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For millennia, coastal and marine ecosystems have adapted and flourished in the Red
Sea’s unique environment. Surrounded by deserts on all sides, the Red Sea is subjected
to high dust inputs and receives very little freshwater input, and so harbors a high salinity.
Coral reefs, seagrass meadows, and mangroves flourish in this environment and provide
socio-economic and environmental benefits to the bordering coastlines and countries.
Interestingly, while coral reef ecosystems are currently experiencing rapid decline on a
global scale, those in the Red Sea appear to be in relatively better shape. That said, they
are certainly not immune to the stressors that cause degradation, such as increasing
ocean temperature, acidification and pollution. In many regions, ecosystems are already
severely deteriorating and are further threatened by increasing population pressure and
large coastal development projects. Degradation of these marine habitats will lead to
environmental costs, as well as significant economic losses. Therefore, it will result in a
missed opportunity for the bordering countries to develop a sustainable blue economy
and integrate innovative nature-based solutions. Recognizing that securing the Red Sea
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ecosystems’ future must occur in synergy with continued social and economic growth,
we developed an action plan for the conservation, restoration, and growth of marine
environments of the Red Sea. We then investigated the level of resources for financial
and economic investment that may incentivize these activities. This study presents a
set of commercially viable financial investment strategies, ecological innovations, and
sustainable development opportunities, which can, if implemented strategically, help
ensure long-term economic benefits while promoting environmental conservation. We
make a case for investing in blue natural capital and propose a strategic development
model that relies on maintaining the health of natural ecosystems to safeguard the Red
Sea’s sustainable development.

Keywords: blue economy, Red Sea ecosystems, marine policy, sustainability, blue carbon, coral reefs,
environmental policy

INTRODUCTION

The first evidence of human distribution and development along
the Red Sea coastline dates back 1,25,000 years (Walter et al.,
2000). Ancient local populations benefited from the marine
resources provided by the Red Sea, compared to the otherwise
harsh and unproductive surrounding land. It has been suggested
that early utilization of the Red Sea had an important role in the
dispersal of early humans out of Africa (Walter et al., 2000; Bailey,
2010) and it continues to play a vital role in supporting local
communities of this region (Duarte, 2014). By providing natural
resources as well as primary trade routes, the Red Sea facilitates
cultural exchange and the advancement of society (Wengrow,
2010). The region has attracted the attention of explorers and
been subject to substantial scientific research, with the first
documented European marine biological exploration dating back
to 1,761 (Hansen, 1962). The first descriptions of mangroves in
western science originated from the Red Sea (Schneider, 2011),
as well as the first descriptions of the major nitrogen-fixing
organisms in the ocean, the cyanobacterium Trichodesmium,
by Ehrenberg in 1,830 (Janson et al., 1995), as well as many
Indo-Pacific scleractinian corals (Forsskål et al., 1775).

The cultural, scientific, and economic importance of the
Red Sea continues today due to its unique coastal and marine
environments. Latitudinal gradients in temperature, salinity, and
nutrients (Raitsos et al., 2013; Chaidez et al., 2017; Duarte et al.,
2018) as well as minimal freshwater inflow and high rates of
evaporation, result in a wide range of habitat conditions within
a relatively small geographic range (DiBattista et al., 2016).
Furthermore, low precipitation and freshwater limitations have,
in the past, inhibited intense development. Consequently, the
region is marked by relatively low human population density and
sparse distribution of economic activity (Fine et al., 2019), which
has prevented the watershed from being severely altered.

Under these conditions, mangrove, seagrass, and coral reef
ecosystems along the coastline of the Red Sea have provided
socio-economic as well as environmental services (PES) to
bordering countries (Box 1). While global climate change and
anthropogenic stress have impacted the Red Sea ecosystem, its
relatively undeveloped coastlines and low coastal population
densities have left it less impacted compared to similar

ecosystems worldwide. Long-term records indicate that Red Sea
coral reefs, especially in the northern region, have experienced
less severe bleaching events. Additionally, in some parts, they
have shown the potential to be less sensitive to thermal anomalies
than those in other regions (Osman et al., 2018). Coral reefs in the
Red Sea have also exhibited the capacity for rapid recovery after
bleaching events if no further stresses are imposed (Monroe et al.,
2018). Additionally, while mangrove forest cover is declining
globally, mangrove habitats in the Red Sea have expanded by 12%
in the last 50 years (Almahasheer et al., 2016). Finally, seagrass
meadows are abundant and diverse throughout the lagoons and
sandy banks of the Red Sea (Qurban et al., 2019).

The relatively healthy state of some marine habitats in the
Red Sea represents an abundant “blue natural capital” resource
for the region. The term “blue natural capital” defines the
three marine ecosystems (coral reefs, mangroves, and seagrass
beds) in terms of the ecosystem services that result from
their functional integrity. Hence, preserving current states
and restoring natural ecosystems represents an investment in
blue natural capital. This investment directly supports climate
change adaptation and mitigation efforts while simultaneously
creating sustainable and resilient marine ecosystems that are
the foundation of a sustainable blue economic model. This
model fosters development of several economic sectors that
directly and indirectly benefit from marine resources, such as
tourism, fishing, aquaculture, and offshore oil and gas, and less
obvious benefactors, such as service providers in engineering
and consulting. Additionally, when sustainable development
actions are implemented in consideration of local stakeholders,
communities and culture, they can have significant social benefits
(Roy et al., 2018). Therefore, a sustainable “blue economy” seeks
to promote economic growth and social development while
ensuring the environmental sustainability of the oceans and
seas (OECD, 2019). New economic development and investment
opportunities under the “blue economy” aim for socio-economic
growth that does not degrade the natural environment but
instead depends on its continued health in order to thrive. Blue
growth depends on ensuring the preservation and continued
investment in blue natural capital, which, in turn, leads to
continued economic growth. Thus, major development projects
that are in preliminary stages around the Northern Red Sea can
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BOX 1 | Marine Ecosystems of the Red Sea.
Coral Reefs
Scleractinian corals are a key building block of coral reefs. By laying down calcium carbonate skeletons in nutrient-poor waters, they create habitats for other
organisms and establish highly diverse and productive ecosystems over time. Furthermore, reefs dissipate wave energy, protecting the shoreline from erosion (Earp
et al., 2018). Corals live in a symbiotic relationship with the unicellular algae of the family Symbiodiniaceae (LaJeunesse et al., 2018), which provide them with over
90% of their energy demands (Davy et al., 2012), thus enabling their rapid growth. Coral reefs provide a number of ecological and economic services, including
protection of shorelines, reducing coastal erosion, sustaining fisheries, and supporting tourism (see review Moberg and Folke, 1999).

