
Investing in a Real World With Mean-Reverting Ination

Arjan Berkelaar and Roy Kouwenberg�

Econometric Institute Report EI-9960/A

Econometric Institute Department of Finance

Faculty of Economics Faculty of Economics

Erasmus University Rotterdam Erasmus University Rotterdam

P.O.Box 1738, 3000 DR Rotterdam P.O.Box 1738, 3000 DR Rotterdam

The Netherlands The Netherlands

Abstract

People are concerned about maintaining purchasing power in times of rising ination. We formulate

investment objectives in terms of real wealth, assuming investors derive utility from the number of goods

they can buy with their monetary wealth. We derive closed-form solutions for the portfolio choice problem

of constant relative risk averse investors, under the assumption that ination rates are mean-reverting.

We consider alternative speci�cations for the ination compensation o�ered by the available assets, in

order to study the e�ect on portfolio choice and welfare. Moreover, we study the added value of ination-

indexed bonds for the investor in our real framework.

Keywords: ination-protection, intertemporal hedging demand, optimal asset allocation, pre-

dictability.

JEL Classi�cations Codes: G11.

�Corresponding author: Erasmus University Rotterdam, Econometric Institute, P.O. Box 1738, 3000 DR

Rotterdam, The Netherlands. Tel.nr.: +31-104082388, Fax.nr.: +31-104089162, Email: kouwenberg@few.eur.nl



Investing with Mean-Reverting Ination 1

1 Introduction

The main purpose of saving is to transfer purchasing power from today to the future. Moreover,

through the investment in risky assets investors can participate in the real growth of the economy,

at the cost of some additional risk. Traditional consumption-investment models make a trade-

o� between the potential gains and losses of investments by considering the overall utility of

monetary wealth in dollar terms. Due to this nominal measurement of wealth, the standard

models ignore the inuence of ination on the purchasing power of the investor and consequently

abstract from the true purpose of saving and investment.

In this paper we formulate investment objectives in terms of real wealth, as we assume that

investors derive utility from the number of goods that they can buy with their monetary wealth.

We derive closed-form solutions for the portfolio choice problem of constant relative risk averse

investors, under the assumption that the ination rate follows a mean-reverting process. The

real-investment framework allows us to address the following important issues, which have not

been studied systematically yet:

1. What is the impact of partial ination-compensation in the drift rate of the asset returns

on optimal portfolio choice in a real investment model with mean-reverting ination?

2. What is the added value of ination-indexed securities for the investor?

3. How does the optimal portfolio of the investor change if he can additionally invest in

ination-indexed bonds, given estimated coeÆcients from a recent sample of US asset re-

turns and ination rates?

We start the analysis by deriving closed-form solutions for the real investment model. Due to

the assumption of a mean-reverting process, the optimal portfolio problem includes the ination

rate as an additional state variable. Based on the general model of Merton (1971) we would

expect that the portfolio composition changes as a function of the ination rate. However, if

none of the assets has an ination premium in the drift rate then our closed-form for the optimal

asset weights does not depend on the ination rate.

We demonstrate that this result is caused by the absence of substitution e�ects: none of the

assets has a comparative advantage to hedge against ination. A change of the ination rate

does a�ect expected wealth. However wealth e�ects do not inuence the portfolio composition

of a constant relative risk averse investor. We also study an economy where assets do contain

a (partial) hedge against ination in the drift rate. In this economy optimal portfolio choice

explicitly depends on the ination rate, due to substitution e�ects. Furthermore, we show that

the investor has a larger demand for the ination-hedge portfolio for longer investment horizons.

Given the recent period of stable and low ination rates, one could argue that the additional

impact of ination-uncertainty can be safely ignored in asset-allocation models. However, in the

1960s and 1970s high ination rates resulted in huge transfers of wealth from the holders of long

term bonds to the issuers. The value of a traditional bond erodes when ination increases, due

to the �xed nominal coupons and principal. The danger of eroding bond prices specially a�ects
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investors with a long investment horizon, including the large group of young workers saving for

retirement.

The US Treasury has acknowledged the potential clientele for long term ination-protection and

issues a wide variety of ination-indexed securities since January 1997. The principal of these

ination-indexed securities is linked to the value of the CPI, so the payment at maturity is fully

protected against ination. Moreover, the coupon payments are made at a �xed rate relative

to the CPI-adjusted principal. Similar ination-indexed securities are available in the U.K.,

Canada, Australia, New Zealand, Sweden and Israel. On the Chicago Board of Trade futures

and options are even traded with US ination-indexed bonds as underlying value.

It is therefore surprising that the investment problem with ination-indexed securities has re-

ceived little attention in the literature, except for simple mean-variance models (e.g. Bodie

1990 and McFall Lamm 1998). To gain protection against the risk of ination, the holder of

an indexed bond gives up a portion of the interest rate paid on conventional bonds. For exam-

ple, 30-year conventional bonds issued in 1999 o�ered an interest rate of 6:125%, while 30-year

ination-indexed bonds issued in 1999 o�ered 3:875%. Given our closed-form solution for the

real investment model, we can consider the added value of ination-indexed bonds for investors.

We derive the yield that makes the constant relative risk averse investor indi�erent between

investing all his wealth in traditional assets or additionally holding ination-indexed bonds.

We conclude that the ination rate and the risk aversion coeÆcient of the investor are the

most important factors for the minimal required return on ination-linked bonds. Investors

with higher risk aversion accept a lower return on ination-linked bonds, due to their higher

demand for hedging. Regardless of risk aversion, an increase of the ination rate with 1% tends

to decrease the desired return on ination-indexed bonds with 1%. Our model indicates that

issuers of ination-linked bonds are forced to increase real rates of return in times of decreasing

ination, in order to create a market for their product.

We conclude the paper with a numerical section, where we investigate the properties of our

closed-form solutions further using a recent dataset of US asset returns and ination from the

period 1985-1999. First, we show that the demand for ination-hedging is rather small in an

economy without substitution e�ects. Second, if we assume that the money market account

provides partial compensation against ination in the drift rate, then the investor adjusts his

portfolio with every small change of ination. Finally, we illustrate that ination-linked bonds

replace conventional bonds in the portfolio of the investor in times of high ination.

This paper is organized as follows. Section 2 outlines the general investment model for an

investor concerned with maintaining purchasing power. In Section 3 we derive closed-form

solutions for the optimal portfolio in an economy without substitution e�ects, where none of the

assets possess an ination premium. Section 4 presents closed-form solutions when substitution

e�ects are present in the economy. The added value of ination-indexed bonds is the topic of

Section 5. In Section 6 we consider a proper statistical process for ination, using ination rates

in the period January 1985 to October 1999. We also study the ination-hedging properties

of asset returns in this section. Finally, in Section 7 we investigate our closed-form solutions

further with estimated coeÆcients based on a recent sample of US asset returns and ination.



Investing with Mean-Reverting Ination 3

2 Investment in a Real World

In this section we introduce the portfolio choice problem for an investor who is concerned about

real wealth in an economy with a stochastic ination rate. We will not specify the process for

the ination rate and the utility function of the investor explicitly yet. Instead we consider

the general case in this section and we show that the familiar fund separation result holds for

any investor. We start our analysis by de�ning the stochastic processes of the price ination

and returns in the continuous-time economy. The price level is denoted by N(t) and grows

instantaneously with the ination rate �(t), which follows an Ito process:

dN

N

= �dt; N(0) = 1; (1)

d� = ��(�; t)dt + ��(�; t)dZ� (2)

where ��(�; t) is the instantaneous drift rate and ��(�; t) is the instantaneous volatility of the

ination rate.

We assume that the investor trades I+1 risky assets continuously in a market without transaction

costs. The zero-th asset is a money market account M(t), paying interest at the following

stochastic rate:

dM

M

= �B(�)dt+ �BdZB ; (3)

dZBdZ� = �B�

We assume that the prices of the remaining assets P = fPi(t)gIi=1 are generated by Brownian

motions with a drift rate �i(�) depending on the ination � and a constant volatility �i.

dPi

Pi

= �i(�)dt + �idZi; for 8i 2 f1::Ig (4)

dZidZj = �ij ; dZidZ� = �i�; dZidZB = �iB; for 8i 2 f1::Ig

As the drift rates of the asset returns and the money market rate may depend on the ination

rate �, we explicitly allow for assets to contain ination compensation. In the next sections we

will study the impact of ination compensation in asset returns on optimal portfolio choice.

