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Abstract

This article studies optimal investment in ßexible manufacturing capacity as a function of
product prices (margins), investment costs and multivariate demand uncertainty. We consider
a two-product Þrm that has the option to invest in product-dedicated resources and/or in a
ßexible resource that can produce either product, but has to make its investment decision
before demands are observed. The ßexible resource provides the Þrm with a hedge against
demand uncertainty, but at a higher investment cost than the dedicated resources. Our analysis
highlights the important role of price (margin) and cost mix differentials, which, in addition
to the correlation between product demands, signiÞcantly affect the investment decision and
the value of ßexibility. Contrary to the intuition also prevalent in the academic literature, we
show that it can be advantageous to invest in ßexible resources even with perfectly positively
correlated product demands.

KeyWords: Flexibility, technology, strategy, capacity investment, prices, operational hedg-
ing, multi-dimensional newsvendor model.

1 Introduction

�The preserving of ßexibility when faced with uncertainty� is no longer a neglected aspect of

behavior under risk, as it was according to Jones and Ostroy [16] in 1984. Yet our understanding

of ßexibility still is based mainly on intuition that may be incomplete. Following the lead of Fine

and Freund [11], we study optimal investment in ßexible manufacturing resources and consider

a Þrm that faces uncertain demands for its two products. The Þrm has the option to invest in

product-dedicated resources and in a ßexible resource that is able to produce either product, but

has to make its investment decision before demand is observed. The ßexible resource provides the

Þrm with a hedge against demand uncertainty but at the expense of a higher investment cost than

the dedicated resources.

The results advanced in this article highlight the important role of price (or, more precisely,

unit contribution margin) and cost mix differentials, which, in addition to the correlation between

product demands, signiÞcantly affect the investment decision in ßexible technology and the value of

ßexibility. The ability of product-ßexible technology to deal with changes or uncertainty in demand

mix (that is, relative proportions of product quantities demanded) is well understood. This has led

to a belief that ßexible capacity provides no additional value when product demands are perfectly

positively correlated. Fine and Freund [11, p. 459] offer the argumentation behind this belief:
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�Because the demands for the two products move in lockstep, ßexible capacity can only be useful

if it can produce one product more cheaply than the dedicated capacity can. There will never be

an opportunity to take advantage of the ßexibility characteristic of the ßexible capacity ... when

the two products� demands are perfectly positively correlated.� We will show that this belief is

incomplete, if not false. Indeed, in addition to its adaptability to demand mix changes, product-

ßexible technology provides another opportunity for revenue improvement through its ability to

exploit differentials in price (margin) mix. Product ßexibility generates an option to produce and

sell more of highly proÞtable products at the expense of less proÞtable products. More importantly,

this option can remain valuable even with perfectly positively correlated product demand (i.e., when

demand mix is constant and known with certainty).

In this article we will use the term �ßexibility� in a natural manner to describe the capability

of a resource to produce different products and, more generally, of a manufacturing process to

produce identical products utilizing different resources. (The term �resource� is used to mean any

long-lived human or physical asset that affects the production capabilities of a Þrm but is not

consumed in the course of production.) For our purpose, there is no need to add another general

deÞnition of ßexibility to the plethora already available in the literature (e.g., see the extensive,

technology-oriented surveys by Gupta and Goyal [12] and Sethi and Sethi [23], or Carlsson [4] for

an economics perspective).

Research on ßexibility seems to follow Þve major paradigms. Technology focused studies of

ßexibility tend to use detailed (often at the expense of analytical intractability) stochastic pro-

gramming or queueing models, e.g., Benjaafar [2], Burstein [3], Kulatilaka [17], Laengle, Griffin

and Griffin [18] and Fine and Freund [11]. Following Stigler [24], economics oriented studies ini-

tially viewed ßexibility as a generator of economies of scale in the presence of demand uncertainty

and related it inversely to the curvature of the Þrm�s total cost curve, see Carlsson [4] for extensive

references. Choice set theory and information economics extend the notion of ßexibility and relate

it to the size of the choice set (a more ßexible initial action preserves more choices for actions in

the second period, e.g., Jones and Ostroy [16]) and the precision of available information (a more

ßexible position is preferred with an increase in uncertainty, e.g., Vives [25]). Following Milgrom

and Roberts [20], ßexibility recently has been identiÞed with economies of scope in the production

of differentiated goods. See, for example, Eaton and Schmitt [8], Röller and Tombak [22], Milgrom

and Shannon [21], Athey and Schmutzler [1], and the related general theory of ßexibility by de

Groote [6] to which we will refer in Section 5. Finally, ßexibility also relates to research on irre-

versible investments and real options: an irreversible investment reduces the Þrm�s ßexibility while,

as will be shown in this article, an investment in ßexible resources may create valuable production

options that can be exercised when uncertainty is resolved. See, for example, Dixit and Pindyck

[7] and He and Pindyck [14].

This article is inspired and intimately related to the work by Fine and Freund [11]. However,

our research method is different from their traditional discrete stochastic programming approach in

that we use our �multi-dimensional newsvendor model,� which was Þrst presented in [13]. The re-
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sulting parsimonious descriptive model is amenable to analytic analysis and graphic interpretation,

which allows our results to be easily taught and remembered. Its multi-dimensionality enriches

the traditional newsvendor model by incorporating product, resource and demand differentiation

through price and cost vectors, a technology matrix and a multivariate demand distribution. The

intent of this article is to build new theory and intuition on the beneÞts of product ßexibility to

hedge against demand uncertainty by highlighting the role of price and cost mix differentials in

addition to demand correlation. For our purposes here it suffices to analyze a one-period model.

As such, our approach may be too highly stylized to serve as a practical decision support system

which may need to consider more complex models for which one must resort to numerical meth-

ods, cf. [5, 19]. Alternately, multi-period extensions may be analyzed using our recent theory on

quasi-reversible multi-dimensional investment under uncertainty [9, 13].

This article is organized as follows. The next section presents the model and section 3 discusses

the optimal investment position using our multidimensional newsvendor solution. Section 4 shows

that the optimal investment strategy has one of three distinct forms and analyzes the sensitivity

of the optimal investment to changes in prices (margins) and investment costs. Finally, section

5 examines how the optimal investment depends on the multivariate demand distribution and

presents closed-form solutions for perfectly correlated product demand, emphasizing the role of

price differentials. (All proofs can be found in the Appendix.)

We conclude this introduction with some notational conventions. We will not distinguish in

notation between scalars and vectors. All vectors are assumed to be column vectors, and primes

denote transposes. Vector inequalities should be interpreted componentwise. As usual, E and ∇
denote the expectation and gradient-vector operators.

2 Modeling Investment in Flexible Resources

Consider a Þrm that has the option to invest in two product-dedicated resources and one ßexible

resource�respectively labeled resources 1, 2 and 3�to manufacture two products. First, the Þrm

must decide on a non-negative vector of resource capacity levels K ∈ R3+ for production, before
the product demand vector D ∈ R2+ is observed. After demand is observed, the Þrm chooses,

constrained by its earlier resource investment, a vector x = (y1, y2, z1, z2) ∈ R4+ of production

quantities, where yj + zj is the total production quantity of product j and yj and zj represent the

quantities produced on the product-j-dedicated and ßexible resource respectively. This multi-stage

decision problem, also known as a stochastic program with recourse, is characteristic of real option

models: Þrst invest in capabilities, then receive some additional information, and Þnally exploit

capabilities optimally contingent on the revealed information.