Under stress, the coral-algae relationship breaks down, leading to the loss of the algae from the coral tissue and a consequent loss of color – a process known
as bleaching (Cziesielski et al., 2019). Rising sea-surface temperature, ocean acidification, variation in salinity, and pollution, all of which have been linked to
human-induced climate change and anthropogenic activities, are increasingly threatening corals globally, including corals in the Red Sea (Hughes et al., 2018).
Consequently, the rate and intensity of coral bleaching events (Hughes et al., 2018), outbreaks of disease (Mohamed and Sweet, 2019), as well as other forms of
coral reef degradation (Knowlton et al., 1990; McCook et al., 2001), have continued to increase at alarming rates around the globe.

Coral reefs span the entire coastline of the Red Sea and are known for their high productivity, biodiversity, and endemism (Berumen et al., 2013). Due to the
gradient of environmental conditions across the Red Sea, coral reefs exist in a range of habitats that have resulted in heterogenetic patterns of bleaching and stress
exposure. The northern Red Sea coral reefs, particularly in the Gulf of Aqaba, have demonstrated significant thermal tolerance and bleaching resilience (Kleinhaus
et al., 2020). Meanwhile, more severe bleaching events have been recorded in the central and southern Red Sea (Osman et al., 2018). Most recently, the 2015/2016
El Niño event broadly affected reefs in the southern Red Sea, causing high mortality (Monroe et al., 2018; Voolstra and Berumen, 2019) and an estimated decline in
coral cover of about 45% (Anton et al., 2020b). The full extent of thermal stress on corals and bleaching events has been suggested to remain vastly underassessed
in the Red Sea (Genevier et al., 2019).

Mangroves
Mangrove trees have adapted to live in (sub-) tropical saline intertidal zones. They are a nursery for many commercially-important shellfish and fish species that
migrate to coral reefs and the open ocean once they have reached maturity (Dorenbosch et al., 2006; Mumby et al., 2007). An array of goods can be harvested from
mangroves, including fisheries resources, timber, and firewood (Spalding et al., 2010; Ward et al., 2016). Mangrove vegetation also provides ecosystem services,
such as sediment trapping and erosion protection, flood protection, and nutrient cycling (Duarte et al., 2013; Saderne et al., 2018). Additionally, mangrove forests are
capable of trapping and sequestering pollutants, such as heavy metals, hydrocarbons, and plastic particles, from the water column (Ashok et al., 2019; Martin et al.,
2019, 2020; Rabaoui et al., 2020). Mangroves’ capacity to improve water quality is particularly beneficial for aquaculture practices. Studies have shown that
mangroves can act as natural filtration systems, capable of reducing inorganic nitrogen and phosphate while increasing oxygen levels and thereby increasing the
resilience of aquaculture farms to disease outbreaks (Peng et al., 2009; Ahmed and Glaser, 2016; Ahmed and Thompson, 2019). Moreover, mangrove ecosystems
are noted for their large carbon stores per area, known as “blue carbon” (see section Financial investment strategies and Blue Carbon). In the Red Sea, mangroves
form mainly short monospecific stands of Avicennia marina, with few occurrences of Rhizophora mucronata (Almahasheer et al., 2016).

Seagrass
Seagrass meadows are another major vegetative coastal habitat and are closely associated with other ecosystems, including mangroves and coral reefs. There is
strong evidence that healthy seagrass beds enhance the productivity of these other systems. Seagrass meadows provide shelter and food for many marine
organisms and serve as nurseries for commercially-important fish and shellfish species (Jackson et al., 2015; Nordlund et al., 2018; Unsworth et al., 2019). Their
high rates of primary production oxygenate and remove nutrients from the water column. Their roots trap sediment, maintaining water clarity and quality, contributing
to stabilization and protection of the coast from erosion (Potouroglou et al., 2017). Through photosynthesis, seagrass can also sequester CO2 from the atmosphere,
which can then be transported through their roots and trapped in the sediment (Howard et al., 2017). Thus, along with mangroves, seagrass meadows are important
contributors to carbon sequestration and storage (Garcias-Bonet et al., 2019; Shaltout et al., 2020). Specifically, in the Red Sea, two species of seagrasses,
Halophila stipulacea, and Thalassia hempricii, appeared as the most vulnerable to warming and will likely be affected by future thermal stress in the southern region
(Anton et al., 2020a).

Connected impacts on marine ecosystems
Mangrove, seagrass, and coral reef ecosystems are all interconnected, depending on and facilitating one another’s healthy existence (see review Earp et al., 2018).
Most recently, these marine ecosystems of the Red Sea have been shown to also provide thermal refugia for coastal ectotherm animals, whereby the photosynthetic
activity, enhanced by increased temperatures, favors seawater oxygen supersaturation that fuels the peak oxygen demand of animals, thus protecting the fauna
during the summer thermal stress (Giomi et al., 2019).

Development, aquaculture, and associated increasing pollution across the coast pose immediate threats to these ecosystems’ health, not only through land use
and destruction but also through changes in the topography of the coast (PERSGA, 2004). In addition, consequences of climate change (such as sea-level rise,
temperature increase, higher frequency of storms, and changes in ocean currents) present equal if not greater threats to these vegetated marine habitats (Ellison,
2015). Seagrass distribution and survival are controlled by air and sea temperatures, as well as light availability (Short et al., 2007; Ward et al., 2016; Earp et al.,
2018). Loss of mangroves and seagrasses leads to the subsequent loss of ecosystem services, including current and future carbon and pollutant sequestration
capacity, as well as the release of previously sequestered carbon and pollutants through oxygenation and remobilization of sediments (Donato et al., 2011; Mcleod
et al., 2011; Lovelock et al., 2017; Ashok et al., 2019).

ensure significant long-term benefits, across a broad range of
stakeholders, by incorporating investments into increasing blue
natural capital into their designs. Hence, the Red Sea represents
an opportunity for the region to establish a new vision and
become a global leader in designing a sustainable socio-economic
growth model that is linked to the building and conservation of
“blue natural capital.”