In order to meet his investment goals the investor dedicates a fraction wi(t) of his wealth to each

asset i at time t. Hence, the asset-value A(t) of the investor evolves according to the following

stochastic di�erential equation:

dA =

IX
i=1

wiA

dPi

Pi

+ (1�
IX

i=1

wi)A
dM

M

(5)

=

 
IX

i=1

wi(�i(�)� �B(�)) + �B(�)

!
Adt+

IX
i=1

wiA(�idZi � �BdZB) + �BAdZB

We assume that the investor is not concerned about the monetary value of his wealth A(t), but

about the corresponding number of consumption goods that he can buy at today's prices, i.e.
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A(t)=N(t). Consequently, the investor maximizes a utility function H(:; T ) over real wealth at

the planning horizon T <1:

max
w

E[H(A(T )=N(T ); T )] (6)

where H(:; T ) is an increasing and strictly concave utility function.

This real investment objective and the assumption of a stochastic ination rate distinguishes

our model from the standard nominal setup in the literature. Since the investor is concerned

about real wealth, we apply Ito's Lemma to derive the stochastic process for the real asset-value

X(t) = A(t)=N(t):

dX = (

IX
i=1

wi(�i(�)� �B(�)) + �B(�)� �)Xdt+

IX
i=1

wiX(�idZi � �BdZB) + �BXdZB (7)

We now derive the optimal investment strategy by applying the principle of optimality from

the dynamic programming literature. According to this principle an optimal policy should

maximize the utility of the investor at any point in time, under each economic circumstance.

The value function J(X;�; t) represents the optimal utility attainable by the investor at time t,

given his real wealth X and the ination rate �(t). In order to derive the value function J and

the corresponding optimal investment policy w
�, we now state the Hamilton-Jacobi-Bellman

equation (see �xendal 1998):

0 = max
w

�
J (w;X;�; t) (8)

= Jt + (w0(�(�)� ��B(�)) + �B(�)� �)XJX + ��J�

+
1

2
w
0b
wX2

JXX +
1

2
�
2

BX
2
JXX +

1

2
�
2

�J��

+w0(�IB � ��
2

B)X
2
JXX + w

0(�I� � ��B�)XJX� + �B�XJX�

subject to the boundary condition J(X(T ); �(T ); T ) = H (X(T ); T ) , where b
 = fb�ijgIi;j=1 de-
notes the covariance matrix of (�idZi��BdZB), �(�) = f�i(�)gIi=1 is the vector of instantaneous
drift rates, �I� = f�i��(�; t)�i�gIi=1 is the covariance vector between the asset returns and the

ination rate and �IB = f�i�B�iBgIi=1 is the covariance vector between the asset returns and

the money market return.

The �rst order necessary conditions for optimality of the investment policy are:

0 = �
J

w = (�(�)� ��B(�))XJX + b
w�
X

2
JXX + (�IB � ��

2

B)X
2
JXX + (�I� � ��B�)XJX� (9)

If we solve equation (9) for the vector of optimal asset weights w�, then we �nd:

w
� = � b
�1(�IB � ��

2

B)� b
�1(�(�)� ��B(�))
JX

XJXX

� b
�1(�I� � ��B�)
JX�

XJXX

(10)

In equation (10) we can distinguish a market portfolio b
�1(�(�) � ��B(�)), an ination-hedge

portfolio b
�1(�I� � ��B�) and a portfolio to hedge against random uctuations of the interest

rate b
�1(�IB � ��
2

B
). We conclude that the investor holds three separating portfolios of risky
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assets and the money market fund. The allocation to these four funds could vary over time

as a function of the real asset value X(t) and the ination rate �(t). A nice property of the

fund separation result is its generality: it holds for a wide range of utility functions and return

processes. However, the value function J is still unknown and we can not derive explicit optimal

decision rules without specifying the model further. In the next sections we will provide closed-

form solutions for a number of cases that are interesting both from an economic perspective and

from a practical perspective.

3 Investing in the Absence of Ination Premia

In the previous section we derived the �rst order conditions for our general investment problem

in real terms and we demonstrated that four fund separation applies. We will now specify

the ination process, the asset price processes and the utility function of the investor in order

to obtain closed-from solutions. In this section we investigate an economy without ination

compensation in the asset returns. Later on we will consider optimal investment strategies

when some assets do provide protection against ination.

First we focus on the speci�cation of the continuous-time ination process. As our dataset of

monthly US ination rates from January 1985 up to October 1999 supports the mean-reversion

model (see Section 6), we assume that the ination rate follows a continuous-time Ornstein-

Uhlenbeck process:

d� = �(�� � �)dt+ ��dZ� (11)

where �� is the long run mean ination rate and we additionally assume 0 < � � 1, so mean-

reversion holds instead of mean aversion (� < 0).

In order to specify the asset prices processes completely, we still have to decide about the

inuence of the ination rate on the drift rates �B(�) and �i(�) for i = 1; :::; I. As discussed in

Section 6 the major issue is whether the return of an asset provides full, partial or no protection

against ination? Instead of favoring a particular hypothesis for ination protection of the assets,

which might only hold in one country for a particular period of time, we will study alternative

asset return speci�cations in each of the following sections.

In this section we focus on an economy where none of the assets has an ination premium. We

consider the following asset price processes:

dM

M

= rdt+ �BdZB ; (12)

dPi

Pi

= �idt+ �idZi; for 8i 2 f1::Ig: (13)

Note that the instantaneous interest rate provided by the money market account in (12) is

stochastic. The remaining I asset prices follow a geometric Brownian motion (13) with drift

rate �idt. All asset returns can be correlated with the ination rate and the interest rate.
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In this section we explicitly derive the optimal investment strategy for the case of constant

relative risk aversion. Consequently, the investor maximizes a power utility function over real

wealth at the planning horizon:

max
w

E

�
1

�

(X(T ))�
�

(14)

The �rst order condition for optimality is the HJB-equation (8) with �i(�) = �i and �B(�) = r

for the value function J(X(t); �(t); t), subject to the boundary condition:

J(X(T ); �(T ); T ) =
1

�

(X(T ))� (15)

In order to satisfy the optimality conditions, we propose the following functional form for the

value function:

J(X(t); �(t); t) = �(�(t); t)
1

�

X(t)� (16)

�(�(t); t) = exp (A(T � t) +B(T � t)�(t))

Substituting this proposal into the HJB-equation yields a system of ordinary di�erential equa-

tions for the functions A(T � t) and B(T � t). In Appendix A we solve this system of ordinary

di�erential equations and we derive the following expressions for the functions A(�) and B(�),

where � denotes T � t for ease of exposition:

B(�) =
�

�

�
e
��� � 1

�
(17)

A(�) = (g � f

�

�

+
1

2
c(
�

�

)2)� +
�

�
2
(c(

�

�

)� f)e��� � (
1

2

�

�

)2
c

�

e
�2�� +

�

�
2
(f � 3

4

�

�

c) (18)

where c, f and g are constants de�ned in Appendix A.

Given the expression for the value function J(X;�; t), we can now obtain the corresponding

optimal portfolio weights from the fund separation result (10):

w
� = �b
�1(�IB � ��

2

B) +
1

1� �

b
�1(�� �r) +
1

1� �

b
�1(�I� � ��B�)
�

�

�
e
��(T�t) � 1

�
(19)

Note that the investor holds the hedge portfolio b
�1(�I�� ��B�), which depends on the correla-

tion between asset returns and ination. It is remarkable however that the proportion of wealth

invested in this ination hedge portfolio is independent of the ination rate:

@w
�

@�

= 0:

This result can be explained by the substitution and wealth e�ect of a change of the ination

rate. Since none of the assets contains an ination premium, substitution e�ects are absent in our

economy. None of the available assets provides a comparative advantage to hedge dynamically

against expected changes of the ination. Hedging demand could emanate from wealth e�ects

however. As wealth e�ects are absent for investors with constant relative risk-aversion, our

investor does not hedge intertemporally against expected changes of the ination.
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The proportion invested in the ination hedge portfolio is independent of the investor's wealth

and the ination rate, but does depend on time and the relative risk aversion coeÆcient of the

investor. Whether the hedge portfolio is held long or short depends on the coeÆcient of relative

risk-aversion (�). Log-investors (i.e. � = 0) represent the watershed between buying and selling:

they do not invest in the ination hedge portfolio. Investors whom are more risk-averse than

log-investors (� < 0) always hold the ination hedge portfolio long (hedgers). Investors whom

are less risk-averse than log-investors (0 < � < 1) always hold the ination hedge portfolio short

(speculators).

Similarly we investigate the e�ect of the investment horizon on the optimal investment strategy:

@w
�

@�

=
��
1� �

b
�1(�I� � ��B�)e
��� (20)

where � = T � t. We conclude that investors whom are more risk-averse than log-investors have

a larger hedging demand for longer investment horizons. The opposite holds for investors whom

are less risk-averse than log-investors.

In order to see the impact of the correlation structure more clearly we consider a two-asset

economy, consisting of the money market account and one risky stock. In this case equation

(20) reduces to the following expression:

@w
�

S

@�

=
��
1� �

(�S� � �B�)

(�2
S
� 2�SB + �

2

B
)
e
��� =

��
1� �

���S

(�2
S
� 2�SB + �

2

B
)
(�S� � �B�

�B

�S

)e��� (21)

where w�
S
is the optimal stock weight, �2

S
denotes the instantaneous variance of the stock return

and �S� and �SB denote the correlation of the stock return with the ination rate and the money

market rate respectively.