The Þrm�s manufacturing process and production decisions are modeled as follows. Having

chosen a capacity vector K and observed a demand vector D, the Þrm chooses its production

vector x as the optimal solution of the following product mix problem so as to maximize operating

3



proÞt:

max
y,z∈R2+

p1(y1 + z1) + p2(y2 + z2) (1)

subject to y1 ≤ K1, (2)

y2 ≤ K2, (3)

z1 + z2 ≤ K3, (4)

y1 + z1 ≤ D1, (5)

y2 + z2 ≤ D2, (6)

where p ∈ R2+ is a price or margin vector whose jth component represents the unit contribution
margin for product j (that is, sales price minus variable cost of production). The optimal objec-

tive value of the product mix problem (1)�(6) is the maximal operating proÞt and is denoted by

π(K,D) = (p1, p2, p1, p2)
0x(K,D), where x(K,D) is an associated optimal production vector. To

keep the number of parameters manageable, we have implicitly made two assumptions in the prod-

uct mix problem. First, product j variable production costs on the associated dedicated resource

and on the ßexible resource are identical. Second, because the contribution margins do not depend

on the production quantities chosen, the Þrm is assumed to be a price taker in both the output and

factor markets. Notice that although (4) seems to indicate that both products require an equal

amount of the ßexible resource to produce one unit, this is without any loss of generality since in

this model it is just a matter of how units are deÞned.

Assuming that the Þrm starts with no initial resources, it incurs an investment cost C(K) if it

chooses a capacity vector K. For simplicity we assume that investment costs are linear,

C(K) = c0K, (7)

where c ∈ R3+ is a vector of marginal investment costs, but the results presented below directly
generalize to any convex function C. In order for the model to be realistic and to yield interesting

results, we assume that ßexible capacity is more expensive than dedicated, yet sufficiently inexpen-

sive to be a viable alternative: 0 < c1, c2 < c3 < c1+c2. Also, it should be economically justiÞed to

produce both products, i.e., c1 < p1 and c2 < p2, where the more proÞtable product is given label

1, so that p1 ≥ p2 > 0, and the price (or margin) differential will be denoted by ∆p = p1− p2 ≥ 0.
Finally, demand uncertainty is represented by a probability measure P over the demand space R2+.
For simplicity we assume that D is a continuous random vector that is Þnite with probability one

and that has a joint probability density function g which is positive over its support. The Þrm

seeks a strategy of investment and production that maximizes

V (K) = Eπ(K,D)−C(K), (8)

the expected value of operating proÞts minus resource investment costs. We denote the maximal

value of V (·) by V ∗ and call any maximizer of V (·) an optimal investment vector.
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Figure 1: The total production quantities (product sales) q = (y1+ z1, y2+ z2) and shadow prices λ depend on the
capacity K and the demand D.

It is straightforward to incorporate demand shortage penalties and capacity salvage values into

the model as follows. Assume product j carries a shortage penalty cost cP,j ≥ 0 for each unit of
demand that is not satisÞed (i.e., for each unit of Dj > yj + zj) and a unit of resource i has a

salvage value cS,i < ci at the end of the period. Then all results presented in this article remain

valid if we inßate unit contribution margins p to p+cP, deßate marginal investment costs c to c−cS
and decrease the operating proÞt π(K,D) by c0PD (which also decreases V (K) by the constant E

c0PD).

3 The Multi-dimensional Newsvendor Solution

Like most multi-stage decision problems, our model is analyzed backward by Þrst solving for the op-

timal contingent production decisions x(K,D), and the associated three-vector λ(K,D) of optimal

dual variables, or shadow prices, of the capacity constraints (2)�(4) in the product mix problem.

Parametric analysis of that linear program (i.e., using the Simplex method) leads us to partition

the demand space R2+ given a capacity vectorK ∈ R3+ into Þve domains as shown in Figure 1, where
the thick-lined Ω0(K) is the Þrm�s production capacity region. This allows us to express the opti-

mal contingent primal and dual variables: x = (D1,K2, 0,K3)0 and λ = (0, p2, p2)0 if D ∈ Ω1(K),
x = (K1,K2, D1−K1,K3−D1+K1)0 and λ = (p2, p2, p2)0 if D ∈ Ω2(K), x = (K1,K2,K3, 0)0 and
λ = (p1, p2, p1)

0 if D ∈ Ω3(K), x = (K1, D2,K3, 0)0 and λ = (p1, 0, p1)0 if D ∈ Ω4(K); and λ = 0
and any vector x of production quantities satisfying y1 + z1 = D1 and y2 + z2 = D2 is optimal if

D ∈ Ω0(K).
From basic linear programming theory we know that π(·, ·), and thus V (·), is concave so that the

Kuhn-Tucker Þrst-order conditions are necessary and sufficient to maximize V (·). In [13], we show

5



that differentiation and expectation can be interchanged so that ∇Eπ(·,D) = Eλ(·, D). Finally,
because the shadow price vector is constant in each domain Ωi(K), we can express the optimality

equations in terms of the dual variables as follows:

Proposition 1 An investment vector K∗ ∈ R3+ is optimal if and only if there exists a ν ∈ R3+ such
that  0

p2
p2

P (Ω1(K∗)) +

 p2
p2
p2

P (Ω2(K∗)) +

 p1
p2
p1

P (Ω3(K∗)) +

 p1
0
p1

P (Ω4(K∗)) = c− ν, (9)

ν0K∗ = 0, (10)

It is readily shown that the optimal investment level K∗ is unique. Proposition 1 greatly

enhances the intuitive content of the model by providing a solution technique with a graphical

interpretation. The optimal investment is found by superimposing the multivariate demand distri-

bution onto Figure 1 and adjusting the thick lines of the feasible region (these are determined by K)

such that the probabilities of the four domains Ω1, · · · ,Ω4 offset the marginal investment cost c as
in the optimality equation (9). Generalizing the language of the familiar one-dimensional newsven-

dor model, one can say that it is optimal to invest up to a critical �fractile� of the multivariate

demand distribution, thereby balancing �overage costs� with �underage costs.�

4 How Optimal Investment depends on Costs and Prices

Proposition 2 will highlight the role of investment costs by showing that the optimal investment

strategy must take one of the following forms: (i) invest in dedicated resources only, (ii) do not

invest in dedicated capacity for product 2 but invest in dedicated capacity for product 1 as well as in

ßexible capacity, or (iii) invest in all three types of capacity. No other combinations of investment

can be optimal. Before we can explicitly write out the Þrm�s optimal investment policy in terms of

the model primitives, we must Þrst deÞne two non-negative threshold values c3 and c̄3, as follows.

