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ABSTRACT

1 We describe the use of the nonparametric bootstrap to in-
vestigate the accuracy of current dipole localization from
magnetoencephalography (MEG) studies of event related
neural activity. The bootstrap is well suited to analysis of
event-related MEG data since the experiments are often re-
peated 100 or more times and averaged to achieve accept-
able SNRs. The set of repetitions or ”epochs” can be viewed
as a set of i.i.d. realizations of the brain’s response to the
experiment. Bootstrap resamples can be generated by sam-
pling from these epochs and averaging. In this study we ap-
plied the bootstrap resampling technique to MEG data from
a somatotopic experiment. Four fingers of the right and left
hand of a healthy subject were electrically stimulated, and
about 400 trials per stimulation were recorded and averaged
in order to measure the somatotopic mapping of the fingers
in the S1 area of the brain. Based on the single trial record-
ings for each finger, we performed 5000 bootstrap resam-
ples. We reconstructed dipoles from these resampled aver-
ages, using the RAP-MUSIC source localization algorithm.
To find the correspondences between multiple sources in
each resample dipoles with similar time-series and forward
fields were assumed to represent the same source. These
dipoles were then clustered using a GMM (Gaussian Mix-
ture Model) clustering algorithm, using their combined nor-
malized time-series and topography as feature vectors. The
mean and standard deviation of the dipole position and the
dipole time-series in each cluster were computed to provide
estimates of the accuracy of the reconstructed source loca-
tions and time-series.
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1. INTRODUCTION

The ECD (Equivalent Current Dipole) is a widely used model
for event-related neuronal activity. The location, orienta-
tion, and time series of ECDs can be estimated from non-
invasive surface measurements of the associated magnetic
fields and electric potentials generated by the human brain.
The ECD model yields a fixed number of source locations
and source time-series from each data set. These dipole
source positions can be estimated to an arbitrary precision
by means of nonlinear optimization [1]. However, because
of nonlinearities in the model, the method is sensitive to
noise and can depend critically on the number of dipoles
and their relative locations. Thus, the arbitrary precision
of the localization results can be misleading, especially in
studies where differences in source localizations due to dif-
ferent experimental conditions are analyzed. To achieve ac-
ceptable estimates, reconstruction is typically performed on
data sets averaged over 10’s or 100’s of repetitions of the
same experiment.

Each averaged data set produces a point estimate of the
ECD locations and time-series. It is important for inter-
pretation of these results that some measure of uncertainty
is also provided. Lower bounds on parameter variances,
using the Cramer-Rao inequality, were described for this
problem in [2] and [3]. While the bounds were shown to
be reasonably tight in simulation studies, they assume sta-
tionary Gaussian noise and a deterministic time series for
each source. In practice, these assumptions may not hold.
The bootstrap method [4] provides an alternative nonpara-
metric method for assessing the reliability of the estimated
sources. Since each experiment is typically repeated many
times, bootstrap resamples can be generated by sampling
with replacement from the set of repeated trials. The advan-
tage of the bootstrap approach is that no specific assump-
tions are made regarding the distribution of either the noise
or of the dipole time series. A similar approach to analy-
sis of event-related data is described in [5], but the analysis
was applied only to the scalp data rather than brain sources
estimated from this data.



We applied the bootstrap method to MEG data from a
somatotopic experiment in order to estimate the accuracy
and reliability of estimated ECDs. Each of the four mea-
surements, which consisted of an electric stimulation of the
thumb, index, middle and small finger, was resampled 5000
times. We reconstructed sources from these resamples us-
ing the RAP-MUSIC algorithm [6]. Since more than one
dipolar source was reconstructed per bootstrap resample of
the data, the resulting dipoles were clustered using their nor-
malized time-series and topography.

2. METHODS

2.1. MEG data aquisition

The somatosensory measurement was performed on a healthy
right-handed male. The stimulation was an electrical square-
wave pulse delivered to four fingers of each hand: thumb,
index, middle, and pinky. The stimulation was applied be-
tween the middle and distal phalanxes of each finger and
the stimulation order was randomized. The pulse duration
was 0.2 milliseconds and the amplitude was set to twice the
perceptual threshold. The interstimulus interval varied ran-
domly between 350 ms and 550 ms. The magnetic fields
were recorded with a CTF Systems Inc. Omega 151 MEG
system. For each finger a 300 ms interval, including a 50ms
pre-stimulus interval, was recorded. The number of single
trials per data set ranged from 386 to 415. The DC-offset of
the gradiometers was removed from all single trials based
on the pre-stimulus interval and the trials were filtered from
3 Hz to 70 Hz.