Here, we investigate opportunities that will enable the
region’s continued economic growth while ensuring long-
term sustainable development. Our aim is not to revise the
trajectory of Red Sea ecosystems under a business-as-usual

scenario. Instead, we aim to formulate a new vision that places
the marine environment at the center while still enabling
sustainable economic development that benefits community and
nature (Figure 1). In a similar fashion to the “one health”
directive (Destoumieux-Garzón et al., 2018), initially proposed
ten years ago, the proposed model re-evaluates economic growth
and development incentivizing the commercial viability of
environmental protection and conservation through investment
opportunities. We advocate “blue natural capital” investment
opportunities and present sustainable development approaches
that, if executed appropriately, will encourage growth and
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FIGURE 1 | Strategic development models have relied on the expolitation of
the environment. Investing in blue natural capital and a sustainable future
requires an evolution of the current development model (Figure 1A). A revised
model needs to center the environment, valuving creation over destruction
and regulating management through well-planned and executed
governmental pollicies (Figure 1B). (A) In the current system, all sectors are
interconnected but primairly linked to the environment through exploitation
(red arrows). In this model there is a lack of acknowledgment of the impact of
the environment on the success on the prosperity of any developmental
project. Economic opportunities are therefore often missed, and the
importance of the environment is undervalued. Thus the incentive towards
protecting, preserving, and rebuilding the health of natural ecosystem is
reduced. Consequently, finacial benefits and long-term growth are reduced
and threatened. (B) The newly proposed environment centered (Sustainable)
development model (presented here) aims to recognize the socio-economic
importances of the environmental’s health on strategic development, by
placing it at the center. The success and failure of each sector directly impacts
the environment as well as indirectly itself and all others. When the
environment is placed at the core of the system, the inter-connectivity of the
sectors is clearly linked through the sustained health of eco-system – the
environmental is effectively the heart of social and economic wealth. In this
model governance is not a sector like any other; governments are fact of the
key custodains of the natural environments. Government collaborations

(Continued)

FIGURE 1 | Continued
proactive pollices, and enforcement are required and essential to ensure
net-positive outcomes of the environment as a whole and thus, the validity of
all other sector. Hence governments have the responsibility to implement
govermance arrangements that act as a shield, preventing unsustainable use
and negative interactions of the other sectors with the natural environment.

expansion of blue natural capital and provide both economic and
environmental benefits for the foreseeable future.

THE CASE FOR INVESTING IN BLUE
NATURAL CAPITAL

The Organization of Economic Co-operation and Development
reported that blue economy industries contributed $1.5 trillion
to the global market in 2016, or approximately 2.5% of
the world’s gross added value (OECD, 2016). Blue economic
activities and investments have been steadily rising (European
Comission, 2018; Wenhai et al., 2019; Jouffray et al., 2020) and,
importantly, are predicted to increase their economic value by
2,030 (OECD, 2016). Underpinning the blue economy’s success is
the continued health of ecosystems and their services. Sustainable
development approaches are predicted to increase the blue
economy’s value by USD $500 billion more than in a business-
as-usual scenario by 2,030 – which will continue to increase in
the future (OECD, 2016). A sustainable blue economy could
generate 43 million jobs by 2,030, 7 million more than under
an unsustainable scenario (OECD, 2016). Development of the
fishery and tourism sectors will contribute to higher employment
rates, which coincidently depend on healthy coastal and marine
environments to do so.

Considering that tourism and fisheries, with artisanal fisheries
accounting for 49% of the catch (Tesfamichael, 2016; Fine et al.,
2019), are among the most important economic activities of the
Red Sea, investing in blue natural capital can deliver significant
and measurable long-term benefits to local communities and
governments alike. First, signs of anthropogenic impacts on
the loss of natural marine habitats that support both of these
economies are already evident along the coast (Box 1). Increasing
environmental pressure, through unprecedented development
and investment in infrastructure along the coast of the Red
Sea (Kleinhaus et al., 2020), requires direct investment into
ensuring the best possible outcome for blue natural capital to
allow stakeholders to enjoy the benefits of a blue economy.
Next, the predicted population growth in the region (Fine
et al., 2019) will also increase pressure on marine ecosystems
and services, through direct effects on their health, as well
as increased dependence on natural resources. Further, other
anthropogenic impacts (in addition to uncontrolled urbanization
and coastal development), such as those posed by marine
resource exploitation (e.g., oil and natural gas extraction or
deep-sea mining) might cause as of yet unknown impacts to
a part of the Red Sea ecosystem that is least well understood
(Halfar and Fujita, 2002). Thus, unsustainable blue natural capital
management would likely have severe economic and social
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consequences, through reduced livelihood and food security
across Red Sea nations (Visbeck et al., 2014; Hamza et al., 2017).

Conserving the Red Sea’s valuable habitats offers windows
of opportunities to position the region as a global investment
hub and a potential leader of sustainable development. We
acknowledge that there is an ongoing debate regarding the
success of conservation in light of development (Miller et al.,
2011; Caro et al., 2012; Kareiva and Marvier, 2012; Soulé,
2013). However, we advocate for a vision that entails not only
conserving but also growing blue natural capital to enhance
natural resources, which will benefit local communities and
society as a whole (Figure 1). We’ve formulated an action plan
(Table 1), that outlines suggested key steps to be taken by nations
of the region, in terms of political international collaboration and
economic investments in communities, education, nature and
research. We elaborate on the steps of our action plan and related
investment opportunities below, focusing on those strategies
that promote health and prosperity for both environment and
economy. An important factor among all our action steps is that
the development and allocation of marine and coastal spaces
and resources should not lead to erosion of opportunities and
rights of communities – a phenomenon that’s been termed as
“ocean grabbing.” Bennett et al. (2015) defined ocean grabbing
as “dispossession or appropriation of marine resources or spaces,
robbing communities of use, control or access to resources on
land or sea.” Although our model for sustainable development
places environment at the center, we urge for equity and
benefit sharing across all our proposed actions. The discussed
investment opportunities below, focus on those strategies that
promote health and prosperity for both environment and
economy. We’ve categorized our action steps for blue natural
capital investment opportunities tailored to the Red Sea into
three categories: financial strategies, ecological innovations, and
sustainable coastal development.