Strategy (i) corresponds to a boundary solution of Proposition 1 of the form K̄ = (K̄1, K̄2, 0) which

is the unique solution to

p1P (Ω3(K̄)) + p1P (Ω4(K̄)) = p1P (D1 > K̄1) = c1, (11)

p2P (Ω1(K̄)) + p2P (Ω3(K̄)) = p2P (D2 > K̄2) = c2, (12)

while the third optimality equation reduces to c3 > c̄3 where

c̄3 = c1 + c2 − p2P (Ω3(K̄)). (13)

Strategy (ii) is a boundary solution of the form K = (K1, 0,K3) which is the unique solution to

p2P (Ω2(K)) + p1P (Ω3(K)) = c1, (14)

p2P (Ω1(K)) + p2P (Ω2(K)) + p1P (Ω3(K)) = c3. (15)
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while the second optimality equation reduces to c3 < c̄3 where

c3 = c2 + P (Ω3(K))∆p. (16)

Conditions (12) and (14) yield that 0 ≤ p2P (Ω3(K̄)) ≤ c2 and p1P (Ω3(K)) ≤ c1, respectively.

Because ∆p = p1 − p2 ≥ 0, it follows that c1 ≤ c̄3 ≤ c1 + c2 and c2 ≤ c3 ≤ c̄3. We can now state
the main result:

Proposition 2 The optimal investment strategy has one of three distinct forms, depending on the

marginal cost of ßexibility c3:

(i) If c3 > c̄3, it is optimal to invest only in dedicated resources and K∗ = K̄.

(ii) If c3 < c3, it is optimal to invest only in the product-1 dedicated resource and the ßexible

resource and K∗ = K. This requires a positive price differential ∆p > 0.

(iii) Otherwise, it is optimal to invest in all three resources and K∗ solves (9) with ν = 0.

Because max(c1, c2) ≤ c̄3 ≤ c1 + c3, there are values for c3 that make strategy (i) and/or

(iii) optimal (both are possible if max(c1, c2) < c̄3 < c1+ c3). However, a positive price differential

∆p > 0 is necessary, but not sufficient, for strategy (ii) to be optimal: because we cannot guarantee

that c3 ≥ c1, the problem parameters p, c1, c2 and P may be such that strategy (ii) is never optimal
for any value of c3. Besides understanding the pivotal role of the marginal cost of the ßexible

resource, it is also interesting to see how the optimal investment level changes as the entire marginal

cost vector c changes:

Proposition 3 The optimal value V ∗ is a non-increasing convex function of the marginal capacity
costs c with gradient ∇cV ∗ = −K∗ ≤ 0, and the optimal investment vector K∗ has cost sensitivity
terms

∇cK∗0 =

 −(α1 + α2 + α4) −α1 α1 + α2
−α1 −(α1 + α3 + α5) α1 + α3
α1 + α2 α1 + α3 −(α1 + α2 + α3 + α6)

 , (17)

where α(K∗) ∈ R6+ and α > 0 under optimal strategy (iii); α2,α4,α6 > 0 and all other αj = 0

under strategy (ii); and α4,α5 > 0 and all other αj = 0 under strategy (i).

Proposition 3 extends Lemma 2 and Theorem 2 of Fine and Freund [11] to our multi-dimensional

newsvendor solution with continuous demand distribution and has a similar interpretation. It is

not surprising that the optimal value V ∗ and the optimal investment level K∗
j of resource j do not

increase as the marginal cost of resource j increases. The more interesting result is the substitution

effect implicit in the off-diagonal terms of (17): as the marginal cost of a dedicated resource

increases, the decrease in the optimal investment level of both dedicated resources is partially offset

by an increase in the optimal level of the ßexible resource, and vice versa for an increase in the
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marginal cost of the ßexible resource. However, summing terms shows that the substitution is

incomplete: ∂
∂c1
(K∗

1 +K
∗
2 +K

∗
3) ≤ ∂

∂c1
(K∗

1 +K
∗
3) ≤ 0 ≤ ∂

∂c1
(K∗

2 +K
∗
3), and similar relations hold

for c2 and c3. The impact of price (margin) changes is:

Proposition 4 The optimal value V ∗ is an increasing convex function of the price (margin) vector
p with gradient ∂

∂pi
V ∗ = E(yi + zi) > 0, and the optimal investment vector K∗ has price sensitivity

terms

∇pK∗0 =
µ

β2 −β1 β1 + β3
−β5 + β6 + β7 β4 β5 − β6 + β8 − β9

¶
, (18)

where β(K∗) ∈ R9+ and β > 0 with β4+β7+β8 > β9 under optimal strategy (iii); β2,β3,β5,β7,β8 >
0 and all other βj = 0 under strategy (ii); and β2,β4 > 0 and all other βj = 0 under strategy (i).

Obviously, a higher price (margin) pj , and thus a higher price differential ∆p|p2=cte, is beneÞcial
and warrants a higher investment levelK∗

j in the corresponding dedicated resource. More interesting

is the impact of an increase in p1, or equivalently in the price differential ∆p|p2=cte, on the ßexibility
investment. Such increase asks for a substitution of dedicated product 2 (the less proÞtable product)

capacity into ßexible capacity with a positive net effect: ∂
∂∆p(K

∗
2 +K

∗
3)|p2=cte = β3 > 0. Vice-versa

for an increase in p2 under strategy (ii), though the effect is less-pronounced under strategy (i),

but total capacity is always increasing: ∂
∂pi
(K∗

1 +K
∗
2 +K

∗
3) > 0. The impact of this substitution

on price-mix exploitation will be explained in the next section.

5 How Optimal Investment Depends on Demand Uncertainty

The optimal investment level K∗ and the threshold costs c3 and c̄3 depend not only on the contri-
bution margins p and the marginal investment costs c but also on the entire demand distribution.

Some insights follow directly from the graphical interpretation of the solution: a translation of the

demand distribution by (δ1, δ2) is absorbed by a corresponding shift in the optimal investment level

of the dedicated resources without affecting the optimal level of the ßexible resource: K∗ changes
to (K∗

1 + δ1,K
∗
2 + δ2,K

∗
3). Also, as the level of uncertainty in the demand distribution decreases,

the optimal level of the dedicated resources tends to the mean demand while the optimal level of

the ßexible resource tends to zero. Indeed, the ßexible resource provides us with a real option that

can be exercised after uncertainty is realized. If there is no uncertainty this option has no value

and one will invest in dedicated resources only: K∗ = (D1,D2, 0). Dedicated resources seem to

serve as �base capacity,� whereas the ßexible resource serves as an optimal cost/beneÞt response to

variability in demand. Because the optimal investment solution depends on the entire shape of the

demand distribution�a familiar result of the newsvendor model�it cannot be expressed in terms

of a few demand parameters, such as the mean demand or its variance, only. Thus it is difficult to

draw any general conclusions on the impact of the demand distribution on the optimal investment

strategy. However, the following sensitivity result may help to illustrate how the optimal investment

level depends on a particular parameter θ of the demand distribution.
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Figure 2: The optimal investment strategies when demands are perfectly positively correlated, ∆p > 0 and c1
p1
< c2

p2

for three scenarios: high cost of ßexibility (left), medium cost (center), low cost (right).

