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Abstract

We offer a framework to simultaneously study the role played by investors’
attention to news and learning uncertainty in the determination of asset prices.
We show that asset return volatility and risk premia increase quadratically with
both attention and uncertainty. Our empirical investigation lends support to
these theoretical predictions. Moreover, learning yields a lead-lag relation between
attention and uncertainty; this relation is found to enable “panic states,” featuring
spikes in volatilities and risk premia. During these panic states asset prices are
very sensitive to news, consistent with recent empirical findings.
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1 Introduction

Investors’ processing of information, or learning, is a broad generic term that is difficult

to define with specificity. It comprises several dimensions forming a coherent whole, with

each dimension raising separate important questions. How much attention do investors

pay to information? How much learning uncertainty is generated through investors’ pro-

cessing of information? Does the process of learning yield dispersion of beliefs across

investors? Are there any systematic biases in investors’ cognitive processing of informa-

tion?

Whether together or separate, these questions have received great attention in the

literature. In this paper we focus on two of them, namely, how much attention is allocated

to learning, and how much uncertainty results from learning. Our motivation to work on

these two factors, i.e., attention and uncertainty, stems from two reasons. First, at an

empirical level, there is agreement that attention and uncertainty impact asset returns.

Convincing empirical work is conducted on two separate battlefronts. On one side, investor

attention, measured from Google search volumes, is strongly time-varying and higher in

periods of high volatility (Da, Engelberg, and Gao, 2011; Vlastakis and Markellos, 2012).1

On the other side, uncertainty is a priced risk factor and is associated to high volatility

(Massa and Simonov 2005, Ozoguz 2009).2 Yet, there is neither empirical nor theoretical

work that assesses the relative importance of these two factors for risk premium and stock

market volatility. Here we tackle this task.

The second reason we study attention and uncertainty simultaneously is because, in

fact, they are closely related. If investors pay a lot of attention to learn about the

fundamental structure of the economy, then uncertainty is expected to decrease. In the

opposite case uncertainty is expected to increase. The overall consequence of attention

and uncertainty is obscured by this intuitive synchronicity. Most theoretical models lack a

clear-cut separation between attention and uncertainty. Here we deal with this important

theoretical challenge.

We build the simplest setting in which the effects of attention and uncertainty emerge.

We show precisely how attention and uncertainty drive risk premia and volatilities and

we confirm empirically our findings. Although our model is greatly simplified (single

and rational agent, Bayesian learning, normally distributed variables), it has a rich set

of testable implications. This simplicity also creates many possibilities for extensions to

richer models.

The following example, adapted from a standard setup in the literature of learning

in finance, conveys our intuition. An investor tries to learn the fundamental structure of

1Other papers using Google search volumes on companies names, tickers, or other economic terms to
gauge investors’ attention are Dimpfl and Jank (2011), and Kita and Wang (2012).

2For a comprehensive review of the literature of learning and uncertainty in financial markets see
Pastor and Veronesi (2009).

1



the economy; precisely, the investor observes the history of total output generated by this

economy and tries to guess its time-varying growth rate. Various news—signals—from

TV, newspapers, Internet, or other sources provide incremental information about this

growth rate.3 If the investor is attentive to news, then volatility of the estimated growth

rate is high (because news observed are informative), but uncertainty is low (because the

investor learns well). Conversely, if the investor pays no attention to news and learns

by observing the output only, the volatility of the estimated growth rate is relatively low

(because no news are observed), but uncertainty tends to be high (because the investor

learns badly). Put differently, two antagonistic effects arise endogenously from learning

matter for expectations. The first comes from attention—or how sure the investor is about

the likely growth rate. The second comes from uncertainty—or how unsure the investor

is about the likely growth rate.

Our paper embeds this simple but powerful insight within an elementary pure exchange

economy and studies its implications for fluctuations in stock market volatility and risk

premium. We build a dynamic general equilibrium model in which an investor collects

information—with fluctuating attention—on the unobservable state of the economy. The

key consequence of our model structure is a dynamic interaction between attention and

uncertainty, which naturally captures the above insight.

We uncover a subtle relationship between attention, uncertainty, and volatility. Our

main prediction is that the variance of stock returns increases quadratically with attention

and uncertainty. We perform an empirical investigation which lends support to this

prediction. Furthermore, we run a horse race between attention and uncertainty. We

find that attention is a more powerful driver of volatility, especially when controlling for

lagged volatility.

Then, we show that risk premia are also determined by both attention and uncertainty.

Disentangling the effects of these two drivers, we highlight a quadratic relationship be-

tween risk premia and attention as well as between risk premia and uncertainty. Our

empirical analysis shows that our theoretical predictions are sustained by the data.

A fortuitous byproduct of our analysis arises from the transparent relation between

attention and uncertainty and adds a novel result to the literature. Intuitively, one minute

of extreme attention does not necessarily push uncertainty to zero and one minute of com-

plete inattention does not necessarily push it to the highest level. That is, as attention

moves, uncertainty adjusts gradually. This generates a lead-lag relation, a decoupling be-

tween attention and uncertainty. As a result, the economy can enter at times in states of

high attention and high uncertainty, or “panic states,” characterized by spikes in volatil-

ities and risk premia. Once the economy shifts to a panic state, the asset price becomes

3Notable works in the literature of learning in financial markets adopting this setup are
Detemple (1986), Timmermann (1993), David (1997), Veronesi (1999, 2000), Brennan and Xia (2001),
Scheinkman and Xiong (2003) and Dumas, Kurshev, and Uppal (2009) among others.
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much more sensitive to news. This result connects our model—at a qualitative level—with

events that we witnessed during the turmoil in the Fall of 2008.

The relation and differences between our work and the rest of the literature will be

highlighted throughout much of this paper, but it would be helpful at this stage to offer

a taste of some of them. Our paper is related to the broad literature of learning and

uncertainty in finance (Detemple 1986, Gennotte 1986, Dothan and Feldman 1986, David

1997, Veronesi 1999, 2000, Brennan and Xia 2001). However, our analysis differs from this

literature in three significant ways. First, our model clearly separates the effects of atten-

tion and uncertainty on stock market volatility and risk premium, whereas the existing

literature focuses mainly on uncertainty. Attention is an important ingredient, because

uncertainty inherently depends on how much attention investors pay to information. Sec-

ond, while most of the literature usually performs comparative statics to demonstrate

the effect of learning (see, e.g., Veronesi 2000, or Brennan and Xia 2001), our analysis

is fully dynamic. This extra degree of freedom allows us to spot states of high volatility

and high risk premium overlooked by static comparisons. We believe that this predic-

tion has not been formulated before. Still, this prediction seems consistent with what we

observe during financial panics. Third, in order to obtain stochastic uncertainty, the pre-

vious literature had to resort to non-Gaussian distributions (Detemple 1991, David 1997,

and Veronesi 1999).4 By assuming fluctuating attention, we can still use Gaussian-type

diffusion processes and benefit from their mathematical simplicity.