The outlined steps are ranked by their urgency, followed by
the estimated costs to highlight that the most urgent actions
are not necessarily the most economically challenging ones.
Rather, the steps of highest priorities require the collaboration
and communication between a number of actors, which may
pose a challenge in itself. The action plan steps were identified
during a research workshop (held at King Abdullah University
of Science and Technology, Saudi Arabia, March 11–14th, 2019)
which brought together national and international experts from
academia, industry, and government to discuss the current state
of the Red Sea blue economy and to develop feasible strategies to
insure a sustainable future. An initial SWOT analysis, followed by
an analysis of internal and external opportunities across sectors,
led to the below action plan that was approved by representatives
of various backgrounds.

FINANCIAL INVESTMENT STRATEGIES
FOR THE BLUE ECONOMY

Financial strategies and instruments to conserve and rebuild
blue natural capital already exist. These include biodiversity
offset and credits (Curran et al., 2014), banking credits (Fujita

et al., 2013), restoration of natural capital credits (Blignaut
et al., 2014), environmental (green/blue) bonds (Shishlov and
Morel, 2016), portfolios of ecosystem services (Fujita et al., 2013),
taxes, subsidies, charges, and fines, for example (Stavins, 2001;
Bailey, 2002). The green economy (which has to date primarily
focused on sustainable development without degrading terrestrial
systems) has been modeling how such market-based incentives,
which apply monetary values to products and activities/services
of the environment, can support environmental management in
the blue economy.

The term Blue Carbon refers to organic carbon captured and
stored by vegetative coastal habitats, such as seagrass meadows
and mangrove forests. These ecosystems can lock carbon in
underlying sediments, into living biomass above and below
ground, and within non-living biomass for millennia (Duarte
et al., 2004; Nellemann et al., 2009; Mcleod et al., 2011). Although
these ecosystems cover an area of less than 0.02% of the seafloor,
they account for 50% of the carbon buried into oceanic sediments
(Duarte et al., 2013; Box 1). Loss of these ecosystems has been of
significant concern due to the potential implications of extensive
conversion of standing carbon pools below ground into the
atmosphere as greenhouse gas (Duarte et al., 2010; Hejnowicz
et al., 2015; Lovelock et al., 2017).

Blue Carbon ecosystems can be integrated into financial
incentive strategies, as blue carbon credits could be used
to offset carbon emissions and be traded in the carbon
markets (He, 2016). Since the sequestration of carbon in these
habitats is highly efficient (Sanderman et al., 2018), conserving,
restoring, and expanding the blue carbon ecosystems of the
Red Sea could also attract lucrative international investments
by providing a framework for businesses to become carbon
neutral. To incentivize local investment into the protection
and conservation of blue carbon habitats, payment for PES
schemes can be implemented. PES allows for providers of
PES (i.e., local communities) to receive income or funds from
buyers interested in using the perceived benefits that these
habitat offers (i.e., private organizations and service sectors)
(Lin and Nakamura, 2012; Hejnowicz et al., 2015). When
incorporated into the aquaculture industry, such financial
strategies, along with education, could lead to the development
of sustainable integrated aquaculture-mangrove systems (Ahmed
and Glaser, 2016). In this case, catastrophic losses of mangrove
ecosystems (which have occurred in many other world regions
and are causally linked to coastal aquaculture practices) could
be avoided (Box 1). Implementing these financial strategies
(amongst others) not only diversifies the economy but also
promotes communities to feel a sense of responsibility and
take management actions, while enhancing and ensuring the
long-term maintenance of their livelihoods. This concept of
communities taking responsibility for their local environment
and resources is often referred to as stewardship and can
be another pathway to ensuring equal distribution of benefits
among communities.

The success of blue carbon, or any environmental finance
scheme for that matter, is tightly linked to policy and governance
mechanisms being established that encourage implementation
and enforce accountability (Macreadie et al., 2019; Figure 1,
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TABLE 1 | A suggested action plan on how to ensure the sustainable development and preservation of blue natural capital in the Red Sea region.

Urgency
(0 = Low,
1 = Medium,
2 = High,
3 = Critical)

Estimated
cost

Action Actors Benefits beyond environmental factors

3 Low Identify and formulate a collective vision for the Red Sea
with trans-national partners.

National Authorities, Red Sea Authority, PERSGA. International partnerships; developmental and economic
innovation, cooperative environment.

3 Medium Assessing the Blue Natural Capital of the Red Sea
evaluating ecosystem status, health, and biodiversity
followed by monitoring of changes.

Red Sea Authority, PERSGA, National Authorities,
and Scientific Community to inform design.

Unlock full economic potential of region, create global
leadership opportunities, and promote research and critical
environmental protection.

3 Low Conduct risk assessments of Blue Natural Capital of the
Red Sea (vulnerability to climate change).

Scientific community. Inform conservation and research strategies.

3 Low Raise large development projects in the Red Sea (NEOM,
Amaala, and The Red Sea Project) to exemplars of
economically sound models of development in the 21st
century.

PIF, Private Sector. Competitive leadership and innovation in coastal
development, development of intellectual property, and
spin-offs around new technologies for sustainable
development.

3 Low/
Medium

Overcome Red Sea environmental data deficiency by
encouraging data sharing and creating a single portal
(infrastructure) for curating and collecting Red Sea
environmental data.

Scientific Community, National Authorities, Red Sea
Authority, PERSGA, Industry (Oil and Gas,
Ecotourism etc.), and Citizen Science.

International collaborations; Red Sea as a unique
environment, establishing natural resource and their
sustainable utilization. Increase in social awareness and
ocean literacy.

2 High Strengthen current institutions and creating necessary
ones, which are empowered to enforce legislation and
achieve determined outcomes (i.e., The Red Sea Authority).

National Authorities, Regional Leaders. Ensure the long-term sustainability of the blue natural
capital supporting a sustainable Red Sea economy.

2 Low Establish a rapid response mechanism to environmental
crises (e.g., coral bleaching, industrial accidents etc.)
including detection mechanisms (e.g., involving local
community, and environmental police) and the deployment
of restoration and mitigation measures.

