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Abstract

Gas tungsten arc welding (GTAW) technology is widely used in industry and has advantages, including high precision, excellent

welding quality, and low equipment cost. However, the inclusion of a large number of process parameters hinders its application

on a wider scale. Therefore, there is a need to implement the prediction and optimization models that effectively enhance the

process performance of the GTAW process in different applications. In this study, a five-factor five-level central composite

design (CCD) matrix was used to conduct GTAW experiments. AISI 1020 steel blank was used as a substrate; UTP AF Ledurit

60 and UTP AF Ledurit 68 were used as the materials of two tubular wires. Further, an artificial neural network (ANN) was used

to simulate the GTAW process and then combined with a genetic algorithm (GA) to determine welding parameters that can

provide an optimal weld. In welding experiments, five different welding current levels, welding speed, distance to the nozzle,

angle of movement, and frequency of the wire feed pulses were used. Using GA, optimal welding parameters were determined:

welding current = 222 A, welding speed = 25 cm/min, nozzle deflection distance = 8 mm, travel angle = 25°, wire feed pulse

frequency = 8 Hz. The determination coefficient (R2) and RMSE value of all response parameters are satisfactory, and the R2 of

all the data remained higher than 0.65.

Keywords Artificial neural network . Genetic algorithm . Pulsed GTAW .Multi-objective optimization . Quality characteristics

* Shoaib Sarfraz

shoaib.sarfraz@cranfield.ac.uk

Italo do Valle Tomaz

italo.tomaz@iff.edu.br

Fernando Henrique Gruber Colaço

fernandogruber@ifsc.edu.br

Danil Yu. Pimenov

danil_u@rambler.ru

Munish Kumar Gupta

munishguptanit@gmail.com

Giuseppe Pintaude

giuseppepintaude@gmail.com

1 Instituto Federal Fluminense – Laboratório de Ensaios dos Materiais

(LEMat), Estrada Cabo Frio - Búzios, s/n - Baía Formosa, Cabo

Frio, Rio de Janeiro, Brazil

2 SEAM Research Centre, Department of Engineering Technology,

Waterford Institute of Technology, Waterford X91TX03, Ireland

3 Instituto Federal de Santa Catarina, Rua dos Imigrantes, 445 - Rau,

Jaraguá do Sul 89254-430, Santa Catarina, Brazil

4 Universidade Tecnológica Federal do Paraná, Câmpus Curitiba - Rua

Deputado Heitor Alencar Furtado, 5000,

Curitiba, Paraná 81280-340, Brazil

5 Manufacturing Department, School of Aerospace, Transport and

Manufacturing, Cranfield University, Cranfield, Bedfordshire MK43

0AL, UK

6 Department of AutomatedMechanical Engineering, South Ural State

University, Lenin Prosp. 76, 454080 Chelyabinsk, Russia

7 Key Laboratory of High Efficiency and Clean Mechanical

Manufacture, Ministry of Education, School of Mechanical

Engineering, Shandong University, Jinan, People’s Republic of

China

https://doi.org/10.1007/s00170-021-06846-5

/ Published online: 6 March 2021

The International Journal of Advanced Manufacturing Technology (2021) 113:3569–3583

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-021-06846-5&domain=pdf
https://orcid.org/0000-0003-0441-9477
https://orcid.org/0000-0001-5485-5635
https://orcid.org/0000-0002-1373-2054
https://orcid.org/0000-0002-5568-8928
https://orcid.org/0000-0002-0777-1559
https://orcid.org/0000-0001-8215-4481
mailto:shoaib.sarfraz@cranfield.ac.uk


1 Introduction

Hardfacing is applying filler metal onto a surface, edge, or a

point of base-metal of different compositions. As stated by

Ramesh et al. [1], in most cases, the deposited metal is harder

than the substrate, resulting in the name “hardfacing.” As

discussed by Chaidemenopoulos et al. [2], weld feed material

composition for hardfacing purposes usually contains a high

content of carbon and carbide forming elements. According to

Bahoosh et al. [3], the concept increases hardness, improves

tribological properties, and extends components service life in

many engineering applications. Pawar et al. [4] also men-

tioned that the hardfacing process could improve surface wear

resistance or even restore worn-out surfaces. However, as Ahn

[5] discussed, hardfacing deposited by the welding process

can result in considerable heat-affected zones and susceptibil-

ity to crack due to residual stresses imposed by the welding.