We adopt an infinite horizon economy with a representative agent with Kreps-Porteus

preferences, as in the long-run risk literature (Bansal and Yaron, 2004). This literature

introduces exogenous time-varying risk in the fundamentals, whereas here the risk is

endogenous and comes from learning. Moreover, our calibration is different from the

long-run risk calibration, in that expected consumption growth is less persistent. We

also do not consider dividend and consumption separately. Adding this feature would

improve the fit to the level of observed asset pricing moments, while keeping our main

results unchanged. Since our aim is to study the dynamic relationship between attention,

uncertainty, volatility, and risk premium and not to match asset pricing moments, we let

consumption be equal to dividend in equilibrium.

Because our model features learning, it is closely related to the study of Ai (2010), who

introduces learning in a long-run risk model with linear production technology. This latter

assumption is crucial in the sense that the direction in which information quality affects

the equity premium depends only on the risk aversion parameter. In our pure exchange

economy, the direction and the magnitude of the effect of learning depend crucially on

both parameters.

4If investors have Gaussian priors and all variables are normally distributed, the conditional variance
of investors’ estimates—the learning uncertainty—follows a deterministic path and quickly converges to
its steady-state value.
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2 An Equilibrium Model of Fluctuating Attention

The novelty of our approach is to incorporate state-dependent attention in a pure ex-

change economy à la Lucas (1978). This is only a minimal extension, but the set of

implications is rich. First, we characterize the output process and the learning problem of

the representative agent. Next, we define fluctuating attention and explain the dynamic

properties of attention and uncertainty. Before solving for the equilibrium, it is useful

to estimate the parameters associated with the learning system that we bring forth. We

do this by using the Generalized Method of Moments (Hansen, 1982) and find that the

learning problem with fluctuating attention is a reasonable description of reality. Then,

we solve for the equilibrium and we move on to break down the predictions of the theory

in Sections 3, 4, and 5. Finally, we show that these predictions are consistent with actual

observations.

Our argument relies on the premise that investors’ attention is time-varying, a

feature confirmed by empirical research (Da et al. 2011, Vlastakis and Markellos 2012,

Dimpfl and Jank 2011, Kita and Wang 2012, Chauvet, Gabriel, and Lutz 2012, Schmidt

2013) and ultimately confirmed by our own estimation. Although we connect attention

movements either to surprises in output readings or even in price returns, all our results

go through no matter how attention moves.

2.1 The Economic Setting

The economy is characterized by a single output process (the dividend) having an un-

observable growth rate (the fundamental). There are two securities, one risky asset in

positive supply of one unit and one risk free asset in zero net supply. The risky asset is

defined as the claim to the dividend process δ, whose dynamics are given by

dδt
δt

= ftdt+ σδdZ
δ
t .

The unobservable fundamental f follows a mean reverting process

dft = λ
(
f̄ − ft

)
dt+ σfdZ

f
t .

Our economy is populated by a representative investor. Given that the fundamental is

unobservable, the investor uses the information at hand to estimate it. The investor

observes the current dividend δ and an informative signal s with dynamics

dst = ΦtdZ
f
t +

√
1 − Φ2

tdZ
s
t

The vector (Zδ, Zf , Zs)> is a 3-dimensional standard Brownian motion under the

complete information filtration. The three Brownians are uncorrelated. The process
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Φ represents the correlation between the signal and the fundamental. Without loss of

generality, this correlation is assumed to be positive.

The model belongs to the literature on continuous time consumption-portfolio

decision problems with incomplete information (Detemple, 1986; Gennotte, 1986;

Dothan and Feldman, 1986). We adopt, however, a slightly different signal structure.

Specifically, in our setup signals provide information on changes in the fundamental and

not on its level. Consequently, even if the information is infinitely precise, the investor

could never learn the true value of the fundamental. Although this difference with well-

known models does not change qualitatively our results, we consider this setup because,

as explained precisely in Section 2.3, it more cleanly disentangles the effect of attention

on the one hand and uncertainty on the other hand.5

Let us focus on the correlation Φ between the signal and the fundamental. In the

spirit of Detemple and Kihlstrom (1987), Veldkamp (2006a,b), Huang and Liu (2007),

and Hasler (2012), Φ can be interpreted as the accuracy of news updates observed by the

investor. In the references above, the investor can exert control on this accuracy. If Φ = 0,

it is equivalent to no news updates, whereas if Φ = 1 it is equivalent to perfectly accurate

news updates. Since the investor exerts control on the parameter Φ, this parameter is

called attention to news6.

We follow the same interpretation and assume in our model that the investor directly

controls this accuracy. We, however, do not assume that she does so optimally. Instead,

we claim that she changes her attention whenever she observes changes in the general state

of the economy, or the current economic conditions (a term that will be defined in the next

section). Hence, in our model Φ is time-varying and is determined by current economic

conditions. By adopting such a reduced form approach we are able to build a full-fledged

general equilibrium model. In the next section we provide a complete characterization of

the dynamics of attention Φ and we justify our assumption.

It is worth mentioning that our focus is the impact of fluctuating attention

to news on asset prices and not its foundation. In our model, fluctuating atten-

tion is considered because it is sustained by empirical observations (e.g., Da et al.,

2011; Vlastakis and Markellos, 2012). Potential foundations of fluctuating atten-

tion to news can be found in Detemple and Kihlstrom (1987), Veldkamp (2006a,b),

Bansal and Shaliastovich (2011), and Hasler (2012).

5To the best of our knowledge, this specification has first been adopted by Scheinkman and Xiong
(2003), Dumas et al. (2009), and Xiong and Yan (2010). We could also assume that the investor observes
a noisy signal of the fundamental ftdt. In that case, the variance of the noisy signal would be stochastic
and would belong to the interval [0, ∞).