Red Sea Authority, PERSGA, Scientific Community,
and Local Community Stakeholders.

Mitigate social and economic impacts

2 Medium Develop restoration measures to recover the impacted coral
reefs in the Red Sea and globally.

Red Sea Authority, PERSGA, and MEWA Restoration technology to deploy globally, generating
economic opportunities, raise awareness in the public, and
develop a skilled labor force and industry around coral reef
restoration.

2 Medium Enhance environmental education of the general public:
retaining local traditions and use them to maintain local
ecosystems, revamp national curricula to include values
and risks of local ecosystems.

Scientific Community, Ministry of Education,
Ministry of Environment, Red Sea Authority,
PERSGA, Industry, and Local Community
Stakeholders.

Preserve and value local traditions, adapt and evolve
national curricula to further enhance the capacity and
competitiveness of the workforce.

2 Medium Develop a Marine Spatial Plan for the entire Red Sea. National Authorities, Red Sea Authorities, PERSGA,
Scientific Community, Industry, and Local
Community Stakeholders.

Development of economy, employments, tourism,
development of new technologies, while reducing conflicts,
and economical risks.

(Continued)
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Table 1). However, it has been recognizably difficult to
incorporate certain schemes into markets due to inadequacies
in assessing the value of PES. Indeed, price tags on PES have
been heavily criticized for being somewhat oversimplified, i.e.,
not considering the costs and benefits of biodiversity, as well
as the additional cost of rehabilitating destroyed ecosystems
(Wright et al., 2006; Rinkevich, 2015). Many questions regarding
ecosystem services’ actual values are still unanswered and
require evaluation (Himes-Cornell et al., 2018). For the Red
Sea, unanswered questions include: what are ecosystem services
like nutrient cycling, coastal protection, biodiversity, and CO2
sequestration actually worth?

Although progress has been made in how to improve
financial strategies for the blue economy, there is still room for
improvement (i.e., funding opportunities to overcome funding
gaps and incentivizing sustainable blue investments to mature the
market) (van Aalst et al., 2018). Importantly, they should not be
viewed in isolation from or as an alternative to direct investment
into conservation and restoration of marine ecosystems. Instead,
economic decision-makers should consider conservation and
restoration at every step to enhance sustainable growth both
in current and future development strategies. Ultimately,
however, whichever financial strategy is being implemented, it is
essential that they provide long-term financial benefits to local
communities. Securing community engagement and ensuring
that the projects will not have unexpected consequences, such
as creating inequities within communities (Vierros, 2013) or
allowing the exploitation by private sector or other partners
(Bennett et al., 2015), is essential for success.

DEVELOPING ECOLOGICAL
INNOVATIONS ALONG THE RED SEA

The development of new methods and technology for rebuilding
and conserving marine habitats and, therefore, protection of blue
natural capital can create important sought-after blue technology,
marine bio-products, and associated intellectual property. These
new discoveries could lead to new business models, attract
investment funds, and create new marine industries.

For example, the Red Sea coral reefs are considered to be
among the least vulnerable to climate change impacts, with lethal
thermal limits of around 36◦C (Anton et al., 2020b), placing
them in a globally important position to potentially facilitate the
regeneration of other coral reefs in the future (Hoegh-Guldberg
et al., 2018). In a Global Coral Reef Conservation Portfolio study,
coral reefs of the Red Sea were assessed to provide a good
return on investment with low risk of loss (Hoegh-Guldberg
et al., 2018). Compared to the southern Red Sea, northern parts
are characterized by cooler sea surface temperatures and lower
temperature maxima (Chaidez et al., 2017; Box 1). In the Gulf
of Aqaba, coral reefs have withstood significant warming events
without severe mass-bleaching, successfully sustaining a healthier
state (Osman et al., 2018). Indeed, northern Red Sea corals
have higher thermal resilience than elsewhere, and hence, the
northern region has been deemed a potential coral refuge to
increasing ocean temperatures (Fine et al., 2013; Krueger et al.,
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2017; Osman et al., 2018). In the Central Red Sea, two coral
species (Pocillopora verrucosa and Stylophora pistillata) have been
described to have high lethal thermal limits of around 36◦C
(Anton et al., 2020b). Therefore, coral species inhabiting this
region are suitable candidates for restoring and protecting coral
reef health worldwide (Kleinhaus et al., 2020). Harnessing the
natural resilience of Red Sea corals could allow the re-seeding of
reefs globally that have been severely degraded by temperature-
induced bleaching events. However, significant research is
required to ensure success. Fundamentally, characterizing the
traits that make certain coral species more resilient than others
is required and is currently being investigated (Dixon et al.,
2015; Howells et al., 2016; Kirk et al., 2018; Manzello et al.,
2018). Understanding genetic traits and conditions responsible
for higher thermal resilience in corals can enable effective
breeding of offspring with desired traits. Research into coral
genetics and development of optimized methods for upscaling
the spawning and rearing of corals ex situ (Craggs et al., 2017)
could assist global efforts in accelerating the rate of naturally
occurring evolutionary processes, known as assisted evolution
or assisted gene flow (van Oppen et al., 2015, 2017). The
genetic resources obtained would also significantly contribute
to establishing a coral gene bank for future coral restoration
(Hagedorn et al., 2019). Important here is that the development
and distribution of genetic resources is equitably applied across
key actors (see Table 1). However, some have suggested we
move with extreme caution when implementing such practices
linked with upscaling reef restoration, including but not limited
to aspects in and around assisted evolution or assisted gene
flow (i.e., the use of probiotics to increase thermotolerance
and/or disease resistance; (Sweet et al., 2017), since any kind
of human intervention might come with unforeseeable risks for
the local flora and fauna. While some of these risks could be
mitigated using highly controlled environments and constant
monitoring, it is nigh impossible to contain marine organisms
in an open environmental setting like a natural coral reef.
Regardless, the Red Sea holds the potential for exploration
of much unexplored marine genetics and presents itself as
an invaluable investment opportunity into genetic resources
(Fine et al., 2019).