Equation (21) shows that an increase of the correlation between stock returns and ination tends

to strengthen the horizon e�ect. The opposite holds for the correlation of the money market rate

with ination, but this e�ect will be less strong due to the scaling factor �B=�S < 1. Whether

the horizon e�ect for the stock weight is positive or negative depends on the sign of the expression

��(�S���B�(�B=�S)). If the investor is more risk-averse than a log-investor (� < 0) we conclude

that the stock weight decreases (increases) for longer horizons if �S� < (>) �B�(�B=�S) holds.

In contrast to Merton's results for a nominal economy, we �nd that investors behave non-myopic

in our real investment model. Another remarkable result is that the hedging demand does not

depend on the ination rate. This can be explained by the absence of substitution e�ects in

the economy studied in this section. None of the available assets has a comparative advantage

to hedge against expected changes of the ination rate. In the next section we investigate the

optimal investment strategy if some assets returns include an ination premium.

4 Portfolio Choice in the Presence of Ination Premia

In the previous section we assumed that none of the assets provides compensation for ina-

tion. This assumption might be unrealistic however. The results of Section 6 demonstrate that
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short-term interest rates provided a partial hedge against expected ination during the period

1985-1999. In this section we study an economy where the money market account provides

protection against expected ination, and all the other assets may or may not provide ination

compensation. We consider the following stochastic processes in the economy:

d� = �(�� � �)dt+ ��dZ�; (22)

dM

M

= (� + r)dt+ �BdZB ; (23)

dPi

Pi

= (�i� + �i)dt+ �idZi; for 8i 2 f1::Ig: (24)

Note that the expected ination at time t+dt approximately equals E[�t+dt] � �t+�(����t)dt.
If the money market account provides compensation for expected ination then its drift rate at

time t equals (E[�t+dt] + r)dt � (�t + r)dt, as dtdt = 0. Consequently, the rate of return on

the money market account in (23) is equal to the sum of the instantaneous expected ination

rate �(t)dt and the stochastic real rate of return rdt+ �BdZB. The other risky assets follow a

geometric Brownian motion (24) with drift rate (�i�+�i)dt. The asset returns can additionally

be correlated with the ination rate and the real interest rate.

The �rst order conditions of optimality for the value function J(X(t); �(t); t) and the investment

policy are given by the HJB-equation (8) with �i(�) = �i� + �i and �B(�) = � + r, subject to

the boundary condition:

J(X(T ); �(T ); T ) =
1

�

(X(T ))� (25)

We propose the following functional form for the value function:

J(X(t); �(t); t) = �(�(t); t)
1

�

(X(t))� (26)

�(�(t); t) = exp

�
A(T � t) +B(T � t)�(t) +

1

2
C(T � t)�(t)2

�
If we substitute the proposal (26) into the HJB-equation (8), then this partial di�erential equa-

tion reduces to a more tractable system of ordinary di�erential equations for C(�), B(�) and

A(�):

C
0(�) = a+ bC(�) + cC(�)2; (27)

B
0(�) = d+

1

2
bB(�) + fC(�) + cB(�)C(�);

A
0(�) = g + fB(�) +

1

2
hC(�) +

1

2
cB(�)2;

where a, b, c, d, f , g and h are constants, de�ned in Appendix A.

The system of ordinary di�erential equations (27) can be classi�ed as a system of Ricatti equa-

tions and can be solved recursively. The mathematical form of the solution depends on the

discriminant q of the Riccati equation for C(�):

q = b
2 � 4ac = 4�2 + 4

�
2

(� � 1)2

�
H

2

14
�H11H44

�
+ 4

�

(�� 1)

�
�
2

�H11 � 2�H14

�
(28)
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where H11 = (� � �1)0b
�1(� � �1), H14 = (� � �1)0b
�1(�I� � ��B�) and H44 = (�I� �
��B�)

0b
�1(�I� � ��B�).

The solution for C(�) and B(�) in the case q > 0 is:

C(�) =
2a(1 � e

��� )

2� � (b+ �)(1 � e
��� )

(29)

B(�) =

��
�2d(b+ �)� f

c

(b+ �)2 + 2
f

c

b(b+ �)

�
(e���=2 � 1) (30)

�
�
f

c

(� � b)(� + b) + 2d(b� �)

�
(e��=2 � 1)

�
e
���=2

� [2� � (b+ �)(1 � e
��� )]

where � =
p
b
2 � 4ac.

A remarkable feature of the solution is that the value function might reach in�nity in �nite time.

Kim and Omberg (1996) refer to these cases as nirvana solutions. For q > 0 nirvana solutions

only occur if condition (31) is satis�ed. For q < 0 every solution is a nirvana solution, while in

the border case q = 0 additionally b > 0 has to hold (Appendix A contains a full derivation of

all possible solutions).

ac > 0; b > 0 and T >

1

�

ln

�
b+ �

b� �

�
(31)

Investment strategies that can reach in�nite utility in �nite time might cast a doubt on continuous-

time models with perfect market assumptions. In practice market imperfections like transaction

costs and borrowing constraints clearly prevent unbounded solutions. An important question is

whether nirvana solutions actually occur for reasonable parameter values?

In Appendix B we show that in a two-asset economy q > 0 always holds and nirvana solutions

never occur. For economies with more than 2 assets the covariance matrix complicates the

analysis and we can not provide an explicit proof. However, in Section 7 we demonstrate that

for the estimated parameters of the US dataset q > 0 holds and that nirvana can not be reached.

From now, we will therefore assume q > 0 and ignore the possibility of nirvana solutions.

Given the expression for the value function J(X;�; t) in the case q > 0, we can now derive

the optimal risky asset weights from the fund separation equation (10). Note that the solution

(32) simpli�es considerably if all assets contain an exact unit ination premium (� = �), and

therefore we will analyze that case separately later.

w
�(�(t); t) = �b
�1(�IB � ��

2

B) +
b
�1 ((�� �1)� + �� �r)

1� �

(32)

+
b
�1(�I� � ��B�)

1� �

[B(T � t) + C(T � t)�(t)]

First we consider the case � 6= �. Note that the demand for the ination hedge portfoliob
�1(�IB � ��
2

B
) depends on time t and on the ination rate �(t). Moreover, the fraction of

wealth invested in the market portfolio b
�1(�+��� �(r+�)) is non-myopic, since the ination

rate a�ects the drift rates of the asset returns. We conclude that the ination rate inuences
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the portfolio composition, as a result of the substitution e�ect between assets with and without

an ination premium. The sign of the relation between the ination rate and portfolio weights

is not clear in general: we refer to Section 7 for a numerical investigation.

We now focus the special case where all assets returns have an exact unit ination premium, i.e.

�i = 1 for 8i 2 f1; 2; ::; Ig. We prove in Appendix A that C(t) = B(t) = 0 holds in this case and

consequently the value function reduces to a function J(X(t); t) of real wealth and time only.

As a result, the optimal investment strategy (32) simpli�es to:

w
� = �b
�1(�IB � ��

2

B
) + b
�1 (�� �r)

1� �

(33)

Hence, under the additional assumption � = � the ination rate has no inuence on the optimal

portfolio choice of an investor with constant relative risk aversion.

If we additionally assume �B = 0, then (33) becomes equivalent to the optimal investment

strategy of Merton (1969). We conclude that the myopic solution of Merton (1969) is only a

special case in our real economy with mean-reverting ination. Finally, we would like to point

out that if �B = 0 holds, then the money market provides the instantaneous return (r+ �(t))dt

and consequently becomes a complete hedge against ination. It could be interpreted as an

ination-indexed bond that can be returned to the issuer at any point in time. We will study

the demand for this ination-indexed security more closely in the next section.

5 Ination-Indexed Securities

In the previous section we discussed portfolio choice in an economy where some assets provide

partial ination-compensation. Recently securities have been issued in the US that guarantee

full protection against ination, so called ination-indexed securities. Guaranteed full protection

against changes of the CPI is a feature that traditional securities lack. As this additional feature

could be valuable for investors, the ination-indexed securities might yield a lower real return.

We study the value of ination-protection by deriving the lower bound of real returns at which

the investor is willing to buy ination-indexed securities.

We consider the following economy

d� = �(�� � �)dt+ ��dZ�; (34)

dL

L

= (� + r
�)dt; (35)

dM

M

= (� + r)dt+ �BdZB ; (36)

dPi

Pi

= (�i� + �i)dt+ �idZi; for 8i 2 f1::Ig; (37)

Compared to the previous section the investor can now additionally invest in an ination-indexed

security with price L(t). It can be interpreted as a puttable ination-indexed bond with in�nite
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maturity. E�ectively the owner has the right to sell the security to the issuer at any point in

time, in return for the CPI-linked principal N(t) and the accumulated interest payments at the

constant yield r
�.

