (UT « u). 
When the relation 

fu.u(u, u) = fu(u)fu(u), (14) 

with 

(15) 

(16) 

(17) 



is introduced into Eq. (13), expression Eq. (11) is ob­

tained when the integrals are solved and several con­

versions made. This relation is thus valid (largely) in­

dependently of the deflection amplitude x when the 

density functions Eqs. (15) and (16) are realized dur­

ing the measurement to a sufficient approximation in 

the form of frequency distributions. In the case of a 

large amplitude, this condition is met practically when 

the interference fringes are counted over a single vi­

bration period TM. For a small amplitude (lower limit 

approximately x = O.05ilx), Eqs. (15)-(17) are ap­

proximately valid when, in the course of an integrat­

ing measurement over a sufficient number of vibration 

periods (M » 1), a constant frequency distribution 

(uniform distribution) of the zero-phase angle CPo is 

achieved within an interval 

[CPOl; CPOl + mrr], m = 1,2, ... . (18) 

If no disturbing zero-phase variations are present, this 

condition can be met by a modified counting method 

with linear zero-phase variation, as will be shown in 

the final section. 

For measurement conditions in which disturbing 

zero-phase variations do occur, another version of the 

counting method with excitation of a stochastic zero­

phase variation has been developed (cf. the final sec­

tion). An added low-frequency narrow-band stochas­

tic process with well-defined parameters dominates 

the disturbing variations and suppresses the quantiza­

tion error when a suitable standard a'PO is selected (cf. 

Fig. 1 a and b) and the time of measurement is long 

enough. 

To determine the time of measurement necessary, 

the autocorrelation function of the quantization error 

was derived for conditions of measurement which are 

of interest (cf. Fig. 2a and b). From the autocorrela­

tion function the variance of the quantization error can 

be obtained as a function of the time of measurement 

using a relation presented by Davenport et al. (1952), 

cf. Fig. 3a and b. 

Error Due to Filtering 

A prerequisite for the accurate measurement of the 

motion characteristics based on the counting of the 

zero crossings is the linear transformation of the sig­

nificant part of the interferometer signal's frequency 

spectrum. Transformation of the interferometer sig­

nal should be achieved with a frequency characteristic 

which is flat (constant) as regards the amplitude and 

linear as regards the phase. Another point of interest is 

the suppression of noise by appropriate filtering of the 
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output voltage of the photoreceiver, including the sig­

nal conditioner. A high-pass frequency characteristic 

may be obtained if a special photoreceiver, is chosen 

(e.g., avalanche photodiode), or it may be additionally 

introduced to suppress flicker noise. Low-pass filtering 

is applied to suppress high-frequency noise. In order to 

find the optimum filter characteristics, the error due to 

filtering has been investigated. 

The problem has been solved in the following steps. 

The interferometer output signal is expressed in terms 

of its Fourier series: 

U(t)/UM = coscpo[Jo(~) -2h(~)cos2WMt 

+2J4(~M)cos4WMt _ ... ] 

- sincpo[2Jl(~) cosWMt 

-21J(~)cos3WMt+ ... ], (19) 

where the I n are Bessel functions of the first kind, of 

order n. A number of filter types of different orders 

have been computer-simulated (for example the filter 

coefficients of Bessel and Butterworth filters, low and 

high passes, first to fourth order). The sinusoids have 

been added after having been multiplied with the am­

plitude frequency response, and phase-shifted with the 

phase frequency response of the filter at the frequen­

cies In = nJM, n = t 2, .... 

As an example, Fig. 4 shows an unfiltered and a 

filtered signal in a special case where a small deflec­

tion amplitude is applied. The zero crossings are calcu­

lated from the resulting filtered signal. A comparison 

between the measurement results obtained when the 

calculated zero crossings of the filtered and unfiltered 

signals are used leads to a relationship for the error due 

to filtering. Some examples showing the calculated rel­

ative measurement error due to low-pass filtering as a 

function of the normalized cut-off frequency are pre­

sented in Figs 5 and 6. An example demonstrating the 

calculated relative measurement error due high-pass 

filtering as a function of the normalized deflection am­

plitude is given in Fig. 7. The considerable error that 

may be caused by a high-pass characteristic (cf. Fig. 7) 

can basically be suppressed by frequency conversion 

as described by Von Martens (1993). 