In contrast to the north, the central and southern Red
Sea coral reefs have experienced severe thermal bleaching
events (Monroe et al., 2018; Osman et al., 2018; Box 1).
The loss of reef habitat provides an opportunity for another
significant category of investment: rebuilding and restoring
coral reefs. While the northern Red Sea provides valuable
opportunities for genetic research in coral reefs, the southern
Red Sea offers a testbed for novel reef restoration methods.
Economic assessments have shown that although coral reefs
have the highest value with respect to natural capital, they
have the lowest benefit-cost ratio due to relatively high
restoration costs (de Groot et al., 2012). Additionally, restoration
of coral reefs is complex and has so far been difficult
to achieve on a large scale (Blignaut et al., 2014). Thus,
there is a market interest in developing new technology
and methods of scaling coral reef restoration (Baums et al.,
2019; Schmidt-Roach et al., 2020). The degraded reefs of the

southern Red Sea allow for the testing and optimizing of
restoration tools such as in situ coral propagation (Schopmeyer
et al., 2017), larval re-seeding (Chamberland et al., 2017),
and recruitment (Liversage and Chapman, 2018) and coral
transplantation (Horoszowski-Fridman and Rinkevich, 2016).
Selecting new restoration sites for long-term success will
require significant research and environmental monitoring to
ensure the highest chance of success (Bayraktarov et al., 2016;
Suggett et al., 2019). Furthermore, the intellectual capital of
research institutes across the region can foster the development
of innovative technology and locally tailored approaches
associated with reef restoration. Topics could include, amongst
others, testing new larval seeding and recruitment protocols,
creating nurseries and trialing new designs, establishing lab-
based coral spawning that allows for year-round sexual
reproduction, and developing cryo-preservation methods for
future interventions. For these to be successful, scientific and
local communities will have to be incentivized to collaborate (see
Table 1).

Finally, identifying and understanding the role of bacterial
communities in the Red Sea has been of increasing interest
for innovative restoration and protection of reefs and coastal
habitats. The bacterial communities associated with animals,
plants, seawater, and sediments are emerging as important
components of ecosystem diversity (Cuellar-Gempeler and
Leibold, 2018), regulating plant and animal stress resilience
and habitat functioning (Trevathan-Tackett et al., 2019).
Recent studies have indicated that bacterial communities
may support coral resistance to bleaching (Rosado et al.,
2019) or may elicit root growth for an earlier establishment
of mangrove propagules (Soldan et al., 2019). Therefore,
research into the bacterial communities of the Red Sea and
associated provide another major avenue of “blue gold,” i.e.,
potential bioproducts beneficial to the organisms in question
but also to humans in the form of novel drug discovery
(Blockley et al., 2017).

These active forms of protection and restoration of coral
reefs are linked to one another; research in the northern Red
Sea has a high potential to result in new selective breeding and
seeding programs that can then be tested and implemented in
the more damaged and degraded southern ecosystems. Since
these strategies are at an early stage, ecological innovation
investments presented here focus on advancing technology as
well as increasing research funding, generating knowledge, and
fostering transnational collaboration.

INTEGRATING MARINE HABITATS IN
COASTAL INFRASTRUCTURE
DEVELOPMENT

When developing strategies for the future of blue natural capital
in a socio-economic context, a third avenue, besides conservation
and restoration, must be considered for the investment to be
profitable in the long term. Population growth and planned large-
scale coastal developments could be seen as a significant risk to
the future of the Red Sea ecosystems, as seen in the impacts of
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other regions, such as the Arabian Gulf (Burt and Bartholomew,
2019). However, if carefully planned, managed, and executed,
they could become an internationally significant investment
and development prospects that are made more valuable by
the blue capital that they conserve and grow. Future coastal
development projects demand a commitment to sustainability
with a focus on balancing ecosystem, social, and economic
benefits. Important here, as with other action steps, is that the
development and allocation of marine, and coastal, resources
do not lead to ocean grabbing and the consequent erosion of
opportunities and rights for local communities. Integrating the
marine environment and blue natural capital into community
conscious coastal development allows Red Sea projects to lead
the way and take advantage of innovative technology and
investment strategies while securing the region’s desired blue
natural capital.

To date, coastal infrastructure has been designed with
limited consideration of marine habitats, consequently
debilitating surrounding ecosystem services. Sustainable
coastal development technology and nature-based solutions
are continuously expanding and include not only the creation
of artificial habitats (Feary et al., 2011; Dafforn et al., 2015)
but also new approaches in constructing coastal infrastructure
supporting the establishment of marine ecosystems (Ido and
Shimrit, 2015). Incorporating marine habitats into development
projects enables blue natural capital and socio-economic
investments to grow together. Large development projects, such
as those related to Saudi Arabia’s Vision 2,030 (i.e., NEOM, The
Red Sea Project, and Amaala), could be exemplary economically
sound models that achieve net-positive conservation impact
and social equitability. Besides including current methods of
ecosystem engineering, such as using eco-friendly concrete
and other methods of ecological enhancement of marine
infrastructure (Ido and Shimrit, 2015; Hall et al., 2018; Mayer-
Pinto et al., 2019), cities of the future can invest in new
technology and development strategies. Examples include
(but are not limited to) the incorporation of coral nurseries
and coral farms into ecological esthetics of coastal cities,
coastal mangrove forest boardwalks and piers that serve as
natural attractions as well as coastal protection (Satyanarayana
et al., 2012), and building threat mitigation into development
plans to protect coastal marine ecosystems. Obviously, these
initiatives should also target the use of renewable energy
and zero-emission technologies. It is worth mentioning that
the implementation of coastal ecological engineering and
nature-based solutions can also balance carbon emissions
and removal, thus facilitating the establishment of a circular
carbon economy in the region (Langergraber et al., 2020).
However, the implementation of these strategies may not be
feasible for all nations, depending on their economic and
financial resources. These imbalances must be considered
when proposing a proactive and coordinated approach (see
Table 1, and section “Collaborative Governance for Red Sea
ecosystems). Nonetheless, the Red Sea region could lead
innovative development strategies of the 21st century by
incorporating current ecological engineering tools and investing
in the advancement of new technology where possible.