2.2. Bootstrap resampling

Bootstrap resampling is based on the approximation of the
pdf (probability density distribution)F of a random variable
X by its empirical pdfF̂ . With n realizations ofX, x =
{x1, x2, ..., xn}, the empirical pdf is given by

F̂ (xi) =
#x = xi

n
, (1)

with #x = xi being the number of realizations of x that are
equal toxi. If the samples are independent of each other, a
bootstrap resamplex∗ of x can be generated by randomly
drawingn samples, with replacement, fromx. A statistic
θ̂(x), can be resampled bŷθi = θ̂(x∗i ), wherex∗i is the ith
bootstrap resample ofx. If a total of B bootstrap resam-
ples are generated, the mean and standard deviation ofθ̂ are

simply given by:

¯̂
θB =

1
B

B∑
i=1

θ̂i (2)

σ̂B =

√√√√ 1
B − 1

B∑
i=1

(θ̂i − ¯̂
θB)2 (3)

The same procedure can be applied if the random variables
are replaced with random matrices, i.e.X = {X1,X2, ...,Xn}.
In the case of single trial MEG data, the matricesXi, are the
spatiotemporal data matricesDi wheren is the number of
single trials. The statistic from which the dipole locations
are subsequently estimated is the average,

D̄ =
1
n

n∑
i=1

Di

Let R(D̄) = {r1(D̄), r2(D̄), ..., rs(D̄)} be the locations
of the s reconstructed dipoles from the average data with
P(D̄) the corresponding set of dipole forward fields, and
T(D̄) the corresponding set of time-series. Then bootstrap
resamples are given by

Ri = R(D̄i) Pi = P(D̄i) Ti = T(D̄i)

whereD̄i is the ith bootstrap resample of the average. The
mean and standard deviation ofRi, Pi andTi cannot be
directly calculated using equation (3), because the number
si of dipoles reconstructed by RAP-MUSIC from theith re-
sample,D̄i, is not fixed. Also, the ordering of the dipoles
in each resample is arbitrary, so that before we can compute
bootstrap statistics for each source, we must first establish
the correspondences between sources in each bootstrap re-
sample. We determine the correspondences through clus-
tering of the bootstrap dipoles. To perform clustering we
group all estimated source locations together,

Rall = {r11, r12, ..., r1s1 , ..., rBsB
},

with identical ordering of their corresponding forward fields
and time-series. We then perform a clustering procedure to
divideRall into c subsets,

Rall = {R1,R2, ...,Rc}.

where each clusterRj is assumed to represent a single ECD
source of brain activity at location̄Rj with topographyP̄j

and time-series̄Tj , j = 1, . . . c, where in each case av-
erages are computed over the bootstrap estimated sources
within each cluster. Similarly, we can compute the standard
deviation, using eqn. (3), of the location, topography and
time series for each cluster.



2.3. Clustering of Bootstrap results

The clustering of the reconstructed sources is performed by
applying a GMM algorithm to a set of feature vectors

{f1, f2, ..., fS} S =
B∑

i=1

si,

which are associated with each of the sources ([7], [8]). We
used the combined normalized forward field and time-series
for each source:

fi =
(

t̂
p̂

)
The maximum number of clusters, which is a parameter for
the GMM algorithm used here, was set to the maximum
number of dipoles over all bootstrap resamples. Clustering
was performed for the data from each finger separately.

3. RESULTS

3.1. Reconstruction on the average data

The mapping of the sources from the average data for the
right-hand stimulation and the time-series in the contralat-
eral (left hemisphere) S1 primary somatsensory region of
the brain are shown in fig. 1. The spatial locations of these

Fig. 1. a) The original somatotopy for the right hand stim-
ulation. The sources are shown as colored points on the
cortical white matter surface. The views shown are front,
top and left. Blue= thumb, red=index finger, yellow=middle
finger and green=small finger. Orientation of the dipoles is
indicated by the angle of the rod extending from the sphere
representing each source. b) Timeseries of the S1 sources.
The same color code is used as in a).