As presented by [6], low-carbon steels are usually used as a

substrate, which reduces the costs and supplies considerable

amounts of iron during the welding, which can compromise

the desired dilution. Therefore, the two main challenges

involved in hardfacing deposition are obtaining crack-free

overlay and low dilution.

Many different welding technologies can be implemented

in weld surfacing processes. Among these various techniques,

D’Oliveira et al. [7] stated that plasma transferred arc welding

(PTAW) and gas tungsten arc welding (GTAW) processes are

the most widely used in the industry. They provide some

advantages, including high accuracy, superior quality weld,

and low equipment cost. As observed by [8], another great

advantage of these processes is their capability to produce

weld beads with low dilution levels, desirable in the

hardfacing layer. To get a suitable balance between the de-

signed microstructure and the welded bead’s obtained integ-

rity, dilution adjustment is crucial. Zhang et al. [9] deposited

hardfacing using a fusion technique obtained by the arc be-

tween the tungsten electrode and the additional metal, suc-

cessfully obtaining a coating with low dilution. Another suc-

cessful technique for obtaining low dilution was tried by

Silwal et al. [10] using hot-wire with resistive arc heat to

preheat the wire. Wang et al. [11] presented an innovation in

the process of depositing hot-wire GTAW coatings where a

Table 1 Chemical composition of the AISI 1020 carbon steel and wires

Chemical composition (Weight, %)

Carbon C Silicon

Si

Manganese

Mn

Chromium

Cr

Molybdenum

Mo

Tungsten

W

Niobium

Nb

Cobalt

Co

Boron

B

Sulfur

S

Impurities

П

Iron

Fe

AISI 1020

steel

0.18-0.23 - 0.3-0.6 - - - - - - Max

0.05

Max 0.04 Bal.

UTP AF

Ledurit 60

3.34 0.82 0.314 27.00 0.026 0.007 - 0.010 0.311 - - Bal.

UTP AF

Ledurit 68

3.41 1.05 0.228 17.88 - - 3.06 - - - Bal.

Fig. 1 Experimental setup: a

Welding machine; b welding

electrode with other accessories;

and c scheme of the welding torch

and wire feeders
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secondary bypass arc energy was used to heat the wire. In

addition, a promising wire oscillation technique that is being

developed by Silva et al. [12] to minimize welding defects can

result in significant effects on dilution control. According to

Lemke et al. [13], controlling the dilution and composition of

the obtained final bead is crucial to ensure desired superficial

properties. As observed by Balasubramanian et al. [14], when

the GTAW welding process is used in metal deposition, the

selection of the proper welding input parameters will define

the quality and mechanical, chemical, and also geometric

properties of the obtained weld bead. Jahanzaib et al. [15]

Table 2 GTAW process parameters

GTAW process parameters Levels

Welding current (A) 190, 210, 230, 250, 270

Welding speed (cm/min) 5, 10, 15, 20, 25

Nozzle standoff distance (mm) 8, 10, 12, 14, 16

Travel angle (°) 5, 10, 15, 20, 25

Wire feed pulse frequency (Hz) 30, 45, 60, 75, 90

Table 3 GTAW parameters with the experimental design and their results

Sr. no. GTAW Parameters Responses

Welding

current (A)

Welding

speed

(cm/min)

Nozzle

standoff

distance

(mm)

Travel

angle (°)

Wire feed

pulse

frequency

(Hz)

Width (mm) Reinforcement

(mm)

Penetration

(mm)

Dilution (%)