Needless to say, investing in the incorporation of marine
habitats into coastal development would allow the expansion
of the ecotourism sector and bring the Red Sea to a global
audience. Marine tourism, specifically reef tourism, is already
one of the major economic activities of many Red Sea bordering
countries (Fine et al., 2019). With many new Red Sea tourism
projects in development, marine tourism’s interest is expected to
increase steadily. Importantly, growth of the tourism sector into
a major economic player can lead to new management programs
built around stewardship as well as new research partnerships1,2.
Therefore, economic and environmental instruments associated
with novel ecotourism concepts are an important and profitable
investment opportunity that can diversify the local economies
(Schmidt-Roach et al., 2020). Furthermore, ecotourism concepts
can be directly linked to environmental education enhancement
as these attractions allow the general public to experience,
appreciate, and value natural marine habitats. Particularly,
vegetated ecosystems are easily made accessible to the public
through piers or park structures if appropriate infrastructure and
management are applied. Environmental education investments
can act as platforms for the conservation of local culture
and capacity development, ultimately leading to new service
opportunities in other economic sectors (Blignaut et al., 2014;
Fine et al., 2019).

It is important that nations and developers strive to give
equal priority to the quality and quantity of tourism. The future
of sustainable ecotourism depends on increasing the scale of
tourism, resulting in environmental stewardship, incentivizing
best practice methods, and reducing environmental impacts
(Fujita et al., 2013).

COLLABORATIVE GOVERNANCE FOR
THE RED SEA ECOSYSTEMS

Failing to invest in adaptive management strategies, those
aimed at protecting and maintaining blue natural capital, will
inevitably catalyze environmental degradation and a significant
lost opportunity to harness natural resources that would
benefit marine habitats and the regional economy. Investing in
conservation and building the Red Sea’s blue natural capital offers
avenues to diversify the regional economy with globally relevant
assets and lead international efforts in sustainable development
efforts. However, sustainable governance, particularly across
borders, is necessary in order for these opportunities to exist and
for blue natural capital to grow (see Table 1).

Marine protected areas (MPA) and marine spatial planning
(MSP) are fundamental tools utilized by governments (globally)
to assist in the management and protection of coastal and marine
ecosystems (i.e., to conserve blue capital). MSP constitutes

1https://www.theredsea.sa/newsroom/the-red-sea-development-company-and-
kaust-unveil-groundbreaking-approach-to-conservation-and-development-
planning
2https://www.businesswire.com/news/home/20191003005791/en/AMAALA-
Partners-With-the-Prince-Albert-II-of-Monaco-Foundation-the-Centre-
Scientifique-de-Monaco-and-Oceanographic-Institute-to-Protect-and-
Preserve-Marine-Environment
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a public process of analyzing and allocating the spatial and
temporal distribution of human activities in marine areas to
achieve a balance in ecological, economic, and social objectives
(Ehler and Douvere, 2009). The principles of MSP are often
used to design MPAs worldwide, as MSP can help ensure
compensation and replacement for interference in the natural
environment (Schachtner, 2017). MPAs are defined regions that
manage specific conservation objectives, and some can be no-
take zones to protect local fish stocks or define areas banning
mangrove wood harvesting. MPAs are fundamental for the MSP
process. They ensure the sustainable use of natural resources
while supporting the blue economy concept and providing
investment opportunities in the marine sector (Kelly et al., 2014).

A number of MPAs have been declared in Red Sea waters,
with many more under review (Marine Conservation Institute,
2019). Egypt has led by example through the implementation
of MPA’s back in 1,986. However, Egypt struggled to implement
and properly enforce MPA’s due to a series of socio-economic
factors such a shortage of alternative resource dependencies
(e.g., alternative income for fishermen who’ve lost access to
fishing grounds), raising awareness and compliance mechanisms
(Marshall et al., 2010; Samy et al., 2011). Lessons learned in
developing successful MPA’s in Egypt can be used to inform
strategic management and implementation throughout the rest of
the region. These include primarily the insight that the reduction
of fishing and other anthropogenic pressures cannot be achieved
through regulations alone but that they depend on the voluntary
compliance of the local communities in order to be successful
in the long-term. This, however, requires the development and
implementation of educational programs aimed at increasing
the awareness of local stakeholders as well as clear resource
management plans, enforcement of regulations and alternative
sources of income where necessary (Mabrouk, 2015).

The Regional Organization for the Conservation of the
environment of the Red Sea and Gulf of Aden (PERSGA),
an intergovernmental body dedicated to the conservation of
coastal and marine environments of the region, and similar
organizations will play an important part in facilitating the
exchange of information and ensuring the success across
borders. However, so far, relevant policy frameworks promoting
MSP have not yet been established in any of the areas
considered by PERSGA.

The first step for an MSP application in the Red Sea
has recently been made through the Red Sea Project, a
core component of Vision 2,030, which aims to develop
the tourism sector of the Kingdom of Saudi Arabia (The
Red Sea Development Company, 2020). Unfortunately, the
absence of formal MPA, MSP, and general fisheries management
arrangements in the broad area, results in habitat destruction and
conflicts between industry and artisanal fisheries (Hariri et al.,
2002). Fishing communities in the region have had traditional
governance mechanisms, which have been overwhelmed by
large scale acceleration of industrial fishery sector (Feidi, 2009).
Saudi Arabia presents a unique case in that the citizens own the
traditional fishing fleets, but the sector is heavily dependent on
immigrant workers (Feidi, 2009). In addition, marine ecosystems
are interconnected and transnational by their very nature, i.e.,

they do not restrict themselves to country borders. Hence,
collaborative efforts to manage threats occurring beyond national
boundaries and accounting for connectivity between ecosystems
are essential to manage and sustainably develop marine resources
to their maximum potential (Roberts, 1997). This is particularly
important when discussing fisheries management and stock
quotas. The region offers many opportunities for multi-lateral
development that ensure traditional communities knowledge
and resources are incorporated into modern governance
institutions, through focused capacity building (Feidi, 2009).
Establishing transnational collaborations incentivizes shared
stewardship practices and fosters a culture of peace and unified
prosperity to the coastal nations sharing interdependent marine
resources (Table 1).