6Note that other types of attention have also been studied. Peng and Xiong (2006),
Kacperczyk, Van Nieuwerburgh, and Veldkamp (2009), and Van Nieuwerburgh and Veldkamp
(2010) study attention allocation problems when information-processing capacity is limited.
Abel, Eberly, and Panageas (2007) solve for optimal no-trade periods under the assumption that
observing the value of the portfolio is costly. These no-trade periods are called inattention periods, as
investors do not observe their wealth in these time intervals.
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2.2 Time-Varying Attention

It is reasonable to assume that investors’ attention Φ is time-varying. But how do we

define current economic conditions and how to make attention depend on them? In the

present model there are two observable variables that could fill this role: the dividend

and the stock price. The dividend is exogenous, whereas the stock price is endogenously

determined in equilibrium.

Since the dividend is exogenous, assuming that attention depends on it is techni-

cally easier than if attention depended on the stock price. In the latter case, solving for

the equilibrium comprises a challenge. Because prices are endogenously determined and

depend on attention, when prices drive attention we are facing a fixed-point problem. De-

spite this difficulty, we are able to solve this particular model. Most important, we obtain

very similar results in both cases. Given this, and for ease of exposition, we analyze in this

section the first case and assume that movements in dividend drive investors’ attention.

Some important differences with the other case (which perhaps could be considered more

intuitive) are explained along the way. We relegate to Section 6.1 a full derivation and

discussion of the case when attention is driven by price movements.

We postulate a measure of economic conditions that captures two important features.

First, it reflects not only the current but also the past performance of dividends. This

describes a usual behavior of investors to search for trends in financial data; exponential

smoothing for forecasting is a standard practice. Second, it is well known that surprises

rather than news themselves face increased scrutiny from investors. Thus, we rely on

surprises in dividend growth rather than just dividend growth. The resulting variable,

which we denote performance index, captures both features. It is defined as follows

φt ≡
∫ t

0
e−ω(t−u)

(
dδu
δu

− f̂udu

)
, (1)

where f̂u represents investors’ estimate of the fundamental at time u. The stochastic

process of this estimate results from Bayesian learning and will be defined in Section 2.3.

The parameter ω > 0 represents the weight associated to the present relative to the past.

If ω is large, the past dividend growth influences to a minimal degree the performance

index—the latter becomes a substitute of the current dividend growth. On the other hand,

if ω is small, the past dividend growth influences to a greater extent the performance index.

By assuming that ω ∈ [0,∞) we let the investor decide how much of the history of past

dividends to consider.7

A similar performance index could be built from current and past surprises in stock

7Koijen, Rodriguez, and Sbuelz (2009) build a similar performance index in a partial equilibrium set-
ting to allow for momentum and mean reversion in stock returns. In our case this index is built directly
from the dividend process, to capture in a parsimonious way the recent development of the dividend.
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returns. In that case, we would have

φt ≡
∫ t

0
e−ω(t−u)

(
dSu + δudu

Su
− µudu

)
, (2)

where µ is the expected return on the stock (to be determined in equilibrium) and S is

the stock price. This would correspond to a situation where investors’ attention reacts to

current and past surprises in stock returns. As previously stated, we relegate this case

to Section 6.1 and focus the rest of this section to the case where investors’ attention

depends on current and past surprises in dividends, as defined in Equation (1).

The dynamics of the performance index can be derived from the dynamics of the

dividend. An application of Itô’s lemma on the performance index yields

dφt = −ωφtdt+ σδdZ
δ
t ,

which shows that the performance index fluctuates around a long-term mean of zero with

a mean-reversion speed ω.

Having built a measure of current economic conditions, we are now ready to introduce

the link between this measure and investors’ attention. The following definition is the

core of our way to model time-varying attention.

Definition 1. Attention Φ is defined as a function g of the performance index:

Φt = g(φt) ≡ Φ̄

Φ̄ +
(
1 − Φ̄

)
eΛφt

, (3)

where Λ ∈ R and 0 ≤ Φ̄ ≤ 1.

Attention Φ fluctuates around a long-run mean Φ̄ and lies in the interval [0, 1]. Ac-

cording to the sign of the parameter Λ, attention can either increase (Λ < 0) or decrease

(Λ > 0) with the performance index φ. The dynamics of investors’ attention are thus

explained by 3 parameters: ω, Φ̄, and Λ.

We stress that the only assumptions made so far are that investors’ attention is time

varying and depends on the performance index. This performance index can be built either

from current and past surprises in dividend growth rates or from current and past surprises

in stock returns. How much weight is given to the past is decided by the parameter ω.

Furthermore, the attention can either increase, decrease, or remain constant, according

to the parameter Λ. Finally, the long-run mean of the attention, Φ̄, can take any value

between 0 and 1. Therefore, our specification is quite comprehensive and encompasses a

wide range of plausible cases.

While the sign of the parameter Λ crucially dictates the negative or positive depen-

dence of attention on past dividend growth, our main results obtain regardless which
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sign is used. The single key ingredient for our results is that Λ 6= 0, i.e., that atten-

tion fluctuates. Fluctuating attention has been studied theoretically by Duffie and Sun

(1990). They propose a model featuring slowness of individual portfolio adjustments,

where the investor sets an optimal “time-out” during which she focuses on other activi-

ties.8 Chien, Cole, and Lustig (2012), Bacchetta and Wincoop (2010), and Duffie (2010)

assume that the periods of inattention are exogenously fixed and show that this feature

helps understand the volatility of the market price of risk, the forward discount puzzle,

and stock price over-reaction and reversal. These studies focus one investors’ attention

to wealth, whereas we focus on investors’ attention to financial news.

2.2.1 The Role of the 3 Parameters in the Dynamics of the Attention Process

The unconditional distribution of the performance index φ is Gaussian with mean 0 and

variance given by
σ2
δ

2ω
(see Appendix A.1 for a proof of this statement). We know from

Equation (3) that, for Λ 6= 0, Φ is a strictly monotone function of φ. This monotonicity

allows to compute the density function of attention Φ by a change of variable argument.

We provide this density function in Appendix A.1 and proceed here with its discussion.

While the parameter Φ̄ dictates the location of the unconditional distribution of atten-

tion, two other important parameters govern the shape of this distribution. The first is Λ,

the parameter which dictates the adjustment of attention after changes in the performance

index. The second is ω, the parameter which dictates how fast the performance index

adjusts after changes in dividends. Figure 1 illustrates the probability density function of

attention for different values of these two parameters. The black solid line corresponds

to the calibration performed in Section 2.4 on US data. It shows that attention can vary

substantially, as it can take very large and very low values with significant probabilities.

The two additional lines show that a decrease in the parameter Λ (dashed blue line) and

respectively an increase in the parameter ω (dotted red line) have similar effects: both

tend to bring attention closer to its long-run mean.