1 210 10 10 10 75 9.65 ± 1.02 3.62 ± 0.36 0.60 ± 0.07 8.80 ± 1.10

2 250 10 10 10 45 14.65 ± 0.75 2.61 ± 0.24 1.53 ± 0.37 26.93 ± 2.91

3 210 20 10 10 45 7.02 ± 2.45 2.77 ± 0.52 0.35 ± 0.22 10.65 ± 6.86

4 250 20 10 10 75 8.88 ± 0.41 2.31 ± 0.14 0.80 ± 0.11 19.74 ± 3.63

5 210 10 14 10 45 12.25 ± 2.04 3.42 ± 0.17 0.93 ± 0.19 15.36 ± 3.40

6 250 10 14 10 75 17.25 ± 1.12 2.37 ± 0.25 0.81 ± 0.23 23.28 ± 2.35

7 210 20 14 10 75 7.69 ± 2.01 2.57 ± 1.17 0.19 ± 0.12 3.51 ± 2.51

8 250 20 14 10 45 9.52 ± 0.41 2.25 ± 0.67 0.75 ± 0.07 16.53 ± 4.46

9 210 10 10 20 45 10.30 ± 1.39 3.69 ± 1.30 1.00 ± 0.12 16.36 ± 3.73

10 250 10 10 20 75 14.46 ± 0.70 2.56 ± 0.23 1.10 ± 0.55 26.17 ± 5.96

11 210 20 10 20 75 7.05 ± 0.28 2.76 ± 0.10 0.57 ± 0.16 12.33 ± 3.87

12 250 20 10 20 45 8.96 ± 0.52 2.31 ± 0.28 0.92 ± 0.19 25.01 ± 3.98

13 210 10 14 20 75 10.29 ± 1.27 3.70 ± 0.44 0.54 ± 0.16 9.35 ± 2.01

14 250 10 14 20 45 16.26 ± 0.73 2.72 ± 0.15 1.30 ± 0.50 23.79 ± 5.94

15 210 20 14 20 45 6.15 ± 0.61 3.04 ± 0.27 0.26 ± 0.07 4.18 ± 1.40

16 250 20 14 20 75 9.34 ± 0.54 2.24 ± 0.22 0.56 ± 0.13 14.90 ± 2.71

17 190 15 12 15 60 5.71 ± 1.71 3.85 ± 0.62 0.17 ± 0.03 3.37 ± 1.15

18 270 15 12 15 60 13.67 ± 1.72 2.18 ± 0.17 0.91 ± 0.19 27.94 ± 6.78

19 230 5 12 15 60 19.20 ± 3.47 3.19 ± 0.35 1.53 ± 0.29 31.90 ± 6.12

20 230 25 12 15 60 7.30 ± 0.65 2.17 ± 0.48 0.72 ± 0.09 8.41 ± 4.07

21 230 15 8 15 60 10.17 ± 0.92 2.51 ± 0.49 0.80 ± 0.12 22.92 ± 4.72

22 230 15 16 15 60 12.48 ± 1.59 2.48 ± 0.21 0.49 ± 0.12 13.13 ± 2.83

23 230 15 12 5 60 8.61 ± 0.53 2.96 ± 0.28 0.65 ± 0.15 15.60 ± 2.53

24 230 15 12 25 60 8.44 ± 1.13 3.22 ± 0.26 0.72 ± 0.12 14.99 ± 1.40

25 230 15 12 15 30 7.92 ± 0.68 2.73 ± 0.49 0.84 ± 0.15 17.34 ± 2.59

26 230 15 12 15 90 9.43 ± 1.77 2.51 ± 0.40 0.59 ± 0.15 16.60 ± 3.88

27 230 15 12 15 60 9.63 ± 0.50 2.80 ± 0.15 0.59 ± 0.12 16.30 ± 1.64

28 230 15 12 15 60 10.39 ± 0.33 2.71 ± 0.13 0.59 ± 0.05 15.06 ± 3.20

29 230 15 12 15 60 10.29 ± 1.69 2.67 ± 0.56 0.72 ± 0.15 18.53 ± 4.11

30 230 15 12 15 60 10.20 ± 1.96 2.75 ± 0.57 0.58 ± 0.10 16.86 ± 3.97

31 230 15 12 15 60 10.11 ± 1.02 2.77 ± 0.32 0.78 ± 0.07 18.84 ± 3.46

32 230 15 12 15 60 10.18 ± 1.06 2.64 ± 0.24 0.80 ± 0.14 18.84 ± 3.77

3571Int J Adv Manuf Technol (2021) 113:3569–3583



stated that the welding current is an important parameter that

most affects the bead geometry responses, and Giridharan and

Murugan [16] added that the welding speed is also important,

but with an inverse effect on the geometry of the bead.

Traditionally, the input parameters of processing are selected

based on practical experience and welding engineer experts.

Pujari et al. [17] stated that one of the leading welding engi-

neering problems is to use mathematical models that can sim-

ulate welding processes and identify the combination of input

parameters capable of producing the weld beads with the best

possible quality keeping good productivity. Nagesh and Datta

[18] used mathematical modeling and design experiments to

simulate and predict the welding process results and have

proved its efficiency. As discussed by Zheng et al. [19], in

industry 4.0, techniques for processing large datasets using

artificial intelligence and the integration of artificial intelli-

gence algorithms into automated production are becoming

increasingly important. Abubakr et al. [20] also highlighted

the importance of artificial intelligence techniques to optimize

the manufacturing process, improve components quality, and

achieve more sustainable processes.