The optimal real investment problem with ination-indexed securities can be solved analogously

to the problem of the previous section. We introduce the ination-indexed bond as `riskless'

security (i.e. substitute r = r
� and �B = 0 in all formulas) and we consider the money market

account as risky asset I+1, with �I+1 = r, �I+1 = �B and dZI+1 = dZB . As a result we �nd the

following optimal investment strategy for a constant relative risk-averse investor, in the normal

case q > 0:

w
�(�(t); t) =

1

1� �

e
�1(�+ �� � �(r� + �)) +
1

1� �

e
�1
�I� [B(T � t) + C(T � t)�] (38)

where e
 is the covariance matrix of fdZigI+1i=1
. Nirvana solutions could exist hypothetically (we

refer to Appendix A for the exact conditions), but as indicated in Section 7 the occurrence of

these solutions is very unlikely for reasonable parameter values.

We will now focus on the added value of the ination-protected security for the investor. For this

purpose we determine the value r� at which the investor becomes indi�erent between investing

and not investing in the ination-indexed bond. The fraction of real wealth invested in the

ination-indexed bond is given by:

w
�

0
= 1� �

0
w
� (39)

= 1 +
1

1� �

�
0e
�1(�+ �� � �(r� + �)) +

1

1� �

�
0e
�1

�I� [B(T � t) + C(T � t)�] (40)

Hence, setting w�
0
= 0, we can solve for the lower bound r

� of the real rates of return at which

the investor is willing to buy the ination-indexed bond1:

r
� =

A1 � (1� �) +A2B0(�) + [A3 �A0 +A2C(�)]�

A0 +
�

1��
A
2

2
B2(�)� �

1��
A2 (A3 �A0)B1(�)

(41)

where � = T � t; A0 = �
0e
�1

�; A1 = �
0e
�1

�; A2 = �
0e
�1

�I�; A3 = �
0e
�1

� and B1(�) =

2 b

�
G(�)� 1

a
C(�) and B2(�) =

4a

�
G(�); where we introduced the function

G(�) =
(1� e

���=2)2

[2� � (b+ �)(1 � e
��� )]

(42)

Note that r
� can also be interpreted as a break-even yield: the ination-indexed bond is a

pro�table investment for the investor as long as r� exceeds r�. We would like to know the

e�ect of a change of the ination rate on the break-even return. Unfortunately this relation is

not clear-cut, due to the unknown sign of the term in front of � in (41). In order to enhance

tractability we therefore consider a two-asset economy with an ination-indexed bond and a

1Note that the function B(T � t) depends on the yield of the ination-indexed bond r�. Without a closed-form

solution for the portfolio weights we could not solve for the break-even yield r�, due to the possible dependence

of the value function on r�.
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stock, where the stock return is uncorrelated with the ination (A2 = 0). In this case (41)

reduces to:

r
� = �S � (1� �)�2

S
� (1� �S)� (43)

where �S and �S denote the mean and the volatilty of the stock return respectively and �S is

the ination-compensation parameter of the stock returns.

We conclude that an increase of ination will reduce the break-even return on the ination-

indexed bond, if the stock provides less than unit ination-compensation (�S < 1). In particular,

a percentage increase in ination, reduces the break-even return with (1��S) percent. Another

conclusion is that investors with a higher risk aversion coeÆcient � accept a lower break-even

return. Higher risk aversion leads to an increased demand for ination hedging. Furthermore,

an increase of the expected stock return �S and a decrease of the volatilty �2
S
both increase the

break-even return, due to substitution e�ects. In Section 7 we will study the break-even yield

numerically for the multiple-asset case, based on actual US data. In the next section we consider

US ination rates and study the ination-hedging properties of conventional asset returns in the

period January 1985 to October 1999.

6 Ination and Asset Returns

In the previous sections we derived closed-form solutions for the optimal portfolio choice in the

real investment model with mean-reverting ination rates. In the next section we investigate

these closed-form solutions using US data on asset returns and ination from the period January

1985 to October 1999. In this section we �rst consider the statistical properties of ination, and

show that our dataset supports the mean-reverting model for ination. In the previous sections

we considered di�erent economies where assets may or may not possess a partial ination-hedge.

In this section we study these ination-hedging properties for actual asset returns over our sample

period.

Given the recent period of stable and low ination rates, one might argue that the impact of

ination-uncertainty can safely be ignored in asset-allocation models. However, the 1960s and

1970s marked a period of high ination rates in many developed countries. Figure 1 shows the

monthly US ination rate based on the seasonally adjusted Consumer Price Index, for the period

January 1952 to October 1999. Until approximately 1967 ination is stable at a low level. Then,

the �nancing of the Vietnam War has a clear impact on prices. In 1973 the oil crisis causes

ination rates to double. Halfway 1981 the period of high ination ends.

It is clear that ination rates are neither negligible nor constant and should therefore be taken

into account in consumption-investment models. This issue has become even more urgent lately,

as the US Treasury regularly issues ination-indexed bonds since 1997. Apparently there is

a demand for assets that provide protection against ination. In this paper we formulated

investment objectives in terms of real wealth, as we assumed that investors derive utility from

the number of goods represented by monetary wealth. We assumed that ination rates are
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mean-reverting and considered alternative speci�cations for the ination compensation of the

available assets.

In this section we verify these assumptions by considering actual US data in the period January

1985 to October 1999. The two main issues we address in this section are:

1. What is a proper statistical model for describing stochastic ination rates?

2. To what extent do asset returns provide protection against ination?

We start with the �rst issue, the statistical process of the ination. It is widely accepted that the

ination rate is not independently distributed through time, but displays predictable patterns.

However, there is an ongoing debate about whether this predictability should be modeled with

a stationary mean-reverting process or a non-stationary long memory timeseries model. Hassler

andWolters (1995) provide international evidence of long memory in ination rates. Bos, Franses

and Ooms (1999) on the other hand argue that the long run memory property of ination series

might occur due to underlying level shifts, which can be interpreted as exogenous shocks.

Exogenous shocks can completely change the range of observed ination rates: consider for

example the impact of the oil crisis and the Vietnam war on the US ination rates in Figure 1.

Clearly, it is very hard to predict when the next structural break in the ination series might

occur. For �nancial planning purposes it therefore seems more reasonable to stick to the stable

mean reversion property of ination rates. As our dataset of asset returns starts in 1985, we

focus on the ination rates in the period January 1985 to October 1999.

We investigate whether monthly US ination rates support the mean-reverting model during

this period, by estimating the regression model (44).

��t = �0 + �1�t�1 + �t; �t � IID(0; ��) (44)

= �(�� � �t�1) + �t;

where �t is the ination in month t = 1; :::; T , ��t = �t � �t�1, �0 and �1 are coeÆcients

of the regression, �t for t = 1; ::; T are identically and independently distributed (IID) error

terms, 0 < � � 1 and �� are parameters for the speed of mean-reversion and the long run mean

ination rate respectively.

If the parameter � is positive and � � 1 mean-reversion holds and the ination rate will be

pulled back to the long run mean ��. In the case � = 0 the ination rate follows a random

walk. If � < 0 holds, the ination rate will move away from the mean. Consequently, the null-

hypothesis of no mean-reversion is equivalent to �1 � �1 < 0 in the regression model (44). The

results of the regression are summarized in Table 1. The estimated value of �1 is signi�cantly

negative and above -1, so we �nd strong evidence for mean reversion.

We will now turn to the second issue: to what extend do asset returns provide compensation

against ination? The traditional view among economists is that risky assets should provide a

hedge against expected ination. The Fisher (1930) hypothesis states that the expected nominal
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return is equal to the sum of the expected real return and the expected ination rate:

E[rit] = E[r�
it
] +E[�t]

where rit is the nominal return on asset i in period t, r�
it
is the real return on asset i and �t is

the ination rate.

Compelling empirical evidence demonstrates, however, that stock returns in the United States

are either unrelated or negatively related to ination, inconsistent with the Fisher hypothesis

(Bodie 1976, Fama and Schwert 1977, and Geske and Roll 1983). Similar results hold for bond

returns (Fama 1981, and Fama and Gibbons 1982). More recent empirical studies by Barnes et

al. (1999) con�rm that equity returns and interest-rates are poor hedges for ination in most

Western countries. Real estate might have good ination-hedging properties (Fama and Schwert

1977, Ibbotson and Siegel 1984, and Goetzmann and Ibbotson 1990), however these results could

depend on the particular index chosen to represent real estate.