Error Due to Electric Noise 

In general, electric noise can be suppressed by suffi­

cient trigger hysteresis. If small deflection amplitudes 

are obtained by counting the zero crossings of the in­

terferometer signal, some zero passes may not be iden­

tified if the hysteresis is relatively large. An investiga­

tion into the noise influence taking into account the 

trigger hysteresis is therefore of practical interest. The 
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FIGURE 1 (a) Expected value of the quantization error as a function of the residual section 

6.x of the deflection amplitude x. 6.x defined by Eq. (12), zero-phase angle ({Jo is narrow band 

stochastic process of 2nd order with: resonance rise Q = 10, expected value E( ((JO) = 0 + J1-7r, J1- = 

0, ±l, ±2, ... , standard deviationO"q>o. (b) The same but with expected valueE«({Jo) = 7r/4+ J1-7r. 
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FIGURE 2 (a) Normalized autocorrelation function of the 
quantization error eQ. As Fig. la but with x = tu/8 + 
vb.x/4; v = 0,1,2, ... , (jqJo = 0.2n (curve 1), 0.3n 

(curve 2), ... , 0.6n (curve 5). (b) The same but with ex­

pected valueE(cpo) = n/4+ fJ-n; curve 6: O:qJo = 0.7n. 

disturbing effect of the trigger hysteresis as regards 

missing impulses is described below. 

Relationships describing the expected value and the 

variance of the error due to stochastic noise have been 

established for those ergodic stochastic processes for 

which the autocorrelation function and second deriva­

tive can be determined. The approach by Rice (1945, 

1948) introduced to express the expected value of the 

zero crossings of noise and/or of a sinusoid with ad­

ditive noise has been made use of. In contrast to the 

deterministic measurement signal formulation by Rice 

(1948), a statistical characterization of the measure­

ment signal by the joint distribution density has been 

introduced by Von Martens (1993), allowing the ex­

pected value and the variance of the measurement er­

ror to be estimated as a function of the trigger hystere­

sis. 
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FIGURE 3 (a) Normalized variance of the quantization 
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As Fig. 2a but with (jqJo = O.3n (curve 1), ... , l.On 

(curve 8). (b) The same but with expected value E(CPO) 
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The expected value of the relative error eN due to 

noise can be expressed by 

and the variance by 

4 1 3(UN)2(t!.X)3 
Se* = 6.1 x 10- DN,V-(TMiLp) -A- -A-' 

N M UM x 
(21) 
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FIGURE 4 Demonstration of distortion influence of fil­

tering on the interferometer signal u(t). Sinusoidal motion 

quantity with deflection amplitude x = fl.x/2, interferome­

ter signal zero phase angle <Po = 2rr/5. Broken: unfiltered 

interferometer signal; solid: interferometer signal filtered by 

low-pass of 1st order. 
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FIGURE 5 Relative error eLP due to low-pass filtering 

(1st order filter) as a function of the normalized cut-off fre­

quency fLp 11M. Sinusoidal motion quantity with frequency 

1M and deflection am~litude x. Parameter is the normalized 

amplitude xl fl.x = 4'!' 1,2, and 4 for curve 1, 2, 3, 4 

and 5, respectively. Curve 6 shows a function proportional 

to (fLpIIM)-2 as an approximation; 

where TM is the vibration period, lip the cut-off fre­

quency of an assumed low-pass limited white noise, 

UM the signal amplitude, UN the rms value of the noise 

voltage, and DN,E, DN,V are "damping factors" that 

characterize the hysteresis influences on the expected 

value and on the variance, respectively (cf. Fig. 8). 

Similar relationships have been established for band­

pass limited noise. 

Error Due to Sinusoidal Voltages 

Parasitic sinusoidal voltages that may occur in addi­

tion to the measurement signal can cause different dis­

turbing effects depending on their frequencies, e.g., 

hum on the one hand, and a high-frequency sinusoid 

on the other. Only the effects of a high-frequency si­

nusoid are discussed in this section. In the presence 

of a sinusoidal voltage whose derivative exceeds the 

derivative of the measurement signal, repeated zero 

crossings may occur which lead to wrong counting im­

pulses and thus to an error of measurement. Following 

the approach of characterizing the measurement signal 

by its joint distribution density which was introduced 

by Von Martens (1993) to estimate the random noise 

influences (cf. subsection above), relationships have 

been established allowing the expected value E(es) 
and the second statistical moment m2 e* of the error , s 
due to the sinusoid to be estimated: 

E(es) = 8.3 x 10-3 DS'E(~~ r (::r (~X)2, 
(22) 

m2 e* = 2.7 x 1O-4Ds m2 (TM)4( ~s )3(~X)4. 
's . ~ UM x 

(23) 

DS,E and DS,m2 are the "damping factors" character­

izing the influence of the trigger hysteresis on the ex­

pected value, and the second statistical moment of the 

error due to a sinusoidal disturbing voltage (cf. Fig. 9); 

UM is the signal amplitude and Us the amplitude of the 

disturbing sinusoid. 