In this trend, as reported by Fhale et al. [21], many authors

have implemented the backpropagation Artificial neural net-

work (ANN) and other artificial intelligence methods to

simulate many different manufacturing processes, including

welding. Muthu Krishnan et al. [22] used an ANN model to

develop regression equations relating to response characteris-

tics and process input parameters for friction stir welding.

Vangalapati et al. [23] also simulated friction stir welding

using an ANN model. Chang et al. [24] developed a

backpropagation ANN model for predicting the penetration

morphology of asymmetrical fillet welds and used a mind

evolutionary algorithm to optimize the model. Joseph and

Muthukumaran [25] used a genetic algorithm and simulated

annealing technique to determine the optimal process param-

eters for activated tungsten inert gas. Sudhakaran and

Sakthivel [26] developed neural network models for

predicting bead parameters in the GTAW process, such as

depth of penetration, bead width, and depth to width ratio.

Ghanty et al. [27] also succeeded in using a backpropagation

ANN to predict weld bead geometry confirming the method’s

efficiency. Genetic algorithm (GA) is attracting many re-

searchers’ attention to solve optimization problems since tra-

ditional optimization methods frequently end up in local min-

ima. GA is beneficial in optimizing multi-objective problems,

making it suitable to solve optimization problems related to

the manufacturing process that involves many output param-

eters that must be controlled. Lei et al. [28] applied a GA to

Fig. 2 Deposited weld bead: a

Scheme of the geometry and

dilution of the bead: W, width; R,

reinforcement; P, penetration; A,

melted substrate cross-sectional

area; B, deposited filler cross-

sectional area; b example of an

image used to evaluate the

dilution

Welding

current

Welding

speed

Nozzle standoff

distance

Travel

angle

Wire feed

rate

Input layer

…

First hidden layer

(23 neurons)

…

Second

hidden layer

(21 neurons)

Third hidden

layer

(25 neurons)

…

Output layer

Dilution

Width

Reinforcement

Penetration

Fig. 3 Artificial neural network

architecture
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optimize the ANN used to determine the weld geometry dur-

ing the thin-plate laser welding of Ti6Al4V. Dey et al. [29]

used a GA combined with response surface methodology to

minimize weld bead width and height and maximize the weld

penetration in electron beam welding, producing a smaller

bead without affecting the quality. Multi-objective optimiza-

tion involves more than one function to be optimized simul-

taneously. Saha and Mondal [30] investigated the hardfacing

process using multi-objective optimization. These authors

processed a high volume fraction of metal carbides, metal

borides, and boro-carbides finely distributed in a ferritic ma-

trix, designed for wear-resistant components. They found op-

timum variables for hardfacing layers deposited by manual

metal arc welding (MMAW). In the same sense, the multi-

objective approach can be found for the GTAW process. For

example, Prakash et al. [31] used hybrid optimization algo-

rithms to deposition Inconel 625 alloy onto AISI-304 and

4140 low-alloy steel sheets. Rodriguez et al. [32] investigated

the microstructural balance between ferrite and austenite in

dissimilar joints of duplex stainless steel through a genetic

algorithm. Both cases are aimed at the oil and gas field.

Correia et al. [33] reported that GA’s capability found opti-

mum welding parameters even when the process’s physical

model is not available. Although many researchers have been

studying the prediction of weld bead geometry and the opti-

mization of GTAW, the literature remains with a lack in the

multi-objective optimization of the GTAW hardfacing pro-

cess. The present investigation used a five-factor, five-level,

central composite design (CCD) matrix to run GTAW exper-

iments that were used to train a backpropagation ANN. Five

different welding current levels, welding speed, nozzle stand-

off distance, travel angle, and wire-feed pulse frequency were

used in welding experiments. The aim of this work is to use

the ANN model coupled to a GA to identify the welding

parameters that can produce the optimum weld bead. A final

experiment was performed to validate the results of the simu-

lated optimum parameters.