Although these effects are similar, the parameters ω and Λ have different impacts on

the process Φ. The parameter ω dictates the length of the history of dividends taken into

account by the investor. If ω is large, the investor tends to focus more on recent dividend

surprises, and attention reverts quickly to its mean. Consequently, the unconditional

distribution concentrates more around the long-run mean Φ̄. On the other hand, the

parameter Λ governs the amplitude of the attention movements. A parameter Λ close to

0 (positive or negative) would keep the attention close to its long-run mean. The distinct

roles played by these two parameters will help us to calibrate them on US data, task that

we undertake in Section 2.4.

8Other studies focusing on optimal “time-outs” are Abel et al. (2007) and Rossi (2010).
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Figure 1: Probability density function of investors’ attention

Probability density function of Φ for different values of Λ and ω. Other parameters are
λ = 0.42, f̄ = 0.028, Φ̄ = 0.368, σf = 0.029, σδ = 0.014. The black solid line illustrates
the probability density function for Λ = 286 and ω = 4.74 (this corresponds to the
calibration performed in Section 2.4 on US data). The blue dashed line shows how the
distribution changes with a lower Λ (Λ = 100 and ω = 4.74). The red dotted line shows
how the distribution changes with a higher ω (Λ = 286 and ω = 10).

2.3 Bayesian Learning

Since attention Φ is observable by construction, our setup remains conditionally Gaussian

and the Kalman filter is applicable for the purpose of learning. The state vector prior

to the filtering exercise consists in one unobservable variable (the fundamental f) and

a vector of two observable variables ϑ = ( ζ s )>, where we define ζ ≡ log δ. In other

words, the investor observes the dividend and the signal and tries to infer the fundamental.

Since the performance index φ is built entirely from the past values of dividends, it does

not bring any additional information.

Because the conditional correlation between the signal and the fundamental— atten-

tion Φ—is time-varying and is a function of the performance index, the assessed (filtered)

fundamental takes a non-standard form. The major change is that the conditional vari-

ance of the unobserved fundamental given today’s information (simply referred to as the

posterior variance, or Bayesian uncertainty) is time-varying. Intuitively, when attention

is high uncertainty is low, whereas the opposite occurs when attention is low. Following

this reasoning, the vector of filtered state variables includes two additional terms: the

performance index, which dictates the level of attention, and the uncertainty that we
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denote by γ. Hence, the dynamics of the observed state variables become

dζt =
(
f̂t − 1

2
σ2
δ

)
dt+

(
σδ 0

)
dWt

df̂t = λ
(
f̄ − f̂t

)
dt+

(
γt
σδ

σfΦt

)
dWt

dφt = −ωφtdt+
(
σδ 0

)
dWt

dγt =

(
σ2
f (1 − Φ2

t ) − 2λγt − γ2
t

σ2
δ

)
dt,

(4)

where W ≡ (W δ,W s)> is a 2-dimensional Brownian motion under the investor’s observa-

tion filtration, and Φ is given by the functional form (3). The assessed fundamental is

denoted by f̂ . The two Brownian motions governing this system are defined by

dW δ
t =

1

σδ

[
dζt −

(
f̂t − 1

2
σ2
δ

)
dt
]

dW s
t = dst

and represent the normalized innovation processes of dividend and signal realizations. The

proof of the above statements is provided in Appendix A.2.

A notable difference arises between our model and other models of learning with

similar structures (e.g., Scheinkman and Xiong 2003, Dumas et al. 2009). In the latter

models it is usually assumed that uncertainty converged to its steady-state value. The

deterministic nature of the uncertainty process obtained in the latter references makes this

assumption plausible, as γ converges quickly to its steady-state. In our case, although

the process of the posterior variance remains locally deterministic, we cannot assume a

constant uncertainty, as it depends on attention, which itself is time-varying, as shown

in system (4). Thus, uncertainty must be included in the state space.

Exactly this feature turns out to be the novelty of our contribution to the liter-

ature, for two reasons. First, in most of the existing models of learning, such as

Scheinkman and Xiong (2003) and Dumas et al. (2009), uncertainty is constant. Only

a few learning models feature endogenous fluctuating uncertainty. Typically, fluctuating

uncertainty shows up when distributions are non-Gaussian or when fundamentals fol-

low regime-switching processes. Second, our model is clearly distinct from the long run

risk models (Bansal and Yaron, 2004) in which fundamentals are observable and feature

stochastic volatility. Specifically, in our model the dynamics of f̂ in system (4) reveal

that two diffusion components drive the overall noise in the fundamental, and these two

components are inversely interconnected.

The first component loads on dividend innovations and the second on news innova-

tions. As these two innovations represent the signals used by the investor to infer the

fundamental, the vector
(

γt
σδ

σfΦt

)
constitutes the weights assigned by the agent to
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both signals. As attention changes, these weights move in opposite direction: higher

attention pushes the investor to give more weight to news shocks, whereas lower attention

pushes the investor to give more weight to dividend shocks. Consequently, the variance

of the filtered fundamental, denoted henceforth by σ2(f̂t), is time-varying and comprises

two antagonistic effects which arise endogenously from learning. While our aim is to un-

derstand how these antagonisitc attention and uncertainty effects drive asset prices, long

run risk models ignore these two effects and focus on the persistence of the volatility of

the fundamental. This in turn clearly makes our model different and complementary to

long run risk studies.

The variance of f̂ satisfies

σ2(f̂t) =
γ2
t

σ2
δ

+ σ2
fΦ

2
t . (5)

Equation (5) reveals a clean separation of attention and uncertainty. This results from

our signal specification, i.e., because signals provide information on changes in the fun-

damental and not on its level. This clear separation provides therefore a justification of

our choice of signal structure.9 Furthermore, Equation (5) tells us that observing a high

volatility of the forecasted growth rate might result from two different sources. It might

reflect how unsure investors are about the likely path of future dividend growth—the first

term in Equation (5). But it might also reflect how sure investors are about the likely path

of future dividend growth—the second term in Equation (5). This is a key consequence

of our modeling strategy. In other words, there are two forces driving the variance of the

filtered fundamental. Fluctuating attention increases the variance through better learn-

ing (a direct impact). Better learning, in turn, decreases uncertainty, thus dampening the

initial effect (an indirect impact).