For illustrative purposes we will now shortly study the ination hedging properties of several

broad asset classes in the US. We gathered the 1-month �nancial commercial paper rate and the

monthly return on 1-year Treasury Bills from the Federal Reserve Economic Database. We use

the Salomon Brothers Bond Index for a maturity of 10 years and longer to represent long term

bond investments. Furthermore, we use monthly returns on the S&P500 index for the stock

market. The choice for a proper real estate index is less straightforward. Most unsecuritized

real estate data, such as residential real estate used in the study of Fama and Schwert (1977),

are subject to appraisal-smoothed biases (see Geltner 1991). We use a total return index on

real estate investment trusts (REITs) as a proxy for investing in US real estate, provided by the

National Association of Real Estate Investment Trusts.

Table 2 summarizes the average return and volatility for the di�erent asset classes. It is re-

markable that the REIT returns are dominated by the returns on bonds and stocks in terms of

mean-variance eÆciency. Note that the REIT and S&P500 returns are quite volatile and more-

over display fat tails. To some extent these stylized facts can be attributed to the October 1987

crash, which is included in our dataset. In order to investigate the ination-hedging properties

of the asset returns, we will examine the correlations with the monthly ination rate. Table 3

supports the conclusions from the literature on the negative relation between stock returns and

ination. Remarkably, the equity REIT returns are also negatively related to ination during

the sample period January 1985-October 1999. Commercial paper rate and 1-year Treasury bills

on the other hand are strongly positively correlated with ination.

In order to provide more insight into ination-compensation we test the Fisher (1930) hypothesis

with a regression of asset returns on ination, displayed in (45). We use the contemporaneous

rate of ination as a proxy for expected ination, relying on the rational expectations hypothesis

(see Gultekin 1983). We have also tested the Fisher hypothesis with the 3-month T-bill rate as

a proxy for expected ination and found comparable results.

rit = 0 + 1�t + �t; �t � IID(0; ��) (45)

where rit is the monthly return on asset i, �t denotes the monthly ination rate, 0 and 1 are
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the coeÆcients of the regression, �t for t = 1; ::; T are identically and independently distributed

(IID) error terms

The results of regression (45) are summarized in Table 4. We con�rm the �ndings in the

literature for bonds and stocks: the returns of bonds and stocks are negatively related or at best

unrelated to ination rates. Furthermore, we also �nd that there is no evidence of a positive

relation between REIT returns and ination. Apparently real estate is a poor ination-hedge, if

we use an index based on actual market values. On the other hand, the commercial paper rate

and the return on 1-year T-bills are positively related with ination, and do provide a partial

hedge against ination.

We conclude from this section that ination rates follow a mean-reverting process in the recent

period 1985-1999. We con�rmed that the ination hedging properties of asset returns are weak,

although short-term interest rates seem to provide a partial compensation for expected ination.

In the next section we use our dataset of US asset returns and ination to investigate our closed-

form solutions further.

7 Numerical Examples for the Period 1985-1999

In the previous sections we derived closed-form solutions for the real investment problem with

mean-reverting ination rates. In some cases ambiguity remained however about the sign and

magnitude of coeÆcients and therefore some interesting economic questions could not be fully

addressed. In this section we will further investigate the closed-form solutions by performing

some explicit calculations using the US data on asset returns and ination from the period

January 1985 to October 1999 discussed in the previous section. In particular we address the

following questions:

1. Do nirvana solutions actually occur for reasonable parameter values?

2. How much does the optimal portfolio in an economy without substitution e�ects deviate

from the myopic portfolio of Merton (1969)?

3. What are the implications for the optimal portfolio if some assets provide partial protection

against expected ination?

4. How much return is the holder of an indexed-linked bond willing to give up in order to gain

protection against ination-risk?

7.1 The Likelihood of Nirvana

We �rst turn our attention to the occurrence of nirvana solutions. As we discussed in the

previous sections a peculiar feature of the optimal solutions is that the value function might

reach in�nity in �nite time for certain parameter combinations. Kim and Omberg (1996) refer to

such solutions as nirvana solutions. In Appendix A we derive the following necessary conditions



Investing with Mean-Reverting Ination 16

for the occurrence of nirvana solutions in the case q > 0

ac > 0; b > 0 and T >

1

�

ln

�
b+ �

b� �

�
In Appendix B we prove that in a two-asset economy nirvana solutions can never occur and that

q > 0 always holds. With more than two assets the covariance matrix of the returns complicates

the analysis and hence we can not provide an explicit proof. In order to provide more insight we

now investigate whether nirvana solutions occur for the estimated parameters of our US dataset

of asset returns. We consider an investor with a horizon of 20 years and coeÆcient of relative

risk-aversion � = �0:5. For a description of the securities, summary statistics and regression

results we refer to Section 6.

First, we consider an economy with an ination-indexed bond, where none of the other assets

possesses an ination premium. We assume that the interest rate on the ination-indexed bond

equals 3:5%. This yield is higher than the average real return on short-term T-bills, but is

consistent with current2 market rates on indexed-linked Treasuries. Additionally, the investor

may invest in the Salomon Brothers Bond Index with maturity over 10 years, the S&P500, 1-year

T-bills, and Equity REITs. The estimated values of the parameters q; ac; and b are summarized

in the �rst panel of Table 5. We conclude that q > 0, ac < 0 and b < 0 hold, so nirvana solutions

are out of the question for the sample of asset returns from the period 1985-1999.

Second, we consider an economy without ination-indexed bonds, where short-term interest-

rates provide a partial hedge against ination. In Section 6 we regressed asset returns on

ination, yielding estimated coeÆcients for commercial paper and 1-year T-bills of 1 = 0:22

and 1 = 0:19 respectively. Given these parameters for the ination premia, the second panel of

Table 5 summarizes the results for di�erent investment opportunities. Again we �nd that q > 0,

ac < 0 and b < 0 always hold and consequently nirvana solutions are impossible.

Note that the values of a; b; and c depend on the coeÆcient of relative-risk aversion �, which we

arbitrarily �xed at �0:5. However, additional computations show that nirvana solutions do not

occur for any value of �. For � < 0, ac < 0 holds in our dataset; hence nirvana is impossible.

For 0 � � < 1, ac may become positive, however in this case b < 0; again we conclude that

nirvana solutions can not occur. Given our proof for the two-asset case (Appendix B) and our

numerical experiments with actual data, we conclude that nirvana solution are very unlikely for

common parameter values.

7.2 Horizon-E�ects in an Economy without Ination-Premia

We now turn to the second question. How much does the optimal portfolio in an economy

without substitution e�ects deviate from the myopic portfolio of Merton (1969)? The di�erence

between the non-myopic investment strategy (19) of Section 3 and Merton's myopic portfolio is

2December 1999.
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represented by the following time-dependent investment in the ination-hedge portfolio:

1

1� �

b
�1(�I� � ��B�)
�

�

�
e
��(T�t) � 1

�
(46)

We would like to know the magnitude of expression (46) for our dataset of monthly US asset

returns.

Before we calculate the investment strategies, we would like to stress that the returns of E-

REIT's are dominated in terms of mean-variance by bonds and the S&P500 and negatively

correlated with ination (see Section 6). Therefore we ignore these securities as an investment

opportunity. Furthermore, the characteristics of 1-year T-bills and commercial paper are very

similar. Including both assets might result in extreme investment strategies exploiting the small

di�erences in these assets. We will now demonstrate with an example that these e�ects are not

limited to the continuous-time framework, but may occur in any portfolio optimization model

ignoring transaction costs and parameter-uncertainty.

For illustrative purposes we consider a simple mean-variance optimization model where the

investor can invest in commercial paper, 1-year T-bills, the Salomon Brothers Bond Index and

the S&P500. An investor desiring an expected return equal to 15% annually, would take a

long position of 1486:7% in commercial paper, short T-bills with �1433:7% and invest 24:1%

in bonds and 22:9% in stocks. Clearly such extreme policies are caused by the similar mean-

variance properties of commercial paper and T-bills. Therefore, from now on we will ignore

1-year T-bills as an investment opportunity.

Given 1-month commercial paper (serving as the money market account), the Salomon Brothers

Bond Index and the S&P500 as investment opportunities, we now quantify the ination-hedge

portfolio (46) in an economy without substitution e�ects. Again we consider an investor with a

horizon of 20 years and coeÆcient of relative risk-aversion � = �0:5. We apply the estimated

parameter values of Section 6 as coeÆcients for the continuous-time model. As a result, we �nd

that the estimated components of the vector b
�1(�I�� ��B�) are equal to 0:0027 for bonds and

�0:0082 for stocks respectively.

The ination-hedge portfolio (46) mostly consists of short term interest-rate securities, due to

their positive correlation with ination. We conclude that, compared to Merton's myopic portfo-

lio, our investor transfers wealth from stocks (S&P 500) to commercial paper and bonds. Figure

2 shows the fraction invested in the S&P500 as time evolves. Clearly, a power-utility investor

who takes mean-reverting ination into account no longer behaves myopic, as we discussed in

Section 3. We conclude, however, that the actual magnitude of the time-e�ect is rather small

for the US data studied here.