2 Materials and methods

2.1 Welding experiments

Rectangular samples of AISI 1020 carbon steel with the

dimensions of 150 mm × 200 mm × 6 mm (length × width

× thickness) were used as substrate. The samples were

cleaned and preheated to a temperature of 150° C before

welding. The chemical composition of AISI 1020 carbon

steel is given in Table 1. Weld beads were deposited by the

mechanized GTAW process using a Lion 300 welding ma-

chine with Argon as shielding gas (at 15L/min). The non-

consumable tungsten electrode was a 3.2-mm diameter and

1.5% Lanthanum, installed with direct current in negative

polarity. The welding machine was equipped with two wire

feeders containing tubular wires with different chemical

compositions, as provided in Table 1. Both wires were

simultaneously added to the melt pool with a constant wire

feed of 2 m/min for all experiments. The experimental set-

up used in the current work, and the welding torch and wire

feeders, is shown in Fig. 1.

0 0 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1

Welding

current

Welding

speed

Nozzle standoff

distance

Travel

angle

Wire feed

rate

Fig. 4 20-digit chromosome used for binary encoding

Train ANN

Validate ANN

Test ANN

Run ANNprediction for nth

GA generation

Is ANN fit

safistafory? No

Update ANN

topology

Yes

Create first genetarion

chromosome randonly

Reproduction (crossover

andmutation operation)

Calculate multi objective

function for all population

Select next generation

parents (elitism and

tournament)

Is minimum

multi objective

function the

same for 30

generations?

No

Yes

Optimum value

Fig. 5 ANN and GA procedure
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The following parameters—welding current, welding

speed, nozzle standoff distance, travel angle, and wire feed

pulse frequency—were changed as per a five-factor, five-lev-

el, central composite design (CCD) matrix. Six replicas were

made to each set of parameters. Table 2 exhibits the tested

GTAW input parameters and their associated levels.

2.2 Weld bead quality evaluation

After the weld bead deposition, samples were cut transversely by

electrical discharge machine (EDM) and sanded and polished.

Further, images used in the analysis of the width (W), reinforce-

ment (R), penetration (P), and dilution of the bead deposited,

which is calculated by the division of penetration cross-

sectional area (A) by the total cross-sectional area (A+B), accord-

ing to Fig. 2a. The images were obtained by the Stemmi-2000

stereoscope and analyzed using the Image-Pro Plus software

(Fig. 2b). The experimental data with observed response values

and their respective standard deviations are presented in Table 3.

2.3 Development and modeling of artificial neural
network (ANN)

The ANN model was developed based on experimental data

(Table 3). All input data (welding current, welding speed,

nozzle standoff distance, travel angle, and wire feed pulse

frequency) were normalized to implement ANN, ranging from

0 to 1 as per the following equation (Equation 1):

X iN ¼
X i−Xminð Þ

Xmax−Xminð Þ
ð1Þ

Where XiN, Xi, Xmin, and Xmax are the values of normalized,

measured, minimum, and maximum data for each input param-

eter, respectively. A backpropagation algorithm was used to

train the ANN, and a non-linear sigmoid activation function

was used. The topology of the used backpropagation neural

network consists of five layers: the input layer, three hidden

layers, and the output layer. The input layer corresponds to

welding parameters having one neuron for each input parameter

Fig. 6 Main effects plot of GTAW input parameters
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Fig. 7 Comparison of cross-

sectional areas, illustrating the

weld bead of tested conditions 18,

20, and 22

Fig. 8 Surface characteristics at

different welding parameters
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(welding current, welding speed, nozzle standoff distance, trav-

el angle, and wire feed pulse frequency). The output layer pre-

sents four neurons corresponding to output data (width, rein-

forcement, penetration, dilution). Hidden layer topology was

determined by an optimization process, which looked for the

topology that provided a higher determination factor value (R2).

This action is considering that the number of hidden layers and

neurons plays a vital role in developing an ANNmodel, and an

inadequate architecture can cause overfitting or underfitting of

data. Lower root mean square error (RMSE) for all output data

when comparing measured and predicted results. The best-

identified topology presents three hidden layers having 23,

21, and 25 neurons, respectively. Each neuron of the input layer

is connected to each neuron of the first hidden layer. All the

following layers followed the same. Figure 3 depicts the topol-

ogy of ANN according to the studied welding case model. In

this study, data set was randomly divided into three sets: train-

ing, validation, and testing. The advantage of splitting data into

three parts instead of two is to use validation to check when no

overfitting in theANNmodeling, avoiding it to produce inferior

results when data that were not part of the initial data set is used.

The training step used 80% of the experiment data. After train-

ing, 10% of experimental data were used to validate ANN, and

the rest 10% was used to test ANN.