Proposition 5 Consider a parametric family of demand density functions g(· |θ), assuming g(· |θ)
is differentiable w.r.t. the scalar parameter θ. Let the domains Ωi = Ωi(K∗) for i = 1, · · · , 4 and
α(K∗) be deÞned as above and deÞne the vector J by Ji =

R
Ωi

∂
∂θg(z |θ)dz. Then the θ-sensitivity

of the optimal investment level K∗ under strategy (iii) is

∂

∂θ
K∗ =

 −α2p2 (α1 + α4)p2 α4p1 + α1p2 α4p1
α5p2 (α1 + α5)p2 (α1 + α5)p2 − α3∆p −α3p1

(α2 + α6)p2 (α6 − α1)p2 α6p1 + α3∆p− α1p2 (α3 + α6)p1

J. (19)

Comparing the signs in (19) shows that also here a substitution effect is present between ded-

icated and ßexible capacity. A general study of the impact of demand parameter θ requires an

analysis of the sum of products of the parameters J and α, each of which itself is a complex func-

tion of the demand distribution. For the remainder of this article, we will focus on the correlation

between the two product demands.

Proposition 6 Let product demands be perfectly positively correlated: P ({D1 = D2}) = 1.

(a) If ∆p = 0, or if ∆p > 0 with c1
p1
≥ c2

p2
, then c̄3 = max(c1, c2) and case (i) of Proposition

2 occurs: it is optimal to invest only in dedicated resources regardless of the cost of ßexible

capacity c3 (and of a positive price differential ∆p).

(b) If ∆p > 0 with c1
p1
< c2

p2
, then max(c1, c2) < c̄3 =

∆p
p1
c1 + c2 < c1 + c2 and cases (i) and (iii)

of Proposition 2 can occur (case (ii) may never occur), always with K∗
1 > K∗

2 + K
∗
3 . The

optimality equations for K∗ in case (iii) simplify to

P (K∗
1 < D1) =

c1 + c2 − c3
p2

, P (K∗
1 +K

∗
3 < D1) =

c3 − c2
∆p

and P (K∗
2 +K

∗
3 < D1) =

c2
p2
.

Proposition 6 emphasizes the signiÞcance of the �price� differential ∆p in the ßexibility deci-

sion. Contrary to intuition, it shows that it is optimal to invest in ßexible capacity if there is

a positive price (margin) differential ∆p > 0 and c1/p1 < c2/p2 and if c3 < c̄3. Figure 2 pro-

vides a graphical explanation of how ßexibility can yield superior performance, even with perfectly
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positively correlated demands. It portrays the shape of the feasible regions created by optimal

investment strategies under three different parameter combinations that differ only in the cost of

ßexible capacity. Only demand pairs on the 45o line are possible. To compare the three scenarios,

consider the speciÞc demand outcome and the corresponding optimal production decision that are

connected by the arrow in the pictures. In scenario 1 at the left, the cost of ßexible capacity is high

and it is optimal to invest only in dedicated capacity, yielding a rectangular feasible region. If the

cost of ßexible capacity decreases below c̄3, we arrive at scenario 2 in the center. Here, investing in

the ßexible resource creates the option to produce more (compared to the investment in dedicated

resources only shown by the dotted rectangular feasible region) of the more proÞtable product 1 at

the expense of the less proÞtable product 2 when demand falls in domain Ω2. The associated proÞt

gain outweighs the increased investment costs so that it is optimal to invest in the ßexible resource

even though the product demands move in lockstep. As we move from scenario 1 to scenario 2,

the maximal product 1 capacity increases, while the maximal product 2 capacity remains constant

(K2 in scenario 1 equals K2 +K3 in scenario 2). This is in agreement with Proposition 3: as c3
decreases, the increase in K∗

3 partially substitutes the decrease in dedicated capacity. Finally, if

the cost of ßexibility decreases so much that K2 becomes zero in scenario 2 (while P (Ω3) > 0),

scenario 3 at the right applies1.

Notice that the simple necessary and sufficient condition for a Þrm to invest in ßexible resources

is independent of the particular probability distribution of D1 = D2. It thus is independent of the

level of variability or �risk� in demand, as long as some variability is present. Obviously, as said

earlier, the presence of uncertainty remains key.

Proposition 7 Let product demands be perfectly negatively correlated: P ({D1+D2 = k > 0}) = 1,
and let c̄3 = p2 +

∆p
p1
c1 and c∗3 = p1 − ∆p

p2
c2.

(a) If c1p1 +
c2
p2
> 1 and c3 > c̄3, then the optimal strategy invests in dedicated resources only: case

(i) of Proposition 2 occurs with K∗
1 +K

∗
2 < k.

(b) If c1p1 +
c2
p2
> 1 and c̄3 ≥ c3 > c∗3 (this implies a positive price differential ∆p > 0), then the

optimal strategy invests in all three resources with K∗
1 +K

∗
2 +K

∗
3 < k and

P (D1 < K
∗
1) =

c3 − c1
p2

, P (D1 < K
∗
1 +K

∗
3) =

p1 − c3
∆p

and P (D1 < k −K∗
2) =

c2
p2
. (20)

(c) If c1p1 +
c2
p2
> 1 and c∗3 ≥ c3, or if c1p1 + c2

p2
≤ 1, then the optimal strategy invests in all three

resources with K∗
1 +K

∗
2 +K

∗
3 = k and

P (D1 < K
∗
1) =

c3 − c1
p2

and P (K∗
1 +K

∗
3 < D1) =

c3 − c2
p1

. (21)

1While scenarios 1 and 2 always occur, scenario 3 may never occur, namely if K2 remains strictly positive in
scenario 2 when the cost of ßexibility is at its minimum (= max(c1, c2)).
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Figure 3: The optimal investment strategies when demands are perfectly negatively correlated and c1
p1
+ c2

p2
> 1 for

three scenarios: high cost of ßexibility (left), medium cost (center), low cost (right).

Figure 3 portrays the shape of the feasible regions created by the optimal investment strategies

under the three different possible scenarios of Proposition 7: high cost of ßexible capacity (left

picture), medium cost (middle), and low cost (right). Now, only demand pairs on the −45o line
are possible. Although more in line with intuition, Proposition 7 shows that if both products

are sufficiently proÞtable (as measured by c1
p1
+ c2

p2
≤ 1), it is optimal to invest in the ßexible

resource regardless of its marginal investment cost, within the obvious limits of our assumptions

(0 < c1, c2 < c3 < c1+ c2). Also, even with perfect negative correlation, the proposition shows that

there are situations where one should not invest in ßexible capacity (case (a) requires high ßexible

cost and low margin products) or where total capacity is less than total a-priori known demand k

(case (b) allows medium ßexible cost if the price (margin) differential is high). These results, like

those of Proposition 4, are strong in that the threshold values c̄3 and c∗3 are independent of the
probability distribution of D1 = k −D2.

In the following section optimal investment plans are derived numerically for a particular family

of demand distributions where two parameters, correlation and variability, can be varied continu-

ously and independently. Extending the two boundary cases presented here, it appears that the

optimal levels of dedicated capacity increase in a concave manner as correlation increases, while

the optimal level of ßexible capacity decreases in a convex manner. (The opposite usually, but not

always, happens as variability increases.) This is the substitution effect implicit in Proposition 5.