7.3 The Impact of Substitution E�ects on Portfolio Choice

In Section 4 we studied an economy where some assets provide a partial hedge against ination.

We found that in an economy where the asset returns contain ination premia the optimal

portfolio for a constant relative risk-averse investor depends both on time and ination rates.
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Due to substitution e�ects between assets with and without explicit ination premia the investor

will adjust the portfolio composition if the ination rate changes. We will now quantify these

substitution e�ects for our historical dataset of US asset returns from the period 1985-1999.

The investor can invest in the same assets as before: 1-month commercial paper, the Salomon

Brothers Bond Index and the S&P500. The horizon of the investor is 20 years and his coeÆcient

of relative risk-aversion is � = �0:5. In this economy with substitution e�ects, the ination-

premium of commercial paper is given by 1 = 0:22 (see Section 6). In order to calculate the

investor's optimal portfolio completely, we additionally require a path of realized ination rates.

Rather than considering simulated scenarios for the ination rates, we calculate the optimal

portfolios during the historical period January 1985-October 1999. In Figure 3 we plot the

percentage that our investor would have invested in the S&P500 during this particular period,

with monthly rebalancing. As a benchmark, we also display the fraction S&P500 for the economy

without substitution e�ects (no ination premia), which remains nearly constant around 65:5%:

We conclude from Figure 3 that in an economy with substitution e�ects the weight of the S&P500

is adjusted as the ination rate changes.

Generally, the percentage invested in the S&P500 uctuates around 64:5% with an approximate

bandwidth of only 2%. Some obvious outliers occur around March and May 1986, when ination

rates were negative, and around February and September 1990, when ination rates ran in

double �gures (annualized). The impact of such extreme movements of the ination rate on

the optimal portfolio is, however, relatively small. On average the investor dedicates less to

stocks when substitution e�ects are present, as funds are transferred to the asset with partial

ination-compensation.

We conclude that the assumption of compensation for ination in the drift rate of the assets only

has a slight impact on the composition of the portfolio. Brennan, Schwartz and Lagnado (1997)

show numerically that return predictability can have a drastic inuence on portfolio choice. For

an extremely prudent investor with relative risk-aversion coeÆcient equal to �5 and with short-

selling constraints, they �nd that the optimal fraction invested in stocks bounces up and down

between 0% and 100%. In reality excessive rebalancing is costly due to transaction costs. From

Figure 3 we conclude that the impact of ination predictability on the optimal portfolio weights

is relatively small.

7.4 The Demand for Ination-Indexed Bonds

Finally, in Table 6 we display the demand for ination-indexed bonds for an investor with a

horizon of 20 years and coeÆcient of relative risk-aversion � = �1:0. The additional availability
of an ination-indexed bond induces the investor to hedge intertemporally against ination.

Clearly, a higher ination rate increases the demand for ination-indexed bonds, while conven-

tional bonds and stocks are driven out of the optimal portfolio. When ination changes from

0% to 10% the exposure to stocks is halved, while the exposure to conventional bonds is reduced

7-fold. Simultaneously the investor increases the proportion invested in the ination-indexed

bond from 0% to 65%� 70%. We conclude that ination-indexed bonds drive traditional bonds
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out of the portfolio in times of high ination.

The remaining question we investigate in this section is how valuable the ination-indexed bond

is to our investor. To gain protection against the risk of ination, the holder of an indexed

bond gives up a portion of the interest rate paid on conventional bonds. For example, 30-year

conventional bonds issued in 1999 o�ered an interest rate of 6:125%, while indexed 30-year bonds

issued in 1999 o�ered 3:875%. In Section 5 we derived a closed-form solution for the break-even

yield on ination-indexed bonds for a constant relative-risk averse investor. We now compute

the actual value of the break-even yield using our dataset of monthly asset returns and ination

rates from the period January 1985 to October 1999.

In Figure 4 we consider the break-even yield as a function of ination, given the historically

estimated parameters of Section 6. The slope of the function is negative: an increase in ination

reduces the break-even yield. Investors are willing to give up a portion of the interest rate in

return for additional protection against ination. The slope of r� as a function of � is equal to

�1:00 when the coeÆcient of relative risk-aversion equals � = �0:5. This means that if ination
increases with 1% the break-even yield decreases with 1%. For other levels of risk aversion the

value of this slope hardly changes: the slope is between �1:003 and �0:997 for risk aversion

coeÆcients between � = �1:5 and � = +0:5.

In Figure 5 we plot the break-even yield itself as a function of the coeÆcient of relative risk-

aversion. We observe a strong negative relationship: higher risk aversion reduces the desired

return on ination-indexed bonds. Note that the currently3 observed return on ination-indexed

bonds of 3:875% is consistent with � = �0:64. We also studied horizon e�ects. Fixing the

ination-rate, investors with a longer horizon desire a higher break-even yield, however the

di�erences are negligible. Furthermore, we considered the e�ect of the correlation between the

available assets and the ination rate on the break-even yield. Higher correlations increase the

break-even yield, however, the di�erences are negligible for reasonable values.

We conclude that the break-even yield is fairly robust to changes in the investor's horizon and

the correlation between the asset returns and the ination rate. The current level of the ination

rate and the risk aversion coeÆcient of the investor are the main factors driving the demand for

ination-indexed bonds. In order to induce investors to buy ination-indexed bonds in periods

of decreasing ination, the o�ered interest rate clearly has to rise. Hence, in this relatively

simple model we �nd motivation for a negative relationship between the real rate of return and

the ination rate, as found in empirical studies (see, e.g. Fama and Gibbons 1982 and Marshall

1992). An interesting topic for further research is to analyse the demand for ination-linked

bonds in an equilibrium framework. We believe that our analysis is an important step in this

direction.

3December 1999.
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8 Conclusions

We have formulated the individual portfolio problem in real terms, given uncertainty about

future ination. We believe that this formulation is more adequate and presents the true essence

of investment decisions. An investor cares about future purchasing power in real terms rather

than in nominal �gures. We have solved the optimal portfolio choice problem analytically and

shown that optimal portfolios are non-myopic, in contrast to the results of Merton (1969) in a

nominal economy.

Only for log-investors or when all assets contain an ination premiumMerton's solution coincides

with the optimal portfolio weights derived in this paper. In other cases the investor behaves non-

myopic and additionally invests in an ination-hedge portfolio. The hedging demand depends on

the correlation between asset returns and ination, the rate of mean-reversion, risk-aversion, and

the investor's horizon. In an economy where none of the assets provide ination-compensation

in the drift rate, a change of the ination rate does not directly inuence portfolio choice due

to the absence of substitution e�ects.

When ination-indexed securities are available or other assets provide partial compensation for

ination, then substitution e�ects will drive the demand for hedging. We demonstrated that

the portfolio weights change continuously, with every small change of the ination, due to the

partial predictability of the mean reverting ination process. Based on estimated parameters

from the recent period 1985-1999, we �nd that the partial compensation for ination provided

by short-term interest rates has a relatively small impact on portfolio choice. The availability

of ination-indexed securities does have a substantial e�ect on portfolio choice, especially in

periods of high ination.

The closed-form solutions of our real investment model allow us to investigate the minimal return

required by investors on ination-indexed securities. The ination rate and the coeÆcient of

risk aversion are the major factors that inuence the minimal return. Investors with higher

risk aversion accept lower returns on ination-protected securities, due to their higher hedging-

demand. Regardless of risk aversion, an increase of the ination rate with 1% tends to decrease

the desired return on ination-indexed bonds with 1%. Our model indicates that issuers of

ination-indexed bonds are forced to increase real rates of return in times of decreasing ination,

in order to create a market for their product. An interesting topic is to analyse the demand for

ination-linked bonds in an equilibrium framework. We believe that our results are an important

step in this direction. A general equilibrium analysis is left for future research.
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A Explicit Solutions for System of Ricatti Equations

We consider the following stochastic processes in the economy:

d� = �(�� � �)dt+ ��dZ�; (47)

dM

M

= (�0� + r)dt+ �BdZB ; (48)

dPi

Pi

= (�i� + �i)dt+ �idZi; for 8i 2 f1::Ig; (49)

dZBdZ� = 0:

The stochastic process for the price ination �(t) in (47) is an Ornstein-Uhlenbeck process,

which is mean reverting to the long run mean �� (if � > 0). The instantaneous risk free rate

on the money market account in (48) is equal to the sum of the ination rate �(t)dt and the

stochastic real rate of return (�0 � 1)�(t)dt + rdt + �BdZB . The other risky assets follow a

geometric Brownian motion with drift (�i� + �i)dt. The asset returns can be correlated with

the ination rate and the real interest rate.