This brings us to another key consequence of our endogenous structure of information

flow. The deterministic dynamics of the uncertainty process γ outlined in the last equa-

tion of the system (4) shows that there is no instantaneous correlation between attention

and uncertainty. Indeed, there is no Brownian motion in the dynamics of γ. Instead,

uncertainty decreases (increases) gradually when attention is high (low). But the lack of

instantaneous correlation gives birth to a lead-lag relation between attention and uncer-

tainty. Thus, a decoupling arises between attention and uncertainty. A spike in attention

can result in a state of high attention and high uncertainty—a panic state. Yet this state

will not last long; high attention will inevitably reduce uncertainty. This lead-lag rela-

tion has important consequences for the dynamics of asset returns, as we will describe in

Section 5.

9If signals provided information on the level of the fundamental (dst = ftdt + 1

Φt

dZs
t , Φ ∈ [0, ∞)),

Equation (5) would have a more ambiguous form. The second term would contain the product of γ and
Φ, which would not change our results but would make the analysis less clear.
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To summarize, we offer a framework to study the simultaneous dynamics of attention

and uncertainty and their impact on asset prices. This analysis could obviously not be

carried out in a long run risk model because the antagonistic effects of attention and

uncertainty would be bypassed.10 Finally, if attention is constant, then uncertainty is

constant, and thus neither of the two would affect the dynamics of asset returns.

2.4 Calibration to the U.S. Economy

Does our theoretical structure reasonably describe investors’ learning behavior? We ad-

dress this question by calibrating the model to the U.S. Economy. The reader can skip

most of this section without compromising understanding of subsequent discussions. Yet,

the purpose of this section is to convince him that the economic setting that we propose

does a good job at explaining the evolution of investors’ beliefs. In addition, performing

the calibration before solving for the equilibrium gives more confidence to the predictions

of our model.

The investor is able to observe two processes: the dividend stream δ and a flow of

information s. Hence, the investor uses δ and s to estimate the evolution of the non-

observable variable f . Since we don’t know which variable corresponds to the signal s,

calibrating our model to observed data is challenging—although our theoretical model

assumes that the flow of information s is observable, it is hard to find a proxy for this

variable in practice. To manage this problem, we follow David (2008) and use the analyst

1-quarter ahead forecasts on real US GDP growth rate as a proxy for the filtered funda-

mental f̂ . To be consistent, we use the real US GDP realized growth rate as a proxy for

the output growth rate. Quarterly data from Q1:1969 to Q4:2012 are obtained from the

Federal Reserve Bank of Philadelphia.

Since we work with quarterly data, an immediate discretization of the stochastic dif-

ferential equations exposed in the system (4) would provide biased estimators. Hence, we

first solve this set of four stochastic differential equations. The solutions are provided in

Appendix A.3. We then approximate the the integrals pertaining to those solutions using

a simple discretization scheme provided in Appendix A.4.

By observing the vectors log δt+∆

δt
and f̂t for t = 0,∆, . . . , T∆, we can directly infer

the value of the Brownian vector εδt+∆ ≡ W δ
t+∆ − W δ

t . Moreover, because the observed

vector f̂t, t = 0,∆, . . . , T∆ depends on εδt+∆ and εst+∆ ≡ W s
t+∆ − W s

t , we obtain a direct

characterization of the signal vector εst+∆ by substitution. This shows that observing δ

and f̂ , instead of δ and s, also provides a well defined system.

10It is straightforward to extend the model and assume additional exogenous fluctuations in uncertainty.
We do not follow this route, since our aim is to analyse the endogenous effect of investors’ attention on
uncertainty.
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2.4.1 Moment Conditions

Our model is calibrated on the 2 time-series discussed previously using the General-

ized Method of Moments (Hansen, 1982). The vector of parameters is defined by

Θ = (λ, f̄ , ω, Φ̄,Λ, σf , σδ)
>. Consequently, we need at least 7 moment conditions to infer

the vector of parameters Θ. For the sake of brevity, the moment conditions are exposed

in Appendix A.4. We proceed here briefly with their interpretation.

The analyst forecasts of the growth rate allow us to build moments that identify λ and

f̄ . Indeed, the conditional mean of f̂t+∆ and the unconditional autocovariance of f̂t help

to pin down the long term mean parameter f̄ and the mean-reversion parameter λ. The

unconditional variance of the observed time-series defined by log δt+∆

δt
− f̂t∆ identifies the

volatility parameter σδ. Next, the realized growth rate permits to construct recursively

the performance index φt. The unconditional autocovariance and variance of φt as well

as its conditional variance are moments that identify the mean-reversion parameter ω.

Then, the conditional variance of f̂t+∆ and the unconditional mean and variance of Φt

help estimate Φ̄, Λ, and σf (note that here we have to construct recursively γt and Φt).

Per total, we have eleven moment conditions helping us to estimate seven parameters.

It is worth emphasizing that we match the unconditional variance of our implied

attention Φt to the unconditional variance of some proxy of investors’ attention. In order

to do that, we follow Da et al. (2011) and build an empirical measure of attention. We use

Google search volumes on groups of words with financial or economic content. To avoid

any bias, none of the terms used have positive or negative connotations.11 We adjust

this Google attention index to be between 0 and 1 (as our attention Φ) and compute its

unconditional variance. The unconditional variance of our model implied attention index

should match the empirical unconditional variance. Given that Google search volume

data are only available since 2004, we do not use them for any other moment conditions.

2.4.2 Parameter Estimates

The values, t-stats, and p-values of the vector Θ, resulting from the GMM estimation, are

provided in Table 1. The test of over-identifying restrictions indicates that the model

provides a good fit to the GDP realized growth and GDP growth forecast, with the J-test

p-value being 0.35. The sole insignificant parameter is the mean reversion speed parameter

λ. We want to point out that our estimated value of λ is relatively far from what the long

run risk literature assumes. Studies dealing with long run risk typically assume that the

mean reversion parameter is between 0 and 0.25. In Bansal and Yaron (2004) the AR(1)

11More precisely, the Google attention index is built based on the following combination of words:
“financial news,” “economic news,” “Wall Street Journal,” “Financial Times,” “CNN Money,” “Bloomberg
News,” “S&P500,” “us economy,” “stock prices,” “stock market,” “NYSE,” “NASDAQ,” “DAX,” and
“FTSE.” Using other similar words in several combinations provides very similar empirical measures of
attention.
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Parameter Symbol Estimate t-stat p-value
Persistence growth rate f λ 0.42 1.3 0.19

Mean growth rate f f̄ 0.028∗∗∗ 5.6 0
Persistence performance index φ ω 4.74∗∗∗ 188.7 0

Mean attention Φ Φ̄ 0.368∗∗∗ 4.7 0
Sensitivity attention to φ Λ 286∗∗∗ 9.5 0
Volatility growth rate f σf 0.029∗∗∗ 5.9 0
Volatility dividend growth σδ 0.014∗∗∗ 10.8 0