2.4 Development of genetic algorithm (GA)
optimization

After fitting an appropriate ANN model, a genetic algorithm

was adopted to optimize the GTAW process, identifying

welding parameters that can improve the deposited weld

bead’s characteristics, which are represented by an objective

function. A binary approach was used for GA implementa-

tion; input data were coded in a 20-digit binary code chromo-

some, as illustrated in Fig. 4.

The adopted procedure in which an artificial neural net-

work was coupled with a GA is shown in Fig. 5. The gray

color can identify the coupling step. For each GA generation,

the ANN was used to simulate the welding output data. The

necessary steps shown in Fig. 5 are as follows:

Step 1 Create a first-generation chromosome randomly:

First-generation chromosomes are randomly created.

Twenty individuals are created as the first parents.

Step 2 Run ANN prediction for nth GA generation: In this

step, the binary number of each input parameter is

converted to a decimal number (0 to 15 for all input

parameters) and then normalized, ranging from 0 to 1

and used as ANN inputs.

Step 3 Calculate multi-objective function for all populations:

After running the ANN, the simulated responses are

used to calculate an objective function. This objective

function is determined by Equation 2 in which all out-

put parameters were normalized, ranging from 0 to 1:

Fig. 9 SEM image revealing the microstructure of the welded layer of condition 26 (a). Note: microcracks associated with complex carbides. DRX

pattern of condition 26 (b)

Table 4 Comparison of mean replica experimental uncertainty and

ANN relative errors (%)

Width Reinforcement Penetration Dilution

Experimental

uncertainty

11.84 13.31 23.89 23.63

ANN relative error 7.96 5.13 16.79 14.58
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OF ¼
W−Wmin

Wmax−Wmin

þ
R−Rmin

Rmax−Rmin

−

P−Pmin

Pmax−Pmin

−

Di−Dimin

Dimax−Dimin

þ

W−Wmin

Wmax−Wmin

R−Rmin

Rmax−Rmin

0

B

B

@

1

C

C

A

ð2Þ

where OF is the objective function and W, R, P, and Di cor-

respond to width, reinforcement, penetration, and dilution,

respectively. The min and max index referred to the minimum

and maximum values for each output and were used for nor-

malization purposes. The objective function is the mathemat-

ical representation of the desired geometry of the weld bead,

minimizing width, reinforcement, and their quotient at the

same time that penetration and dilution are maximized. It is

important to highlight that it consists in a multiobjective opti-

mization and result will present a geometry that will combine

and balance all these requirements. At the end of this step, the

objective function value is compared with the previous gener-

ation value, and if it remains the same for 30 generations, the

GA is stopped. The calculated value is determined as the op-

timum value. This procedure aims to ensure that the whole

search space was examined and the global optimum was iden-

tified. On the other hand, if the objective function values de-

crease, the GA move to step 4.

Step 4 Select next-generation parents (elitism and tour-

nament): In the selection step, 20 individuals are

selected to be the next generation’s parents. In the

first generation, all the 20 individuals are ran-

domly created and parents, but 20 individuals

are selected from the 40 available (previous and

new generation) in the following generations.

Elitism is responsible for the selection of 10%

of next-generation parents. In this procedure, all

individuals are ranked by the objective function

(low to high). The twenty (10% of the total of 20

parents of next generation) individuals with the

lowest objective function value are selected. The

other 18 (90% of the total of 20 parents of next-

generation) parents are selected using tournament

selection described by [34]. The tournament se-

lection consists of selecting randomly 5 individ-

uals and choose the best (lower objective function

Fig. 10 ANN regression plot for

width a training, b validating, c

test, and d overall
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value) to be a parent of the next generation.

Bhunia and Samanta [35] stated that tournament

selection is the most effective selection method

for minimization problems, and it is essential to

find the global solution, avoiding local minimums

as mentioned by Kılıç and Yüzgeç [36].

Step 5 Reproduction (crossover and mutation): The

crossover was used as the main reproduction

procedure. In the crossover, two parents are ran-

domly selected, and their chromosomes are split

at a random point and then combined to produce

two new individuals. This step is repeated ten

times using twenty parents. After finishing the

crossover, 20% of the generated individuals are

submitted to mutation, which consists of chang-

ing the value of one digit of their chromosomes.

Finally, the new individuals are submitted to

step 2, and the GA continues until the stop cri-

terion is reached. After identifying the optimum

welding parameters, a new set of experiments

was conducted to validate the optimized welding

condition’s predicted outputs.