S1 sources are listed in table 1.

stimulation x y z
thumb 37.1 29.1 93.4
index 30.6 34.7 100.0
midlle 28.6 28.2 107.8
small 29.8 26.0 109.3

Table 1. Location of S1 activity in the average data for the
30-100 ms time interval. All values are in mm.

In addition to S1 activity, reconstruction over the inter-
val from 30 - 100 ms also produced sources at other loca-
tions. In order to identify S1 activity, which typically peaks
around 40 ms, those sources that had the strongest signal
power (i.e. squared integrated time-series) in the interval
from 30-50 ms were selected as S1. The location of these
sources follows the homuncular cortical representation of
the fingers as described in [9]. The peak activity for all four
fingers takes place between 40 ms and 50 ms. Since areas
S1 and S2 are close to each other, it appears that the time
series of dipoles accounting for the S1 activity also contain
evidence of S2 activity with secondary peaks around 80ms.
Activity was also found in the ipsilateral hemisphere (i.e.
the right hemisphere for this experiment), in the lower pre-
central area, rather than the right S1/S2 area as would have
been expected from the literature.

3.2. The bootstrapped data

After bootstrapping, a total of 86830 sources were found
from 5000 resamples for each of the four fingers. The aver-
age number of sources was 4.3 per resample, and all sources
were grouped into 29 clusters. Clusters with a larger spatial
extent (i.e. a standard deviation≥ 20 mm) were excluded
from further analysis, as these clusters most likely represent
spurious sources with weak source strength. We show here
only the clusters corresponding to S1 activity which were
selected in a similar manner to the S1 sources for the origi-
nal data as described above. The S1 clusters for each finger
are shown in fig. 2.

The spatial ordering of the S1 activity clusters reflects
the original somatotopy. The standard deviation for this ac-
tivity was between 2.0 mm and 3.4 mm. Table 2 lists the
cluster locations, standard deviation, and bias (relative to
the locations estimated from the original data) for the clus-
ters in S1. The bootstrapped data shows similar location un-
certainty for each digit, but a substantial bias for the thumb
and index finger.

4. DISCUSSION

We applied the bootstrap method to MEG data from a so-
matotopic expereriment in order to asses the combined sta-



Fig. 2. a) The resampled S1 somatotopy for right hand stim-
ulation. The sources are shown as colored ellipsoids, with
semiaxes equal to the standard deviation along the three
eigenvectors of their respective cluster covariance. The
clusters shown here have the strongest signal power for the
interval 40-50 ms and 70-80 ms on the left hemisphere. b)
The bootstrapped time-series for these clusters. The thick
line is the mean time-series of the cluster, the thin lines are
+/- one standard deviation.

tistical variability in the data and the accuracy of the applied
dipole reconstruction method. The sources which were re-
constructed on the resampled data were clustered using their
combined time-series and topography as feature vector. From
these clusters, the average location and the standard devia-
tion of the location of the sources in S1 were calculated. For
the time intervals in which one would expect S1 activity, the
bootstrap method revealed a stable somatotopic mapping on
the left hemisphere, with a spatial standard deviation of less
than 3.4 mm. However, there was an apparent significant
bias to the source locations in the original averaged data,
especially for the thumb and the index finger. Since the av-
erage data can be seen as just another bootstrap resample,

stimulation x dx y dy z dz Bias
thumb 31.3 2.3 31.8 3.4 101.2 3.0 10.1
index 35.1 2.1 31.8 2.8 102.2 3.2 5.8

middle 29.2 2.6 28.5 2.8 105.0 3.3 2.9
small 30.5 2.0 25.5 3.2 108.2 3.2 1.4

Table 2. Location inx, y andz, and corresponding stan-
dard deviations (dx, dy, dz) for the S1 activity clusters for
the 30-100 ms interval. The last column is a bias estimate
computed as the distance between the cluster centroid and
the location of the source as computed from the original
data.

the computed ”bias” does not represent the true bias of the
estimator but rather is an indication of a potentially large
error in the reconstruction from the original averaged data.
For the thumb, the center of gravity of the bootstrapped re-
construction lies over 1cm from the position where the orig-
inal average would have placed the source.

These results demonstrate the potential for bootstrap anal-
ysis to provide users of MEG data a nonparametric indica-
tion of the reliability of estimated sources, which is very
important in the interpretation of brain mapping data for the
two primary applications of MEG: presurgical brain map-
ping and cognitive neuroscience.
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