Table 1: Calibration to the U.S. economy (GMM estimation)

Parameter values resulted from a GMM estimation with 11 moment conditions. The
parameters identify the information setup described in Equations (1), (3), and (4). The
Hansen J-test of overidentification cannot be rejected (Pr [Chi-sq.(4) > J ] = 0.35). Sta-
tistical significance at 10%, 5%, and 1% is labeled respectively with ∗/∗∗/∗∗∗.

parameter of the fundamental is worth 0.979 at monthly frequency. This parameter would

correspond to λ = −12 ln(0.979) = 0.25. Barsky and De Long (1993) go even further by

assuming that the fundamental is an integrated process. Although our dataset does not

confirm the hypothesis of Barsky and De Long (1993) and Bansal and Yaron (2004), only

the far future can potentially tell us if this hypothesis is sustainable. Indeed, 43 years of

quarterly data are largely insufficient to estimate a parameter implying a half-life of at

least 3 years.12

We obtain a low volatility of real GDP realized growth rate, σδ (which is equal to

the volatility of consumption in our model), and a low volatility of the fundamental, σf .

Both parameters are significant. The volatility of real GDP realized growth rate is close

to 1% and in line with the estimation of Beeler and Campbell (2012) from postwar data.

Our estimate is much smaller than 2.4% which would result from a simulation of the

Bansal and Yaron (2004) model (see discussion in Beeler and Campbell, 2012, where the

authors call this mismatch a “serious difficulty” of the long-run risk model).

Given this, our model deviates from the long-run risk model with respect to both

λ and σδ. Nonetheless, we are still able to obtain considerable risk premium and excess

volatility, as we will show in Sections 3 and 4. This added with the facts that in our model

dividends equal consumption and the fundamental is unobservable, clearly distinguishes

our setup from the long-run risk literature.

We obtain a large positive and significant value for the parameter Λ, suggesting that

investors’ attention reacts heavily to changes in the performance index. This is coupled

with a high parameter ω, which suggests that the performance index changes quickly based

on recent information (i.e., investors use mostly the last year of dividend growth data).13

12The half-life is a measure of the speed of mean-reversion. It is given by ln(2)/λ. For the
Bansal and Yaron (2004) calibration, the half-life is roughly 33 months.

13A value of ω = 4.74 means that, at quarterly frequency, the investor applies a 69% weighting to the
most recent output reading, then the weights decrease as follows: 21%, 6%, 2%, and so on.
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Put differently, investors’ attention is strongly sensitive to recent experience. Coming

back to the black solid line in Figure 1, we remark that attention varies substantially,

taking values in the entire interval with significant probabilities.

In addition, a positive Λ means that attention is high in bad aggregate economic states

(φ < 0) and low in good aggregate economic states (φ > 0). This can be interpreted as

follows. When the economy is in an expansionary phase, the output δ might decrease only

with a low probability. Thus, investors do not have the incentive to exert a learning effort.

On the other hand, when the economy enters a recessionary phase, the high probability

of a decrease in future consumption grabs investors’ attention. This leads investors to

estimate as accurately as possible the change in the fundamental.

Although we emphasize that our results go through no matter the sign of Λ, a discus-

sion of this sign is of interest here. If attention is higher in bad times, i.e., Λ > 0, we

should observe better learning and thus better forecasts exactly in those times. This ob-

servation is consistent with empirical findings by Patton and Timmermann (2008). Using

consensus forecasts of US GDP growth over 1991-2004, Patton and Timmermann (2008)

find that forecasters estimated GDP growth quite well for the recessions in early 1990s

and 2001. They, however, underestimated the strong GDP growth in the mid to late

1990s and consistently overestimated the realized values of GDP growth after the 2001

recession. We add to this evidence by using our larger sample of data (from 1969 to 2012)

in Section 6.2. In our separate calculations, we also observe better forecasts in bad times,

further strengthening support for a positive Λ.

Furthermore, this implication is in line with two additional pieces of empirical evidence.

First, Da, Gurun, and Warachka (2011) show that analyst forecast errors are smaller when

past 12 months returns are negative than when they are positive, suggesting that informa-

tion gathered by analysts in downturns is more accurate than in expansionary phases.14

Second, Garcia (2013) documents that investors react strongly to good and bad news

during recessions, whereas during expansions investors’ sensitivity to information is much

weaker.

Karlsson, Loewenstein, and Seppi (2009) show that, when people are emotionally in-

vested in information, they monitor their portfolios more frequently in rising markets

than in falling markets. In other words, people “put their heads in the sand” given ad-

verse prior news. Karlsson et al. (2009) find support for this effect by examining account

monitoring behavior (number of logins) of Scandinavian and American investors. This,

a priori, seems at odds with our findings, but we note that in Karlsson et al. (2009) in-

vestors collect information about the value of their portfolios, whereas our investors collect

information about the fundamental structure of the economy. We can imagine a situation

where in bad times, overwhelmed by adverse information about the economy, investors

14This claim holds under the assumption of continuous information, as in our case. Under discrete
information, the reverse assertion is verified.
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are scared to check their portfolios. However, in rising markets, investors find it sufficient

to check their portfolios regularly and not listen to information about the economy. Note

also that Karlsson et al. (2009) measure number of logins minus number of trades, that is,

the number of times people look at their portfolios without trading—it is quite obvious

that this number is large in good times, since people do not have reasons to trade in those

times. Also, a rational investor has low risky positions in bad times, hence one less reason

to check his wealth. As such, these two views are not excluding each other. They simply

suggest that attention to news and attention to wealth are inversely related.

A natural question arises, whether theoretical models of endogenous attention confirm

the finding of higher attention to news in recessionary phases than in expansionary phases.

In a portfolio choice problem of optimal attention allocation, Hasler (2012) finds that

forecast accuracy is decreasing with past returns, which provides foundation for a positive

parameter Λ. This result obtains because the investor optimally acquires more information

when it is expected to be more valuable, i.e., the utility gain from the extra information

is higher in bad states. Our model, thus, takes as a primitive Hasler (2012)’s result.15

2.4.3 Time Series Dynamics of Implied Attention

How does our implied measure of attention correlate with other attention proxies? To

answer this question, we compare the attention implied by our estimation with the index

of attention built from Google search volume (sampled at quarterly frequency). The

two indices are depicted in Figure 2. The coefficient of correlation between them is 0.44.