5.1 Modeling Non-Perfect Correlation and Risk in Demand

Finally, we want to consider the situation where D1 and D2 are imperfectly correlated. For that

purpose a particular family of demand distributions will be considered, and optimal investment

plans will be derived numerically. The demand distributions to be considered have two parameters,

a correlation parameter ρ ∈ (−1, 1) and a variability parameter α > 0 (not to be confused with

α(K∗) of Proposition 3) and the associated probability density functions are denoted by g(· |α, ρ).

11



The density g(· |α, ρ) concentrates its probability mass only on the region

R(ρ) =
©
z ∈ [0, 2]2 : (z1 − 1)2 − 2ρ(z1 − 1)(z2 − 1) + (z2 − 1)2 < 1− ρ2

ª
. (22)

R(ρ) is an ellipse contained in the square [0, 2] × [0, 2] with center (1, 1). Its axes of symmetry
are the diagonal lines passing through (1, 1) with slopes −1 and +1 and have lengths √1+ ρ and√
1− ρ. The same diagonal lines are axes of symmetry for the density function g(· |α, ρ), so its

mean is (1, 1). The particular form of the distribution is discussed in Appendix B, where it is

shown that g(· |α, ρ) has covariance matrix

Σ =
1

2(α+ 1)

µ
1 ρ
ρ 1

¶
. (23)

The density g(· |α, ρ), is symmetric and according to (23) each component (product demands D1
and D2) has variance 1/2(α+ 1), so we shall deÞne the �risk� parameter of the demand density g

as

Risk = (1+ α)−1/2. (24)

Note that risk ranges between 0 and 1. The family of densities g(· |α, ρ)model demand distributions
where one can vary both correlation ρ and risk (1+α)−1/2 continuously and independently. Figure
42 shows the characteristic shape of the density g when α > 1 (left picture) and when α < 1 (right

picture, which is �cut open� for visual clarity). When α = 1, we obtain a uniform distribution over

the elliptical domain R described above.

To investigate how the optimal investment depends on the correlation between the demands

for the two products, we have solved numerically for the optimal investment, using this family of

demand distributions for two cases. Case 1 with contribution margin parameter p = (1, .9)0 and
marginal investment cost parameter c = (.3, .28, .5)0 represents a situation where both products are
(almost) equally proÞtable and ßexible capacity is relatively expensive. The optimal investment

results for Case 1 are presented in Figure 5 for various levels of the risk parameter. The optimal

levels of dedicated capacity increase in a concave manner as correlation increases, while the optimal

level of ßexible capacity decreases in a convex manner. This is the substitution effect alluded to

above, which is implicit in Proposition 5. Dedicated capacity reaches and remains at its maximum

when ßexible capacity becomes zero. While dedicated capacity seems to be risk-independent for

one speciÞc correlation ρ∗ (about -0.7 in Case 1), strictly positive ßexible capacity levels are risk-
dependent for all correlations.

The picture in the upper right corner of Figure 5 shows that the upper threshold value for the

cost of ßexibility, c̄3, decreases in a concave manner as correlation increases. After the threshold

hits the marginal cost of ßexibility c3 = 0.5, it is optimal not to invest in ßexibility. The pictures in

the lower right of Figure 5 show that the optimal value of V , the expected value of operating proÞts

minus resource investment costs, is rather insensitive to correlation. The value of ßexibility, deÞned
2Figures 4 to 7 are shown on pages 22-25.
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as V−VdVd
, the relative difference between the optimal value V and the optimal value Vd if the Þrm�s

investment options are restricted to dedicated resources only, decreases in a convex manner, very

similar to the change in the optimal investment level of the ßexible resource. Thus, the optimal

investment strategy yields a hedge against uncertainty in correlation: by optimally investing in the

ßexible resource, the Þrm minimizes the sensitivity of its �value� V to changes in correlation.

Case 2 with contribution margin parameter p = (1, .7)0 and marginal investment cost parame-
ter c = (.3, .38, .45)0 represents a situation where product 1 is more proÞtable than product 2 and
ßexible capacity is relatively inexpensive. The optimal investment results for Case 2 are presented

in Figure 6. Optimal capacity levels exhibit the same trends as in Case 1. However, the ßexible

capacity is strictly decreasing but strictly positive everywhere, even with perfectly positively corre-

lated demand in accordance with Proposition 6. Therefore, the substitution effect implies that total

dedicated capacity is strictly increasing. Indeed, the optimal dedicated capacity level of resource

2, K2, is strictly increasing, as opposed to Case 1 where K2 reaches a maximum and is constant

thereafter. Also, only dedicated resource 1 has a �risk-independent� correlation ρ∗ of about -0.1
(higher than in Case 1), while the optimal levels of the other dedicated resource always are risk

dependent. Because the optimal value function is more sensitive to correlation in Case 2 than in

Case 1, the optimal investment provides a less effective hedge when ßexible capacity is inexpensive

than in Case 1, where ßexible capacity is relatively expensive.

Finally, Figure 7 shows how the optimal investment strategy depends on the variability or risk

in the demand distribution. Because the results for Cases 1 and 2 above are very similar, only

the results for Case 2 are shown. Where the optimal capacity levels for the dedicated resources

are increasing in correlation, there is no unique trend in the change in dedicated capacity as risk

changes: it seems that the optimal level of dedicated capacity 1 is decreasing in risk for correlations

smaller than the correlation threshold ρ∗ identiÞed above, while it increases for correlations larger
than ρ∗. On the other hand, the optimal level of ßexible capacity seems to be strictly increasing
in the level of risk. [One must be careful about extrapolating these conclusions to other sets of

demand distributions. For example, Fine and Freund [11, pp. 460�461] Þnd that for a particular

family of uncorrelated discrete demand distributions, the optimal level of ßexible capacity may not

be monotone in the level of risk.] The upper threshold c̄3 of the ßexible marginal capacity cost is

rather insensitive to risk, while the optimal value V decreases almost linearly with risk. The value

of ßexibility increases (in a convex manner) with the level of risk. Comparing the sensitivity of

the optimal value V to risk with its sensitivity to correlation, one may conclude that in these two

examples the optimal investment strategy can provide a more effective hedge against correlation

than against risk.

These results can be related to the general framework of de Groote [6]. He considers three

elements:

� A set of technologies whose ßexibility is compared. A technology in this paper is identiÞed
by its capacity vector K.
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� A set of environments in which these technologies might be operated. If we are interested in
risk, we can identify environments by the parameter α.

� A performance criterion for the evaluation of different technologies in different environments.
We have chosen the Þrm value V (K,α) as the criterion.

If we continue to follow intuition and use the capacity level of the ßexible resource, K3, as a

measure of ßexibility of the system, then K3 induces a total ordering on the set of technologies

parameterized by the vectorK. Because this ordering differs from the ordering that may be induced

by the vector-valued function V , de Groote�s results cannot be applied here directly. However, our

examples for the family of densities g imply a result similar to de Groote�s Property 2 on operations

strategy: an increase in the diversity of the environment makes it more desirable to select a more

ßexible technology�indeed K∗
3 increases with risk

3.