3 Results and discussion

3.1 Influence of GTAW parameters on the quality of
weld bead

Figure 6 presents the effects of GTAW input parameters

(welding current, welding speed, nozzle standoff distance,

travel angle, and wire feed pulse frequency) on the deposited

weld bead geometry (width, reinforcement, penetration, dilu-

tion). The graphs were constructed in Minitab17® and consist

in the experimental data plotting joined by an interpolation

function intending to evaluate the effects of GTAW variables

on the measured values.

Higher welding currents increase heat input and the

welding pool and substrate temperature, resulting in more de-

posited material fluidity. It is possible to note that increments

in welding current increased width, penetration, and dilution.

The reinforcement, however, decreased when higher welding

currents were used. These characteristics can be observed in

Fig. 7, which shows the cross-section of a sample welded in

condition 18 of Table 3. Condition 18 used the higher tested

welding current (270 A), resulting in a low-quality weld bead

Fig. 11 ANN regression plot for

reinforcement (a) training, (b)

validating, (c) test, and (d) overall
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with high dilution. Shanmugam and Murugan [37] reported

similar results.

On the other hand, as Balasubramanian et al. [14] re-

ported, welding speed increments reduce heat input gener-

ating the opposite effects. Tarng and Yang [38] observed

that higher welding speed values resulted in lower re-

sponse values for all outputs. Figure 7 illustrates the

cross-section of a sample welded in condition 20 of

Table 3 in which the higher welding speed was used. In

these conditions, the obtained dilution is too low, leading

to decreased ductility of the overlay near the fusion line

resulting from the increasing carbide content [39]. The

lowest heat input was not enough to melt all the feed wire,

promoting regions rich in iron from the wire structure. The

lack of melting can also result in voids formation [40],

which can promote cracks when the overlayer is subject

to the wear process. Modifications in nozzle standoff dis-

tance did not significantly impact reinforcement and pene-

tration but changed width and dilution considerably.

Higher values of nozzle standoff resulted in higher width

and lower dilution. Figure 7 shows the cross-section of a

sample welded in condition 22 of Table 3. This condition

used the higher tested welding speed (25 cm/min)

combined with the other input parameters generated a de-

sired weld bead geometry. On the contrary, the lower test-

ed welding speed (5 cm/min, condition 19, Table 3) pro-

duced a weld bead with dilution higher than 30%, which

compromises its microstructure and integrity. Travel angle

and wire feed pulse frequency did not influence the outputs

as the other input parameters. For all the tested interval,

they just caused small variations on the response values. A

global comparison among Fig. 7 allows concluding that the

wettability decreased from condition 18 to condition 22,

being condition 20, an intermediate situation. It is possible

to notice that the wettability was influenced by a combina-

tion effect of welding current and speed. Moreover, Fig. 8

presents the surface quality characteristics of different

combinations of welding parameters. The results are in

good agreement with Fig. 7. However, experiment no. 3

shows the poor quality characteristics as compared with all

other conditions such as lack of fusion of the wire. In the

experiments carried out by Han et al. [41], they also no-

ticed the lack of fusion of the wire and its appearance on

the surface of the bead. The authors tested the maximum

deposition rate with a double electrode in the GTAW pro-

cess. These defects were observed at high wire feed speeds

Fig. 12 ANN regression plot for

penetration (a) training, (b)

validating, (c) test, and (d) overall
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where it was limited by the heat of the arc being insuffi-

cient to melt the wire, this causes the wire to hit the bottom

of the fusion pool and be directed to the surface of the

bead, as was also observed in Fig. 8. This analysis is cur-

rently made on single beads. However, during the process-

ing of a hardfacing, multiple layers are interposed on top of

each other. A consequence of low wettability is the possi-

ble creation of voids, giving rise to a poor adhesion among

layers. Also, the resulting microstructure is less and less

dependent on the dilution level because further interaction

will occur among layers. Besides the bead quality, defined

in the previous examples by the geometry and dilution, the

resulting microstructures are crucial for abrasive wear sit-

uations where the studied hardfacing can be applied.