The real asset value X(t) of the investor evolves according to the following stochastic di�erential

equation:

dX =

 
IX

i=1

wi((�i � �0)� + �i � r)

!
Xdt+ rXdt+ (�0 � 1)�Xdt (50)

+

IX
i=1

wiX(�idZi � �BdZB) + �BXdZB

Given the objective (14) in terms of real wealth X(t), the HJB-equation for the value function

J(X(t); �(t); t) is:

0 = max
fc;wg

�
J(c; w;X;�; t) (51)

= Jt + (w0((�� ��0)� + �� �r))XJX + rXJX + (�0 � 1)�XJX + �(�� � �)J�

+
1

2
w
0b
wX2

JXX +
1

2
�
2

BX
2
JXX +

1

2
�
2

�J�� + w
0(�IB � ��

2

B)X
2
JXX

+w0(�I� � ��B�)XJX� + �B�XJX�

The �rst order conditions for optimality yield:

w
� = �b
�1(�IB � ��

2

B)� b
�1((�� ��0)� + �� �r)
JX

XJXX

� b
�1(�I� � ��B�)
JX�

XJXX

(52)
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Substituting w� back into the HJB-equation we obtain:

0 = Jt + rXJX + (�0 � 1)�XJX + �(�� � �)J� +
1

2
�
2

�
J�� +

1

2
�
2

B
X

2
JXX (53)

�1
2
((�� ��0)� + �� �r)0b
�1((�� ��0)� + �� �r)

J
2

X

JXX

�1
2
(�I� � ��B�)

0b
�1(�I� � ��B�)
J
2

X�

JXX

� ((�� ��0)� + �� �r)0b
�1(�I� � ��B�)
JXJX�

JXX

�1
2
(�IB � ��

2

B)
0b
�1(�IB � ��

2

B)X
2
JXX + �B�XJX�

�(�IB � ��
2

B)
0b
�1(�I� � ��B�)XJX� � ((�� ��0)� + �� �r)0b
�1(�IB � ��

2

B)XJX

This HJB-equation is a non-linear second order partial di�erential equation for the value function

J(X;�; t), subject to the boundary condition:

J(X(T ); �(T ); T ) =
1

�

(X(T ))� (54)

We propose the following functional form for the value function:

J(X(t); �(t); t) = �(�(t); t)
1

�

(X(t))� (55)

�(�(t); t) = exp

�
A(T � t) +B(T � t)�(t) +

1

2
C(T � t)�(t)2

�
(56)

If we substitute the proposal (55) into the HJB equation, we obtain the following ordinary

di�erential equation:

0 =
1

�

�
�A0(�)�B

0(�)� � 1

2
C

0(�)�2
�
+ r + (�0 � 1)� (57)

�1
2

1

(�� 1)
H11�

2 � 1

(�� 1)
H12� � 1

2

1

(�� 1)
H22 � 1

2
(�� 1)H33

�1
2

1

(�� 1)
[B(�) + C(�)�]2H44 � �H13 �H23 � [B(�) + C(�)�] (H34 � �B�)

�
�

1

(�� 1)
�H14 +

1

(�� 1)
H24

�
(B(�) + C(�)�) +

1

2
�
2

B(� � 1)

+
1

�

�(�� � �)(B(�) + C(�)�) +
1

2

1

�

�
2

�

�
C(�) +B(�)2 + 2B(�)C(�)� + C(�)2�2

�
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where

� = T � t; (58)

H11 = (�� ��0)
0b
�1(�� ��0)

H12 = (�� ��0)
0b
�1(�� �r)

H13 = (�� ��0)
0b
�1(�IB � ��

2

B)

H14 = (�� ��0)
0b
�1(�I� � ��B�)

H22 = (�� �r)0b
�1(�� �r)

H23 = (�� �r)0b
�1(�IB � ��
2

B
)

H24 = (�� �r)0b
�1(�I� � ��B�)

H33 = (�IB � ��
2

B)
0b
�1(�IB � ��

2

B)

H34 = (�IB � ��
2

B)
0b
�1(�I� � ��B�)

H44 = (�I� � ��B�)
0b
�1(�I� � ��B�)

After some rearranging we are left with the following system of ordinary di�erential equations:

C
0(�) = a+ bC(�) + cC(�)2; (59)

B
0(�) = d+

1

2
bB(�) + fC(�) + cB(�)C(�);

A
0(�) = g + fB(�) +

1

2
hC(�) +

1

2
cB(�)2;

where

a = � �

(�� 1)
H11; b = �2� � 2

�

(� � 1)
H14; c = �

2

� �
�

(�� 1)
H44 (60)

d = ��H13 � �

(�� 1)
H12 + �(�0 � 1); f = ��(H34 � �B�) + ��� � �

(�� 1)
H24;

g = �r � 1

2

�

(�� 1)
H22 � 1

2
�(�� 1)H33 � �H23 +

1

2
�(�� 1)�2B ; h = �

2

�

This system of ordinary non-linear di�erential equations (59) is the well-known system of Ricatti

equations and can be solved recursively.

First we consider the case where none of the available assets provides ination protection, i.e.

� = 0 and �0 = 0. In this case H11 = H12 = H13 = H14 = 0 and a = b = 0 holds. Consequently,

the solution of the �rst Ricatti equation is trivial: C(�) = 0. The functions B(�) and A(�) are

given by:

B(�) =
�

�

�
e
��� � 1

�
(61)

A(�) = (g � f

�

�

+
1

2
c(
�

�

)2)� +
�

�
2
(c(

�

�

)� f)e��� � (
1

2

�

�

)2
c

�

e
�2�� +

�

�
2
(f � 3

4

�

�

c) (62)

Second, we consider the case where all of the assets provides ination protection, i.e. � = 1 and

�0 = 1. In this case a = b = 0 again holds and additionally d = 0. Consequently, the solutions of
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the �rst and the second Ricatti equations are both zero: C(�) = B(�) = 0. The expression for

A(�) is: A(�) = g� . We conclude that if all assets have an ination premium, the price ination

�(t) has no inuence on the adjusted fund value X(t) and hence the value function J(X;�; t) is

independent of the ination rate.

Third, we consider the intermediate case where at least one asset provides protection against

ination (� 6= 0 or �0 6= 0), but not all of the assets. The mathematical form of the solution

now depends on the discriminant q of the Riccati equation for C(�):

q = b
2 � 4ac = 4�2 + 4

�
2

(� � 1)2

�
H

2

14
�H11H44

�
+ 4

�

(�� 1)

�
�
2

�H11 � 2�H14

�
(63)

The solution for C(�) and B(�) in the case q > 0 is:

C(�) =
2a(1 � e

��� )

2� � (b+ �)(1 � e
��� )

(64)

B(�) =

��
�2d(b+ �)� f

c

(b+ �)2 + 2
f

c

b(b+ �)

�
(e���=2 � 1) (65)

�
�
f

c

(� � b)(� + b) + 2d(b� �)

�
(e��=2 � 1)

�
e
���=2

� [2� � (b+ �)(1 � e
��� )]

where � =
p
b
2 � 4ac. The function B(�) can be reformulated as follows:

B(�) =
2(2af � bd)

�

(1� e
���=2)2

[2� � (b+ �)(1 � e
��� )]

+
2d(1 � e

��� )

[2� � (b+ �)(1 � e
��� )]

; (66)

The solution for an economy with an ination protected security is a special case of (64) and

(65), if we substitute r = r
� and �2

B
= 0. A remarkable feature of the solution is that �(�(t); t),

and hence the value function, might reach in�nity in �nite time. Kim and Omberg (1996) refer

to these cases as nirvana solutions. The conditions in (67) should be satis�ed for the occurrence

of nirvana solution in the case q > 0 (i.e. these conditions are necessary, but not suÆcient for

nirvana solutions).

ac > 0; b > 0 and T >

1

�

ln

�
b+ �

b� �

�
(67)

In the special case q = 0 and b 6= 0 the solution for C(�) and B(�) is (see Abramowitz and

Stegun 1964):

C(�) = � b

2c
� 1

c(� � 2

b
)

(68)

B(�) = �1
2

(2af � bd)�2

b(� � 2

b
)

� 2d�

b(� � 2

b
)

(69)

The conditions in (70) should be satis�ed for the occurrence of nirvana solutions in this case:

b > 0 and T > 2=b (70)
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When q = 0 and additionally b = 0 we have c = 0 and the solution for C(�) and B(�) in this

case is given by:

C(�) = a� (71)

B(�) = d� +
1

2
af �

2 (72)

and nirvana solutions do not occur.