Acknowledgments: I am grateful to Mike Harrison, Sunil Chopra and the anonymous referees for their
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A Proofs

Proposition 1 Proof. The Þrm seeks to solve maxK∈R3+ V (K) = maxK∈R3+ Eπ(K,D)− c0K. Because D is
Þnite with probability 1 and is a continuous random vector, Proposition 2 in [13] shows that Eπ(·,D) (and
thus V (·)) is differentiable and that the shadow prices λ(K,D) exist and satisfy ∇Eπ(·,D) = Eλ(·,D). Thus,
a vector K∗ that solves this concave optimization problem also solves the sufficient Kuhn-Tucker conditions
(9)�(10) where ν ∈ R3+ is the Lagrange multiplier of the non-negativity constraint on K.

Lemma: Optimal solution K∗ is unique because V (K) is strictly concave. Proof. Denote the
line integrals of the probability density g of P over the boundaries of the domains Ωi(K):

I1 =

Z K1

0

g(x,K2 +K3) dx, I4 =

Z K2

0

g(K1 +K3, y) dy, (25)

I2 =

Z K1+K3

K1

g(x,K1 +K2 +K3 − x) dx, I5 =

Z ∞

K2+K3

g(K1, y) dy, (26)

I3 =

Z ∞

K1+K3

g(x,K2) dx, I6 =

Z ∞

K2

g(K1 +K3, y) dy. (27)

The negative Hessian of V , −H = −∇2V = −∇Eλ0 =

−H =

 p1I4 + p2(I2 + I5) +∆pI6 p2I2 p1I4 + p2I2 +∆pI6
p2I2 p2(I1 + I2 + I3) p2(I1 + I2)

p1I4 + p2I2 +∆pI6 p2(I1 + I2) p1I4 + p2(I1 + I2) +∆pI6

 , (28)

is positive, symmetric, and strictly diagonally dominant and thus positive deÞnite. Thus V is strictly concave
and the optimal capacity level K∗ is unique.

Proposition 2 Proof. The three strategies correspond to an interior point solution and two boundary
solutions to the general optimality equations (9)�(10). Thus, it only remains to show that no other of the
remaining Þve boundary sets are optimal.

Boundary K∗
1 = 0,K

∗
2 ,K

∗
3 > 0 has P (Ω1) = 0 and Eλ1 = c3. Because c3 > c1 by assumption, there is

no positive ν1 that solves optimality equations (9)�(10).
BoundaryK∗

1 > 0,K
∗
2 = K

∗
3 = 0 has P (Ω2) = P (Ω4) = 0 and Eλ2 = p2. Because p2 > c2 by assumption,

there is no positive ν2 that solves optimality equations (9)�(10).
BoundaryK∗

2 > 0,K
∗
1 = K

∗
3 = 0 has P (Ω1) = P (Ω2) = 0 and Eλ1 = p1. Because p1 > c1 by assumption,

there is no positive ν1 that solves optimality equations (9)�(10).
Boundary K∗

3 > 0,K
∗
1 = K

∗
2 = 0 has P (Ω1) = P (Ω4) = 0 and Eλ1 = c3. Because c3 > c1 by assumption,

there is no positive ν1 that solves optimality equations (9)�(10).
Finally, boundary K∗

1 = K∗
2 = K∗

3 = 0 has P (Ω1) = P (Ω2) = P (Ω4) = 0, P (Ω3) = 1 and Eλ1 = p1.
Because p1 > c1 by assumption, there is no positive ν1 that solves optimality equations (9)�(10).

Proposition 3 Proof. Because V (K; c) = Eπ(K,D) − c0K is convex in c on the convex set R3+ for
each K ∈ R3+, convexity of V ∗(c) follows from convexity preservation under maximization [15, p. 525, Prop.
B-3]. Because ∇cV (K; c) = −K is independent of c and the optimal level K∗ is unique, Fiacco [10, Theorem
2.3.1., p. 25] (a form of the �envelope theorem�) directly yields that V ∗ is differentiable with gradient −K∗.
Using the integrals (25)�(25) evaluated at K = K∗, implicit differentiation of the optimality equations for
all three cases in Proposition 2 yields:

For case (iii):

H∇cK∗0 = ∇c (c, c, c) =
 1 0 0
0 1 0
0 0 1

⇒∇cK∗0 = H−1, (29)
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where

H−1 =

 −α1 − α2 − α4 −α1 α1 + α2
−α1 −α1 − α3 − α5 α1 + α3

α1 + α2 α1 + α3 −α1 − α2 − α3 − α6

 , (30)

where the non-negative vector α(K∗) ∈ R6+ is deÞned as:

α1 = −p2|H|−1[p1I1I4 +∆pI1I6],
α2 = −p2|H|−1[p1I2I4 + p1I3I4 + p2I2I3 +∆pI3I6 +∆pI2I6],
α3 = −p2|H|−1[p2I1I2 + p2I1I5 + p2I2I5],
α4 = −p2|H|−1[p2I1I3],
α5 = −p2|H|−1[p1I4I5 +∆pI5I6],
α6 = −p2|H|−1[p2I3I5].

(Note that |H| < 0 because H is negative deÞnite.)
For case (ii) with K2 = 0 we have that I4 = 0 and ∂

∂c2
K∗ = 0 and

G

µ ∂
∂c1
∂
∂c3

¶
(K∗

1 ,K
∗
3 ) =

µ ∂
∂c1
∂
∂c3

¶µ
c1 c1
c3 c3

¶
=

µ
1 0
0 1

¶
⇒
µ ∂

∂c1
∂
∂c3

¶
(K∗

1 ,K
∗
3 ) = G

−1, (31)

where

G = −
µ
p2(I2 + I5) +∆pI6 p2I2 +∆pI6
p2I2 +∆pI6 p2(I1 + I2) +∆pI6

¶
(32)

G−1 = −|G|−1
µ
p2I1 + p2I2 +∆pI6 −p2I2 −∆pI6
−p2I2 −∆pI6 p2I2 + p2I5 +∆pI6

¶
(33)

=

µ −α2 − α4 α2
α2 −α2 − α6

¶
(34)

where α2,α4,α6 ≥ 0 because G is negative deÞnite (and thus |G| > 0) and α1 = α3 = α5 = 0.
Finally, for case (i) with K3 = 0, we have I2 = 0 and I5 = I6 and ∂

∂c3
K∗ = 0 and

F

µ ∂
∂c1
∂
∂c2

¶
(K∗

1 ,K
∗
2 ) =

µ ∂
∂c1
∂
∂c2

¶µ
c1 c1
c2 c2

¶
=

µ
1 0
0 1

¶
⇒
µ ∂

∂c1
∂
∂c2

¶
(K∗

1 ,K
∗
2 ) = F

−1, (35)

where

F = −
µ
p1I4 + p1I6 0

0 p2(I1 + I3)

¶
(36)

F−1 = −|F |−1
µ
p2(I1 + I3) 0

0 p1I4 + p1I6

¶
=

µ −α4 0
0 −α6

¶
(37)

where α4,α6 ≥ 0 because F is negative deÞnite (and thus |F | > 0) and α1 = α2 = α3 = α5 = 0. Note that
∇ is a subgradient on the two sets of threshold costs {c ∈ R3+ : c3 = c̄3 or c3 = c3} of Lebesgue measure
zero. Clearly α is a non-negative function of K∗ for all three cases.