Movements in our implied attention seems to be well aligned with movements in the same

direction of the Google attention index. An ordinary least squares regression results in

a significant coefficient of 0.95 and an R-squared of 0.19. This provides support that

our information setup captures well the learning behavior of investors. We emphasize

that, in our estimation procedure, we only used Google attention index data to fit the

unconditional variance of attention. All the other moment conditions relied on GDP data.

We are thus confident that our learning structure is a reasonable description of reality.

The model could be extended on several dimensions in order to match the data even

better. For example, factors other than the performance index might affect investors’

attention.16 This can be done by inserting an extra exogenous noise in the dynamics of

15Other optimal attention allocation problems are mentioned in what follows. Detemple and Kihlstrom
(1987) study an optimal information acquisition problem in an economy à la Cox, Ingersoll, and Ross
(1985). The solution procedure is discussed but no explicit solution is provided. Peng and Xiong (2006)
show that limited information-processing capacity and overconfidence leads to category-learning and
excess correlation. In Veldkamp (2006b) costly information yields excess co-movement among asset
prices. Kacperczyk et al. (2009) show that investors optimally concentrate on macro news in bad times
and idiosyncratic news in good times. This generates market-timing srategies in recessions and stock
picking strategies in expansions. In Bansal and Shaliastovich (2011) investors choose to acquire perfect
information when the volatility of output or the uncertainty is sufficiently large, implying jumps in asset
prices.

16See, for example, the anecdote about Tiger Woods and the New York Stock Exchange volume, in the
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Figure 2: Implied attention versus Google attention index

The black solid line depicts the attention index implied by our estimation. The red
dashed line depicts the weighted search index on financial and economic news from 2004
to 2012, at quarterly frequency. Indices are divided by their sample average to allow
comparison with each other.

attention. Or, consider the case when attention depends on past stock returns rather

than past dividend growth rates, as in Equation (2). In this case the attention index will

inherit the time varying volatility of stock returns. Indeed, we observe larger fluctuations

in investors’ attention when stock returns are more volatile.

2.5 Equilibrium with Epstein-Zin Preferences

Our model features a representative agent with Epstein-Zin preferences. The advantage

over CRRA is that asset prices increase with the drift of consumption, while they decrease

with the volatility of consumption.

2.5.1 Optimization Problem

The representative agent’s preferences over the uncertain consumption stream {ct} are

represented by a utility index Ut that satisfies the following recursive equation

Ut =

{(
1 − e−ρdt

)
c1−ψ
t + e−ρdt

Et

[
U1−α
t+dt

] 1−ψ

1−α

} 1
1−ψ

, (6)

where ρ is the subjective discount factor, 1/ψ is the intertemporal elasticity of substi-

tution and α is the local risk aversion coefficient. Replacing dt = 1 in Equation (6)

gives the discrete time formulation of Kreps and Porteus (1978), Epstein and Zin (1989),

and Weil (1989). When the risk aversion coefficient is equal to the reciprocal of the in-

tertemporal elasticity of substitution, α = ψ, the recursive utility reduces to the standard

time-separable power utility with relative risk aversion α and intertemporal elasticity of

substitution 1/α.

Presidential Address of Duffie (2010).
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Let us define

Jt ≡ 1

1 − α
U1−α
t = Et

[∫ ∞

t
f (cs, Js) ds

]
,

where f(c, J) is the normalized aggregator (see Duffie and Epstein, 1992a,b). Following

Benzoni, Collin-Dufresne, and Goldstein (2011), a state-price density is defined as

ξt = e
∫ t

0
fJ (cs,Js)dsfc (ct, Jt) .

The following proposition, whose proof is provided in Benzoni et al. (2011), provides

the partial differential equation for the price-dividend ratio.

Proposition 1. For ψ, α 6= 1 we have

Jt =
1

1 − α
c1−α
t (ρI(xt))

ν

ξt = e−
∫ t

0
(ρν+ 1−ν

I(xs))dsc−α
t I(xt)

ν−1, (7)

where ν ≡ 1−α
1−ψ , x ≡

(
f̂ φ γ

)>
, and I(x) is the price-dividend ratio. The price-dividend

ratio I(.) satisfies the following partial differential equation

0 =I

(
(1 − α)

(
f̂ − 1

2
σ2
δ

)
+ (1 − α)2σ

2
δ

2
− ρν

)
+

DIν
Iν−1

+ (1 − α)ν
(
γI

f̂
+ σ2

δIφ
)

+ ν,(8)

where we define Dh(x) ≡ hx(x)µx(x) + 1
2
trace

(
hxxσx(x)σx(x)>

)
.

The dynamics of the vector of state variables x and price-dividend ratio I(x) are

defined by

dxt = µx(xt)dt+ σx(xt)dWt

dI(xt)

I(xt)
= (. . .)dt+ σI(xt)dWt,

where

µx(xt) =
(
λ(f̄ − f̂t) −ωφt σ2

f (1 − Φ2
t ) − 2λγt − γ2

t

σ2
δ

)>

σx(xt) =




γt
σδ

σfΦt

σδ 0

0 0




σI(xt) ≡
(
σ1I(xt) σ2I(xt)

)
=

1

I(xt)
Ix(xt)

>σx(xt).

18



The partial differential equation (8) can be rewritten as

0 =I

(
(1 − α)

(
f̂ − 1

2
σ2
δ

)
+ (1 − α)2σ

2
δ

2
− ρν

)

+ ν

(
λ
(
f̄ − f̂

)
I
f̂

− ωφIφ +

(
σ2
f (1 − Φ2) − 2λγ − γ2

σ2
δ

)
Iγ

)

+
1

2
ν

((
γ2

σ2
δ

+ σ2
fΦ

2

)
I
f̂ f̂

+ σ2
δIφφ + 2γI

f̂φ

)

+
1

2I
ν(ν − 1)

((
γ2

σ2
δ

+ σ2
fΦ

2

)
I2

f̂
+ 2γI

f̂
Iφ + σ2

δI
2
φ

)

+ (1 − α)ν
(
γI

f̂
+ σ2

δIφ
)

+ ν.

(9)

As in Benzoni et al. (2011), let us conjecture that the price-dividend ratio I(x) can be

approximated by the following exponential form

I(x) ≈ eβ0+β1x, (10)

where β0 is a scalar and β1 =
(
β11 β12 β13

)
. Plugging the exponential form (10) in Equa-

tion (9) and performing a first order linearization of the PDE around x0 =
(
f̄ 0 γss

)
17

yields a system of the form

A+Bx = 0,

where the scalar A and the vector B =
(
B1 B2 B3

)
are large expressions that can

be provided upon request. Setting A = 0 and B =
(
0 0 0

)
yields a system of four

equations with four unknowns (β0, β11, β12, and β13) that can be solved numerically.