For policy frameworks to be successfully implemented,
managed, and maintained, conflict resolution mechanisms
and incentives for coordination and cooperation must be in
place. This also requires adequate assessment and monitoring
strategies of marine ecosystems, with a motivation to share
data. Additionally, procedures must be developed to conduct
common environmental impact assessments (EIA) focusing on
biodiversity risks of new infrastructure investments. This will
require transparency, baseline data collection, identification
of costs and benefits, and implementing mitigation measures
(see “Actions” as well as “Actors” in Table 1). Without such
mechanisms and robust data, effective management and planning
cannot occur. This would result in a lack of accountability
that could risk unsustainable and likely destructive uses of blue
natural capital. Successful Red Sea management requires sound
scientific knowledge describing its local and regional status.
Nations will have to develop and communicate effective data-
collection frameworks that can be used for evaluation and long-
term monitoring. Initiating baseline datasets is paramount to
overcome the current data deficiency in the Red Sea and to
accurately inform policy actions. Continued monitoring and
assessment are necessary to ensure that implemented policies
are effective and have a measurable performance indicator
against established goals (Day, 2008). Citizen-science programs
and engagement of local communities can be a valuable
asset, as well as directly contributing to local education and
awareness programs (Marshall et al., 2012; Branchini et al., 2015).
Additionally, stakeholder nations must invest in conducting risk
assessments of blue natural capital in the Red Sea to understand
vulnerabilities (i.e., pollution, climate change) and to protect
and ensure growth, rather than loss, of assets and investment
(Table 1). Finally, in order to facilitate collaboration across
borders, joint targets and objectives must be set, outlining roles
and responsibilities that are clearly aligned with best practices
globally. Ultimately, the financing strategies for these targets must
be set out in the planning stage to ensure that social, economic,
and environmental challenges are accounted for.

As such, communication and stewardship across
governments, as well as national departments and agencies,
must be improved to create an integrated ocean management
plan. A collaborative effort is essential for the proper planning
and management of Red Sea resources (see “Actors” in Table 1).
This will, among other things, require the active involvement
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of third parties and organizations, such as conservation NGOs
and The Regional Organization for the Conservation of the
Environment in the Red Sea and the Gulf of Aden, to help
mediate (Fine et al., 2019). However, such regulatory bodies must
be sufficiently empowered to enforce regulations and provide
accountability to non-compliance. Inevitably, the effective
delivery and rapid implementation of blue natural capital-
related policies will depend on communication, transparency,
accountability, and inclusivity (Hejnowicz et al., 2015).

Ultimately, all the above outlined action steps that are
required to ensure the future of blue natural capital build on
the core principle of collaboration, integration of regional scale
planning and organized actions across multiple stakeholders
and nations. Whether it is the implementation of the MPAs
or baseline assessments of ecosystems, countries bordering
the Red Sea will have to strategically decide how best
to overcome geopolitical barriers and prevent competitive
exploitation (as seen in Table 1). Several countries have
already signed bilateral agreements, such as Egypt-Jordan
(“Cooperation Agreement between Egypt and Jordan in
fisheries resources,” 1,999) or Jordan-Saudi Arabia (“Bilateral
Economic Agreement between Jordan and Saudi Arabia,”
1,962), but these likely require re-addressing. The challenge
here will be to find a way to balance economic, political and
environmental resources available to the different nations.
This will be particularly important when considering factors
such as; financial support, access to technology, knowledge
development and sharing, socio-economic benefits and their,
distribution, and international contributions. Due to the
collaborative nature and strong political will required of the
action steps, their implementation will take a more nuanced
understanding of collaborative governance and how they
may be most effectively implemented to solve environment
problems (Bodin, 2017). As such, it is imperative that in the
interim a precautionary approach is applied, for example in
the form of stronger national commitments and enforcements
of policies, as well as voluntary actions by industry and
private sectors.

As concepts of blue economy are growing in momentum in
the global political landscape and associated policies are being
implemented, there is a need to critically analyze their impacts
on the people that currently rely on blue resources (Barbesgaard,
2018). Collaborative approaches play a key role in addressing
environmental problems, but multi-actor collaboration needs to
consider social and ecological structures (Bodin, 2017). Providing
livelihood and income resources (and potential alternatives),
increased awareness and education and consultation of local
communities will be essential in implementing and enacting
policies. Effective policies depend on the identification and
understanding of practices, expectations and interests of various
different stakeholders on local and national scale (Howard
et al., 2017). This includes raising awareness of how changes
in marine resource use, or coastal development, will affect
local stakeholders and communities, highlighting the potential

financial risks and understanding the different timeframes
required in order to generate social and economic benefits
(Howard et al., 2017). If communities and stakeholders are not
aware of the finer details of new policy and are not integrated
into the decision of new conservation and policy options, the
risk of failure for long term implementation and expansion
of these efforts increases. Furthermore, financialization of blue
projects needs to overcome challenges of equity and ensure that
the redistribution of social power includes regions’ communities
(Sullivan, 2013; Knott and Neis, 2017). The challenges, and
absolute necessity, of developing an equitable and inclusive
governance of the blue economy have become an increasingly
central theme as awareness regarding the risks of uncontrolled
ocean development on marine environment and human well-
being (Bennett et al., 2019). Thus, a sustainable blue economy
needs to provide an economic environment that allows both
natural and social ecosystems to flourish, ensuring an equal
benefit distribution.

CONCLUSION

Here, we show why private and public sectors must invest in
protecting, preserving, and enhancing blue natural capital of
the Red Sea. The relatively pristine condition of many of the
coral reef, seagrass, and mangrove ecosystems in the northern
Red Sea and the Gulf of Aqaba, present a significant source of
environmental and socio-economical investment prospects for
the region. Taking advantage of these investment opportunities
in natural assets could place local nations as global innovators of
sustainable ocean projects and economies. However, to ensure
that these environmental and financial ventures are enacted
sustainably (without the loss of local biodiversity) and return
a profit in the long term, significant proactive policies to
protect and restore the wealth of blue natural capital in the
Red Sea are required. Sustainable ocean management is, in its
essence, a political process that requires coordination across
governments as well as relevant stakeholders, including scientists,
local communities, and industries. This model of inclusive
governance will be central to ensuring an equitable and just
development of the blue economy. Hence, communication,
participation, and transparency of all involved parties are
required to successfully build a blue economy that thrives
with its natural resources. Considering the opportunities at
stake, failure to invest in the Red Sea’s blue natural capital
would represent a substantial loss – economically and, most
importantly, environmentally and socially.
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