Proposition 4 Proof. Because V (K; p) = (p1, p2, p1, p2)0Ex(K,D) − c0K is linear (and thus convex;
note that x(K,D) are independent of p1 ≥ p2) in p on the convex set {p : p1 ≥ p2 ≥ 0} for each K ∈ R3+,
convexity of V ∗(p) follows from convexity preservation under maximization [15, p. 525, Prop. B-3]. Because

∇pV (K; c) =
µ
1 0 1 0
0 1 0 1

¶
Ex(K,D) is independent of c and the optimal level K∗ is unique, Fiacco

[10, Theorem 2.3.1., p. 25] (a form of the �envelope theorem�) directly yields that V ∗ is differentiable
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with gradient
µ
1 0 1 0
0 1 0 1

¶
Ex∗(K,D). Using the integrals (25)�(25) evaluated at K = K∗, implicit

differentiation of the optimality equations for all three cases in Proposition 2 yields: abbreviating P (Ωi(K∗))
by Pi and the corresponding vector by ~P , for case (iii):

∂

∂p1
K∗ = −H−1

 0 0 1 1
0 0 0 0
0 0 1 1

 ~P =

 0 0 α4 α4
0 0 −α3 −α3
0 0 α3 + α6 α3 + α6

 ~P (38)

∂

∂p2
K∗ = −H−1

 0 1 0 0
1 1 1 0
1 1 0 0

 ~P =

 −α2 α1 + α4 α1 0
α5 α1 + α5 α1 + α3 + α5 0

α2 + α6 −α1 + α6 −α1 − α3 0

 ~P (39)

and thus:

∇pK∗0 =
µ
β2 −β1 β1 + β3
−β5 + β6 + β7 β4 β5 − β6 + β8 − β9

¶
(40)

and

∂

∂p2
(K∗

1 +K
∗
3 ) =

¡
α6 α4 + α6 −α3 0

¢
~P = β7 + β8 − β9, (41)

∂

∂p2
(K∗

1 +K
∗
2 +K

∗
3 ) =

¡
α5 + α6 α1 + α4 + α5 + α6 α1 + α5 0

¢
~P (42)

= β4 + β7 + β8 − β9 > 0 (43)

so that β > 0 with β4 + β7 + β8 > β9.
For case (ii) with K2 = 0 we have that P4 = 0 and I4 = 0:

∂

∂p1

µ
K∗
1

K∗
3

¶
= −G−1

µ
0 0 1
0 0 1

¶
~P1:3 =

µ
0 0 α4
0 0 α6

¶
~P1:3, (44)

∂

∂p2

µ
K∗
1

K∗
3

¶
= −G−1

µ
0 1 0
1 1 0

¶
~P1:3 =

µ −α2 α4 0
α2 + α6 α6 0

¶
~P1:3, (45)

thus β1 = β4 = β6 = β9 = 0.
Finally, for case (i) with K3 = 0, we have P2 = 0, I2 = 0 and I5 = I6:

∂

∂p1

µ
K∗
1

K∗
2

¶
= −F−1

µ
0 1 1
0 0 0

¶
~P1,3:4 =

µ
0 α4 α4
0 0 0

¶
~P1,3:4 =

µ c1
p21(I4+I6)

0

¶
, (46)

∂

∂p2

µ
K∗
1

K∗
2

¶
= −F−1

µ
0 0 0
1 1 0

¶
~P1,3:4 =

µ
0 0 0
α6 α6 0

¶
~P1,3:4 =

µ
0
c2

p22(I1+I3)

¶
, (47)

so that β2 =
c1

p21(I4+I6)
,β1 = β3 = 0,β4 =

c2
p22(I1+I3)

and β5:10 = 0.

Proposition 5 Proof. Implicit differentiation of the optimality equation (9) with ν = 0 yieldsH ∂
∂θK

∗+P4
i=1 λiJΩi(K∗) = 0 or

∂

∂θ
K∗ = −H−1

 0 p2 p1 p1
p2 p2 p2 0
p2 p2 p1 p1

 ~J (48)

=

 −α2p2 (α1 + α4)p2 α4p1 + α1p2 α4p1
α5p2 (α1 + α5)p2 (α1 + α5)p2 − α3∆p −α3p1

(α2 + α6)p2 (α6 − α1)p2 α6p1 + α3∆p− α1p2 (α3 + α6)p1

 ~J (49)
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Proposition 6 Proof. First note that we obviously could have taken any linear function with positive
slope: D2 = ξ1D1 + ξ2 with ξ1 > 0 to deÞne perfectly positively correlated random demands.

Solving (11)�(12) if c1p1 ≥ c2
p2
yields c̄3 = c1, such that only strategy (i) exists with K∗

1 ≤ K∗
2 . If

c1
p1
< c2

p2
,

the c̄3 = (1− p2
p1
)c1+ c2 > c1 such that both strategy (i) and (ii) can exist (depending on c3) with K∗

1 > K
∗
2 ,

in which case the optimality equations for strategy (iii) simplify to those given in Proposition 6.

Proposition 7 Proof. (Same note as in previous proof: we could have taken D2 = ξ3D1 + ξ4 with
ξ3 < 0 to deÞne perfectly negatively correlated demands.)

If Case (i) of Proposition 2 holds: Solving (11)�(12) with P (Ω3) = 0, yields c̄3 = c1+c2 so that case (i) is
never optimal (c3 < c1+c2 by Assumption (A1)). Thus, P (Ω3) > 0 and solving (11)�(12) with K∗

1 +K
∗
2 ≤ k

yields c̄3 = p2 + (1 − p2
p1
)c1. And c̄3 ≤ c1 + c2 if and only if c1p1 +

c2
p2
≤ 1, in which case Case (i) is never

optimal. Thus, we need c3 > c̄3 = p2 + (1− p2
p1
)c1 and c1

p1
+ c2

p2
> 1 for Case (i) to be optimal.

If Case (iii) of Proposition 2 holds: If K∗
1 + K

∗
2 + K

∗
3 > k, P (Ω2) = P (Ω3) = 0 and the optimality

equations would imply that c3 = c1 + c2, in contradiction to assumption (A1). Thus, K∗
1 +K

∗
2 +K

∗
3 ≤ k.