The variance of the relative error of measurement 

can be obtained using the expression 

It should be remembered that the statistical frequency 

distribution of the measurement signal is approxi­

mately realized by special means (cf. the final section). 

Error Due to Trigger Hysteresis 

It is possible at each turning point of the motion (dis­

placement or rotation angle) that a zero crossing is 

not counted. A counting impulse will be missing if 

the interferometer signal, after having passed the trig­

ger level in, say, a positive direction, thus releasing a 

counting impulse, changes the direction and crosses 

the trigger level in a negative direction, but without 

leaving the hysteresis zone before again exceeding the 

trigger level. A detailed description of the measure­

ment error due to hysteresis has been presented by 
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FIGURE 7 Relative error eHP due to high-pass filtering (1st order filter) as a function of the 
normalized deflection amplitude i I D.x of a sinusoidal motion quantity with a frequency fM. Pa­
rameter is the normalized cut-off frequency fHpl fM = 0.1,0.2,0.3,0.4 and 0.5 for curve 1,2,3, 
4 and 5, respectively. 

Von Martens and Taubner (1983). During the integrat­

ing counting process over a large number of vibra­

tion periods, this error approaches its expected value, 

which can be treated as a systematic error. The er­

ror due to hysteresis can therefore be eliminated, to 

a certain degree, by correction of the measurement 

result. From the investigation described in the refer-

ence, the relationship for the expected value of this er-

ror, 

* 1 UH I:l.x E(eH) = ---;::--~ , 
4n UM x 

(25) 

applies for the case which is of practical interest, 

i.e., where the hysteresis UH and the trigger level 

UT are small compared with the signal amplitude 
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FIGURE 8 Damping rates of the relative error eN due to 
electric noise as a function of the normalized trigger hystere­
sis (Eqs. (20), (21)). DN,E damping rate for expected value 

E(eN), DN V damping rate for variance s2. , UH trigger hys-
, eN 

teresis, UM signal amplitude, UN noise voltage rms value. 
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FIGURE 9 Damping rates of the relative error es due to 
sinusoidal disturbing voltage as a function of the normalized 
trigger hysteresis (Eqs. (22), (23)). DS,E damping rate for 

expected value E(es)' Ds m2 damping rate for variance s2., , es 
UH trigger hysteresis, 12M signal amplitude, Us amplitude of 
the disturbing sinusoid. 

UM. The relative measurement error may assume too 

large a value if small displacement or rotation an­

gle amplitudes are measured. As the relation UH/UM, 

whose value is needed for correction, is generally 

not accurately known, it is useful to select a rela­

tively small hysteresis. The relationships described by 

Eqs. (20)-(24) allow a hysteresis value to be esti­

mated that is relatively small but sufficient to sup­

press electric noise and high-frequency sinusoidal 

voltages. 

Error Due to Disturbing Motions and Phase 

Shifts 

A variety of parasitic motions exists acting in addi­

tion to the measurand, which is assumed to be sinu­

soidal. If a nominally sinusoidal motion quantitiy is to 

be measured, its fundamental harmonic is considered 

the measurand, even if, as is usual, other harmonics 

are present, resulting from the nonlinear distortion of a 

vibration exciter. Other sources of disturbing motions 

may be, for example, hum from a power amplifier 

that feeds an electromechanical exciter, and stochastic 

ground motion. In principle, the effects of disturbing 

motions can be largely suppressed by using a special 

signal processing method that is based on an approxi­

mation of the pairs of measured deflection-time values 

using the least-squares method, with a sine to be ap­

proximated as is described by Von Martens and Taub­

ner (1994). The error due to disturbing motion has 

been theoretically and experimentally investigated for 

different methods of signal processing. For the peak 

value measuring version (especially the fringe count­

ing method), the following expressions have been es­

tablished: 

Relative measurement error due to odd harmonics: 

Relative measurement error due to even harmonics: 

* 1 ( )2 exs 2 = - kxq (1 + cos 2cps). 
, n 4 

(27) 

Expected value of the relative measurement error if the 

disturbing motion shows an equally distributed phase 

angle or is not synchronized with the measurand: 

(28) 

In the relationships above, kx = XS/XM, q = fs/fM 
and cps is the phase angle difference between the dis­

turbing and the measured sinusoids. In the case of non­

sinusoidal disturbing motions, the following expres­

sions apply: 

Relative measurement error due to a constant drift ve­

locity Va: 

(29) 

Expected value of the relative measurement error due 

to stochastic motion 

(30) 



where v is the rms value of the velocity of a random vi­

bration that is presupposed to be normally distributed. 