Lack of fusion of the wire structure and microcracks can

weaken the formed microstructure and impair the abrasion

resistance. The resulting microstructure of condition 26 is

presented in Fig. 9. The wire composition suggests a hy-

pereutectic microstructure. It is composed of primary

M7C3 carbides with a eutectic matrix (austenite plus

M7C3 carbides). The SEM image and XRD diffractogram

confirm this expectation. A local chemical composition

performed through the energy-dispersive X-ray spectros-

copy on the largest carbide showed the presence of chro-

mium (37.8% wt.) and iron (48.2% wt.), meaning that it is

a complex carbide, probably of (Fe, Cr)7C3 stoichiometry.

Microcracks are observed along with the microstructure of

Fig. 9. Some of them are bifurcated, but many of them are

restricted to carbide areas. The nucleation of microcracks

associated with the carbides, also described by Bahoosh

et al. [42], is a combination of the residual stresses level

imposed by the welding process and the low fracture

Fig. 13 ANN regression plot for

dilution (a) training, (b)

validating, (c) test, and (d) overall

Table 5 Optimum GTAW

welding parameters Welding

current (A)

Welding speed

(cm/min)

Nozzle standoff

distance (mm)

Travel angle

(°)

Wire feed pulse

frequency (Hz)

222 25 8 25 30
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toughness carbides [43], which is not supported by the

metallic matrix.

3.2 ANN validation

ANNmodel performance is shown in Figs. 10, 11, 12, and 13.

It is possible to compare predicted and measured data for

dilution, width, reinforcement, penetration, respectively. The

determination coefficient (R2) and RMSE value of all re-

sponse parameters are satisfactory, and the R2 of all the data

remained higher than 0.65. Table 4 presents the comparison of

replica experimental uncertainty and the relative errors be-

tween measured and predicted responses. It is possible to see

that to all output parameters, and the ANN relative error is

smaller than the experimental uncertainty, which means that

the neural networkmodel has a robust predictive performance.

3.3 GA implementation and optimum parameters
validation

After training and verification, the ANN was coupled with the

GA to identify the optimum welding parameters. The proce-

dure illustrated in Fig. 14 shows the objective function value

over all the sixty-three generations. It is possible to see that it

reached its minimum after 33 generations and kept the same

value for the following thirty generations, reaching the

established stop criteria. The optimum welding parameters

obtained after a complete evaluation of GA and their corre-

sponding outputs are presented in Table 5. However, the op-

timized condition presented in Table 5 was used to obtain

beads and verify the simulation’s reliability. Figure 15 shows

the cross-section of a deposited bead with an optimized con-

dition. It is possible to notice that the cord geometry was

uniform with width, penetration, and adequate reinforcement,

contributing to a bead with low dilution.

Table 6 exhibits a comparison between the predicted and

measured outputs for the optimum welding condition. The

results presented for the measured results correspond to the

mean value of the 35 measures used to verify the predicted

outputs. It is possible to see that the relative error is smaller

than the observed experimental uncertainty for width, pene-

tration, and dilution of the predicted results. Only the predict-

ed results for reinforcement was beyond the expected error.

However, the most relevant remark is that the observed error

is similar to the experimental reinforcement standard

deviations.

4 Conclusions

In this paper, the effect of pulsed GTAW welding parameters

in weld bead quality was investigated and a multi-objective

optimization was used to identify the best input parameter

combination. Based on experiments performed with two tu-

bular wires with different chemical compositions deposited on

an AISI 1020 steel substrate, the following conclusions can be

put forward:

& The experimental results allowed the comprehension of

the influence of each input parameter in the quality of

weld beads. Decreasing the welding speed and/or increas-

ing the welding current leads to an increase in the dilution

percentage compromising weld bead quality.

& The welding current and speed are the processing param-

eters that most affect heat input and melting. Therefore,

they were the most critical process parameters to deter-

mine the geometry and dilution of the weld beads depos-

ited with two tubular wires by the GTAW process.

& An artificial neural network (ANN) was used to simulate

the GTAW process and then combined with a genetic

algorithm (GA) to determine welding parameters that

can provide an optimal weld, which can be integrated into

automated production.

& Using GA, optimal welding parameters were determined:

welding current = 222 A, welding speed = 25 cm/min,

nozzle stand-off distance = 8 mm, travel angle = 25 °, wire

feed pulse frequency = 30 Hz.

GA generation
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Fig. 14 Objective function value convergence

Fig. 15 Cross-section of a bead deposited with an optimized condition
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& The determination coefficient (R2), RMSE, and relative

error values of all response parameters are satisfactory

compared to experimental uncertainty, showing great ad-

equacy to experimental data.
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