If K∗
1 + K

∗
2 + K

∗
3 < k, solving the optimality equations (with the additional constraint that P (Ω1) +

P (Ω2) + P (Ω3) + P (Ω4) = 1) yields the simpliÞed optimality equations (20). Clearly, K∗
1 +K

∗
2 +K

∗
3 < k if

P (Ω3) =
c2
p2
− p1−c3

p1−p2 > 0 or, equivalently, c3 > c
∗
3 = p1 − (p1 − p2) c2p2 . Finally, if c3 ≤ c∗3, K∗

1 +K
∗
2 +K

∗
3 = k

(notice that c∗3 ≤ c̄3 if and only if c1
p1
+ c2

p2
> 1, so that Case (iii) with K∗

1 + K
∗
2 + K

∗
3 = k is optimal if

c1
p1
+ c2
p2
≤ 1) and solving the optimization problem directly (or setting a subgradient of ∇Eπ(K∗

1+K
∗
2+K

∗
3 =

k,D) = (x+ p1P (Ω4)− c1, x+ p2P (Ω1)− c2, x+ p2P (Ω1) + p1P (Ω4)− c3)0, where 0 ≤ x ≤ p2P (Ω2) ≤ p2),
equal to zero) yields the simpliÞed optimality equations (21).
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B A Two-Parameter Family of Distributions

In this section, we introduce a family of probability distributions that are parameterized by two parameters:
a variability or risk parameter α > 0 and the correlation coefficient −1 < ρ < 1. The interesting fact is
that these two parameters are orthogonal in the sense that correlation ρ can be varied while variability
(represented by α) remains unchanged and vice-versa. Consider the family of probability distributions with
density h(· |α, ρ) : R2 → R+ where, for z ∈ R2,

h(z |α,ρ) =
½

α
π (1− ρ2)

1
2−α

¡
1− ρ2 − z21 − z22 + 2ρz1z2

¢α−1
if z21 − 2ρz1z2 + z22 < 1− ρ2

0 elsewhere.
(50)

We will show that h(· |α, ρ) has mean vector (0, 0)0 and correlation matrix

Σ =
1

2(α+ 1)

µ
1 ρ
ρ 1

¶
. (51)

Before proving this, let us Þrst give some intuition by discussing how this density was constructed. We used
three facts. First, a uniform density over an ellipse z21 − 2ρz1z2 + z22 = ξ has a correlation ρ. Second, the
symmetric beta distribution with parameter(s) α has a coefficient of variation (risk) equal to (1+ 2α)−1/2.
Third, the distribution obtained by a weighted superposition of a uniform distribution on the family of
ellipses with parameter ξ with weight f(ξ)dξ has the same correlation ρ. Finally, the family of distributions
h(· |α, ρ) was obtained by superposition of the ellipses with weights proportional to the symmetric beta
density.

Translating the family h(· |α, ρ), so as to center on the point (1, 1), yields the family g(· |α, ρ) of demand
distributions used above. Implicitly we have made two assumptions: First, demand is Þnite with probability
one and thus, without loss of generality, we can scale the demand axes such that the maximum demand minus
minimum demand equals 2. Secondly, to limit the number of parameters in the model, we have assumed
that the (scaled) demand distribution is symmetric in D1 and D2.

We will now calculate some functionals of the density h. First, note that for −1 ≤ u1 ≤ u2 ≤ 1,Z u2

u1

du (1− u2)α−1 = 22α−1
h
B 1−u1

2
(α,α)−B 1−u2

2
(α,α)

i
, (52)

where Bx(α,α) denotes the incomplete beta function. The marginal density in the Þrst coordinate is inde-
pendent of ρ:

h1(x1|α, ρ) =

Z +1

−1
dx2 h(x|α, ρ) (53)

=
α

π
(1− x21)α−1/2

Z +1

−1
dz (1− z2)α−1 (54)

=
α

π
(1− x21)α−1/222α−1B(α,α), (55)

where the substitution z = ρx1−x2√
(1−ρ2)(1−x21)

was used. In the same way, we have thatZ +1

−1
dx2 x2h(x |α, ρ) (56)

=
α

π
(1− x21)α−1/2

Z +1

−1
dz

µ
ρx1 − z

q
(1− ρ2)(1− x21)

¶
(1− z2)α−1 (57)

= ρx1h1(x1 |α, ρ). (58)

The marginal distribution is

H1(x1 |α, ρ) =

Z x1

−1
duh1(u |α, ρ) (59)

=
α

π
22α−1B(α,α)22αB 1+x1

2
(α+ 1/2,α+ 1/2) (60)

=
B1+x1

2
(α+ 1/2,α+ 1/2)

B(α+ 1/2,α+ 1/2)
, (61)
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where the fact α24α−1B(α,α)B(α+ 1/2,α+ 1/2) = π was used. Since h is symmetric, its Þrst moments are
zero. The second moments are

E
£
x21|α, ρ

¤
=

Z +1

−1
duu2h1(u |α, ρ) (62)

= 22α
α

π
B(α,α)

Z 1

0

dt t1/2(1− t)α−1/2 (63)

= 22α
α

π
B(α,α)B(3/2,α+ 1/2) (64)

=
1

2(α+ 1)
, (65)

where the substitution t = u2 was used. Using (56) we have that

E [x1x2|α, ρ] =

Z +1

−1
dx1x1

Z +1

−1
dx2 x2h(x |α, ρ) (66)

=

Z +1

−1
dx1x1ρx1h1(x1 |α,ρ) (67)

= ρE
£
x21|α, ρ

¤
. (68)

Finally, it is interesting to see what the limiting distribution is for the extreme points of perfect correlation
(ρ→−1,+1) and maximum risk (α→ 0). The marginal density h1(· |α, ρ) is independent of ρ and therefore
is also the limiting distribution for ρ→ −1,+1, which means that with perfect correlation, the demand D1
is distributed as a beta random variable with symmetric parameters α + 1/2. This, remains valid for the
limit point α → 0. For non-perfect correlation, the probability mass concentrates on the perimeter of the
ellipse when α → 0. The limiting distribution is thus essentially one-dimensional and in polar coordinates
can be found as follows. Let ro(θ) be the radius of the point (x, y) = (ro, θ) on the ellipse. We have that
ro2 = (1− ρ2)/(1− ρ sin 2θ). Denote the limiting distribution for α→ 0 and ρ 6 =± 1 by h0(θ |ρ). We have
that for any Þxed ∆r > 0 with ∆r < ro:

h0(θ |ρ) = lim
α→0

Z ro

ro−∆r
h(r, θ |α, ρ)dr, (69)

= lim
α→0

α

π
p
1− ρ2

Z ro

ro−∆r

¡
1− (r/ro)α−1¢ rdr, (70)

= lim
α→0

ro2

2π
p
1− ρ2 (2(∆r/r

o) + o(∆r/ro))α , (71)

=

p
1− ρ2

2π(1− ρ sin 2θ) . (72)

The cumulative H0(θ |ρ) = R θ−π h0(θ |ρ)dθ also can be represented in closed form:
H0(θ |ρ) = 1

2π

"
arctan

tan θ − ρp
1− ρ2 − arctan

−ρp
1− ρ2

#
. (73)
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Figure 4: Two members of the family of demand densities g(� j�;�) both with correlation � = 0:75 but di�erent

risk: low risk (left) and high risk (right).
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Figure 5: Optimal Investment as a function of correlation{Case 1: exible capacity is expensive and parameterized

by risk for p = (1; :9)0 and c = (:3; :28; :5)0.
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Figure 6: Optimal Investment as a function of correlation{Case 2: exible capacity is inexpensive. and parameter-

ized by risk for p = (1; :7)0 and c = (:3; :38; :45)0.
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Figure 7: Optimal Investment as a function of risk and parameterized by correlation for p = (1; :7)0 and c =

(:3; :38; :45)0.
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