Finally, if q < 0 then nirvana always occurs, and the solution for C(�) and B(�) is:

C(�) =
�

2c
tan[

�

2
� + k]� b

2c
(73)

B(�) =

�
2dc� fb

�c

�
sin[�

2
� + k]� sin[k]

cos[�
2
� + k]

� f

c

cos[�
2
� + k]� cos[k]

cos[�
2
� + k]

(74)

where � =
p
4ac� b

2
; k = arctan[ b

�
]:

B Nirvana Solutions in a Two-Asset Economy

In this appendix, we consider the occurrence of nirvana-type solutions. In Appendix A we

discussed that for q > 0 nirvana solutions occur if

ac > 0; b > 0 and T >

1

�

ln

�
b+ �

b� �

�
: (75)

Furthermore, if q < 0 then every solution is a nirvana solution. For the solutions in the special

case q = 0 we refer to Appendix A.

We show that in the case of one risky asset (e.g. stocks) and an ination-indexed bond nirvana

solutions cannot occur.

a =
�

1� �

�
0
�1

� =
�

1� �

1

�
2

S

< 0 if � < 0 (76)

b = �2(� +
�

1� �

�S�

��

�S

)

c = �
2

� +
�

1� �

�
2

S��
2

�

where �
2

S
denote the instantaneous variance of the risky asset, �S� denotes the correlation

between returns on the risky asset and ination, and �
2

� denotes the instantaneous variance of

ination. Assume �rst that q > 0, then nirvana solutions are only possible if c < 0 (since a < 0):

Hence

�
2

� +
�

1� �

�
2

S��
2

� < 0() �
2

S� > 1� 1

�

(77)
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However, since � < 0 this can never occur, all normal solutions are well-behaved in this case.

Of course, nirvana solutions may occur when q < 0. However, we will show that this cannot

happen for the two assets case studied here. We have

q = b
2 � 4ac = 4�2 � 4

�

1� �

�
�
2

�

�
2

S

� 2�
�S���

�S

�
(78)

First, consider q as a parabola in �. We may write q(�) = c0+c1�+c2�
2. Then, since c2 = 4 > 0,

we conclude that q(�) is convex. Furthermore, the discriminant is given by:

D = c
2

1
� 4c0c2 = 64

�
�
2

�

�
2

S

� �
�

1� �

�
2

�
2

S� +
�

1� �

!
(79)

Hence D > 0 only if

�
2

S� > 1� 1

�

This can never occur, since � < 0, and hence q(�) > 0; for all �.

Similarly for q(s) = c0+c1s+c2s
2
; with s = ��

�S
we have a convex parabola, since c2 = �4 �

1��
>

0 (if � < 0) furthermore

D = c
2

1
� 4c0c2 = 64�2

 �
�

1� �

�
2

�
2

S� +
�

1� �

!
(80)

Hence D > 0 only if

�
2

S� > 1� 1

�

This can never occur, since � < 0, and hence q(s) > 0; for all s:

Finally we consider q(�S�) as a function of the correlation between the return on the risky asset

and ination: q(�) = 4�2 � 4 �

1��
s
2 + 8� �

1��
s �. Hence, q(�) < 0 if and only if

� >

1

2

s

�

+
1

2

�

s

�
1� 1

�

�
> 1; if � < 0

We may conclude that in the two-asset case nirvana solutions never occur.
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Table 1: Mean-Reversion of Ination-Rates, 1985-1999

��t = 0:018 �0:575 �t�1 + et;

(6:939) (�8:421)
Adj. R2 = 0.28, �e = 0:030

Estimated coeÆcients of the regression ��t = �0+�1�t�1+ �t, where �t denotes the

monthly US ination-rate. The t-statistics are denoted between brackets.

Table 2: Summary Statistics for Ination and Asset Returns, 1985-1999

Mean Std. Dev. Skewness Excess Kurtosis

CPI ination rate 3.14 2.16 0.003 3.66

CP rate 5.80 1.58 0.07 -0.68

1-Yr T-Bills 5.58 1.38 0.09 -0.72

E-REITs 9.33 41.68 -0.52 3.36

Bonds 10.58 32.55 0.23 0.59

S&P 500 13.94 38.92 -0.85 3.77

Statistics are based on continuously compounded returns. The asset classes considered are: �nancial

commercial paper rate, 1-year Treasury bills, Equity Real Estate Investment Trusts, Salomon Brothers

bond index with bonds with maturity of 10 years and longer, and total returns on the S&P 500 index.

Ination rates are determined from the Consumer Price Index.

Table 3: Correlations between Asset Returns and Ination, 1985-1999

CP rate 1-Yr T-Bills E-REITs Bonds S&P 500

CPI ination rate 0.31 0.31 -0.04 0.03 -0.13

CP rate 1.0 0.97 -0.03 0.16 0.04

1-Yr T-Bills 1.0 -0.03 0.18 0.01

E-REITs 1.0 0.24 0.42

Bonds 1.0 0.15

Stocks 1.0

Correlations are based on continuously compounded returns. The asset classes considered are: �nancial

commercial paper rate, 1-year Treasury bills, Equity Real Estate Investment Trusts, Salomon Brothers bond

index with bonds with maturity of 10 years and longer, and total returns on the S&P 500 index. Ination

rates are determined from the Consumer Price Index.
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Table 4: Regression Results of Asset Returns on Ination, 1985-1999

CP rate 1-Yr T-Bills E-REITs Bonds S&P 500

0 0.051�� (14.02) 0.050�� (16.58) 0.115� (2.14) 0.089� (2.39) 0.212�� (4.82)

1 0.223� (2.59) 0.195�� (2.82) -0.702 (-0.46) 0.522 (0.51) -2.30 (-1.64)

Adj. R2 0.09 0.09 0.00 0.00 0.01

The results are from the regression Rt = �0 + �1�t + �t, where Rt denotes the continuously compounded

return in month t and �t denotes the ination-rate based on the Consumer Price Index. The t-statistics

are denoted between brackets; we use adjusted t-statistics employing the Newey-West variance estimator, to

correct for autocorrelated error terms. One asterix (*) denotes signi�cance at the 0.05 level, (**) denotes

signi�cance at the 0.01 level.

Table 5: Occurrence of Nirvana Solutions

ination-indexed bond three assets four assets �ve assets

q 1.34 3.66 3.67

ac -0.0018 -0.68 -0.69

b -1.15 -0.97 -0.96

ination-premia three assets four assets �ve assets

q 1.32 1.34 1.34

ac -9.0x10�5 -0.0055 -0.0055

b -1.15 -1.15 -1.15

In the case of an ination-indexed bond, none of the assets are allowed to possess an ination premium.

Financial commercial paper rate serves as the money market account. In the three-asset case the investor

can additionally invest in a Salomon Brothers bond index with bonds with maturity of 10 years and

longer and the S&P 500 index. The four-asset case contains 1-year Treasury bills as an additional asset

class. In the �ve-asset case the investor may invest in Equity Real Estate Investment Trusts. The

ination premium for 1-year T-bills equals 1 = 0:19 and for commercial paper 1 = 0:22.
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Table 6: Demand for Ination-Indexed Bonds

ination 0% 2.5% 5.0% 7.5% 10.0%

r
� = 3:3% iib� -5.1% 12.8% 30.6% 48.4% 66.3%

bonds 51.1% 40.3% 29.5% 18.7% 7.8%

stocks 54.0% 47.0% 39.9% 32.9% 25.9%

r
� = 3:5% iib� -3.7% 14.2% 32.0% 49.9% 67.7%

bonds 50.3% 39.4% 28.6% 17.8% 7.0%

stocks 53.4% 46.4% 39.4% 32.4% 25.4%

r
� = 3:7% iib� -2.3% 15.6% 33.4% 51.3% 69.1%

bonds 49.4% 38.6% 27.7% 16.9% 6.1%

stocks 52.9% 45.6% 38.8% 31.8% 24.8%

The investor has a horizon of 20 years and relative risk-aversion coeÆcient equal to � = �1:0. The asset

class bonds is the Salomon Brothers Bond Index and the asset class stocks denotes the S&P500.
� Ination-indexed bond.

Figure 1: US Ination rates
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This �gure shows the monthly US ination rates for the period January 1952 through October 1999.

The rates are continuously compounded and annualized.
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Figure 2: Fraction Invested in Stocks
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This �gure shows the fraction invested in the S&P500 over the next 20 years for a myopic investor and

an investor taking the correlation between asset returns and ination into account. The coeÆcient of

relative risk-aversion equals � = �0:5.

Figure 3: Fraction Invested in Stocks
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This �gure shows the fraction invested in the S&P500 over the sampling period January 1985-October

1999 for a constant relative risk-averse investor in an economy with and without substitution e�ects.

The coeÆcient of relative risk-aversion equals � = �0:5.
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Figure 4: Break-even Yield on Ination-Indexed Bond
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This �gure shows the break-even yield as a function of ination, when the coeÆcient of relative risk-

aversion equals � = �0:5.

Figure 5: Break-even Yield on Ination-Indexed Bond
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This �gure shows the break-even yield as a function of the coeÆcient of relative risk-aversion, assuming

a constant ination-rate equal to 3%.