Errors Due to Other Sources; Discussion 

The errors described in the previous subsections char­

acterize to a great extent the dynamic behaviour 

of a two-beam interferometer (including the diffrac­

tion grating interferometer) when the fringe counting 

method is applied to measure the amplitude of a sinu­

soidal motion quantitiy in the presence of disturbing 

motions, of additional phase variations in the inter­

ferometer signal and of electric noise. The approach 

made to assess the error of measurement should be ap­

plicable, to a great extent, irrespective of the particular 

design of the interferometric measurement system. For 

a given interferometer design and construction, further 

sources of errors may be significant, e.g., deviations 

from the ideal (sinusoidal) transfer characteristic be­

tween input deflection (displacement or rotation an­

gle) and output voltage. However, a number of non­

ideal properties of the interferometer (e.g., variations 

in the optical path difference or in the light intensity) 

can be expressed in the terms of such parasitic quanti­

ties of which the resulting errors are described by the 

formulas presented in the subsections above. A more 

detailed and comprehensive description covering other 

signal processing versions, too, is available. 

APPLICATIONS AND CONCLUSIONS 

The interferometric method described and analyzed in 

this article has been applied to six standard devices so 

far. Simplified block diagrams of four of them (e.g., 

low-, middle- and high-frequency acceleration stan­

dard, angular acceleration standard), Figs 10-13, are 

given to show in which way the special preconditions 

for suppressing the quantization error, formulated in 

previous section, have been technically realized. 

At large displacement amplitudes such as those 

generated by the low-frequency acceleration standard 

(up to 0.5 m, cf. Fig. 10), the quantization error is neg­

ligible. The conventional counting method is therefore 

applied using a ratio counter. This method is used also 

by the angular acceleration standard (cf. Fig. 13) if 

large rotation angle amplitudes are to be measured. 

In the middle frequency standard (cf. Fig. 11) two 

independed spring-suspended blocks isolate the ex­

citer and interferometer from ground motion and avoid 

the pertubation of any optic element by the dynamic 

reaction forces from the exciter. The disturbing phase 

variations are dominated by a low-frequency narrow­

band Gaussian noise added to the sinusoidal voltage 
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at the input of the power amplifier which supplies the 

drive coil of the electrodynamic exciter. 

In the high-frequency acceleration standard (cf. 

Fig. 12) any disturbing phase variations are sup­

pressed, and the quantizatiori error can thus be elim­

inated, by introducing a linear phase variation. Such 

a phase variation is excited by a ramp generator in 

conjunction with a piezoelectric translator. As a result, 

every spectral line of the frequency spectrum is split 

into two neighbouring spectral lines. With low-pass or 

narrow-band filtering, a beat signal (pure beat) is ob­

tained whose zeros allow a variation of the zero-phase 

angle by 2rr to be indicated and controlled. 

The same approach to suppress the quantization 

error is applied to the standard device developed 

for circular motion quantities at sinusoidal time­

dependences ("angular acceleration standard"). With 

non-sinusoidal time dependency (e.g., in the "shock 

acceleration standard", cf. Von Martens and Taubner 

(1994)) the quantization error is not relevant because 

the signal processing is based on the measurement of 

the time intervals between the zero crossings. 

The above theoretical relationships between the 

disturbing quantities and the errors due to them have 

largely been experimentally confirmed. They can be 

used to select optimum conditions of measurement, 

eliminate systematic error components by corrections 

and estimate the measurement uncertainty. If the pa­

rameters (e.g., filter frequency limit or hysteresis) are 

not appropriately set, particular error components and 

thus, the relative error of measurement can easily run 

up to the order of 10%. By choosing the optimum con­

ditions and applying the corrections as far as needed, 

error components have been kept as far below 0.1 % as 

necessary to achieve this value as the measurement un­

certainty in measurements of the amplitude of a sinu­

soidal motion quantity with low or no distortion. This 

relative "expanded uncertainty" of 0.1 % was calcu­

lated according to the rules of the ISO Guide (1993) by 

combining the estimated variances (and co-variances) 

using the "root-sum-of-squares" method and mUltipli­

cation of the "combined uncertainty" by the "coverage 

factor" k = 2. 

In this way, in conjunction with the specially devel­

oped acceleration or angular acceleration exciters be­

longing to the above-mentioned standard devices, pri­

mary vibration calibrations of accelerometers and an­

gular accelerometers are being carried out with a rel­

ative measurement uncertainty of 0.1 to 0.3% in the 

frequency range from 0.1 Hz to 10kHz at the PTB. In 

primary shock calibrations, a minimum relative uncer­

tainty of measurement of 0.5% has been achieved. 
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FIGURE 12 Simplified block diagram of high-frequency acceleration standard. 
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