As in Benzoni et al. (2011), we assume from now on that the coefficient of risk aversion

is α = 10, the elasticity of intertemporal substitution is 1
ψ

= 2, and the subjective discount

factor is ρ = 0.03.

The aforementioned utility parameters together with the parameters exposed in Table

1 imply the following equilibrium price-dividend ratio

I(x) ≈ eβ0+β11f̂+β12φ+β13γ,

where

β0 = 3.6152 β11 = 1.1207 (11)

β12 = −0.0006 β13 = −11.3741.

17Note that f̄ is the long term mean of f̂ , 0 is the long term mean of φ, and γss = −λσ2

δ +√
σ2

δ

(
λ2σ2

δ + σ2

f (1 − Φ̄2)
)

is the long term posterior variance under the assumption that φt = 0.
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These parameters show that the level of the price-dividend ratio depends strongly on the

estimated fundamental f̂ , slightly on the posterior variance γ, and insignificantly on the

performance index φ (or attention Φ). Indeed, since f̂ , γ, and φ are of the order of 10−2,

10−4, and 10−2, the impact of these processes on the log price-dividend ratio are of the

order of 10−2, 10−3, and 10−6, respectively.

Since β11 is positive, there is a positive relationship between the estimated fundamental

and the price-dividend ratio. The reason is as follows. Let us consider an increase in the

estimated fundamental. First, this implies an increase in current consumption because

future consumption is expected to be larger and investors wish to smooth consumption

over time. Hence the demand for the stock decreases, implying a drop in the price. This

precautionary savings effect generates an inverse relationship between prices and future

dividend growth rates. Second, an increase in the estimated fundamental implies an

improvement of risky investment opportunities, pushing investors to demand more of the

stock. This substitution effect outweighs the precautionary savings effect as long as the

elasticity of intertemporal substitution is larger than 1. Thus, prices are positively related

to estimated fundamentals in that case.

Because β13 is negative, an increase in uncertainty generates a drop in prices. Intu-

itively, an increase in uncertainty pushes investors to lower current consumption because

expected consumption is more uncertain and investors again want to smooth consumption

over time. Hence the demand for the stock rises, increasing its price. Also, risky invest-

ment opportunities become more uncertain and consequently push investors to lower

their risky investments. This tends to push the price of the stock down. Again, since

the substitution effect dominates the precautionary savings effect when the elasticity of

intertemporal substitution is larger than 1, uncertainty and prices are inversely related.

2.5.2 Risk Free Rate, Risk Premium, and Volatility

Applying Itô’s lemma to the state-price density ξ provided in Equation (7) yields the risk

free rate r and the vector of market prices of risk θ defined in Proposition 2, whose proof

is provided in Benzoni et al. (2011).

Proposition 2. The risk free rate r and market price of risk θ satisfy

rt =ρ+ ψf̂t − 1

2
α (1 + ψ) σ2

δ

− (1 − ν)
(
σ1I(xt)σδ +

1

2
σ1I(xt)

2 +
1

2
σ2I(xt)

2
)

(12)

θt =
(
ασδ + (1 − ν)σ1I(xt) (1 − ν)σ2I(xt)

)>
. (13)
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The dynamics of the stock price S = δI(x) are written

dSt
St

=

(
µt − δt

St

)
dt+ σtdWt.

The diffusion vector σt and the risk premium µt − rt satisfy

σt =
(
σδ + σ1I(xt) σ2I(xt)

)

µt − rt = σtθt =
(
σδ + σ1I(xt) σ2I(xt)

) (
ασδ + (1 − ν)σ1I(xt) (1 − ν)σ2I(xt)

)>

= ασ2
δ + (1 − ν + α)σδσ1I(xt) + (1 − ν)

(
σ1I(xt)

2 + σ2I(xt)
2
)
.

Proposition 2 shows that the risk free rate depends on the estimated fundamental f̂

and on the diffusion of the price-dividend ratio as long as α 6= ψ. When the risk aversion

and the elasticity of intertemporal substitution are larger than one, 1 − ν is negative.

Hence, in this case, the second part of Equation (12) is negative, making the level of

the risk free rate smaller than with CRRA utility. Moreover, the larger the elasticity of

substitution is, the smaller ψ and 1 − ν become, and thus the smaller the volatility of the

risk free rate is.

Equation (13) shows that the risk associated to time-varying fundamentals is priced.

Indeed, as long as α 6= ψ the market price of risk vector θ consists in two positive terms

that depend on the diffusion of the price-dividend ratio. The first term loads on dividend

surprises, whereas the second loads on news surprises. As risk aversion α increases or the

elasticity of intertemporal substitution 1
ψ

decreases, 1−ν rises and hence prices of risk too.

To summarize, an increase in the elasticity of intertemporal substitution lowers prices of

risk as well as the level and the volatility of the risk free rate. In contrast, an increase in

risk aversion implies an increase in prices of risk, a drop in the level of the risk free rate,

and an increase in its volatility.

Detailed discussions on stock return volatility and equity risk premia are exposed in

Sections 3 and 4, respectively. In Section 6.1 we discuss the average asset pricing moments

obtained when attention depends on dividend surprises on the one hand and on return

surprises on the other hand.

3 Attention, Uncertainty, and Volatility

In the theoretical literature, spikes in volatility have often been related to spikes in un-

certainty (Veronesi, 1999; Timmermann, 1993, 2001; Bloom, 2009). In this Section we

illuminate a second powerful driver of volatility, namely, investor attention. We uncover

a subtle relationship between attention, uncertainty, and volatility. Our main predictions

are that the variance of stock returns increases in both attention and uncertainty and de-
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pends quadratically on them. We perform an empirical investigation which lends support

to these predictions. Finally, we show that, after controlling for lagged volatility, uncer-

tainty alone cannot explain fluctuations in volatility. Yet, investor attention remains a

powerful driver of volatility in that case.

The variance of stock returns follows from Proposition 2:

‖σt‖2 = σ2
2t + σ2

1t =

(
I
f̂

I

)2

σ2
fΦ

2
t +

[
I
f̂

I

γt
σδ

+ σδ

(
1 +

Iφ
I

)]2

. (14)

Stock return variance depends on a complex interaction between attention, uncertainty,

and investors’ price valuations. These price valuations are reflected in the price-dividend

ratio I and its partial derivatives with respect to f̂ and φ, i.e., I
f̂
/I and Iφ/I. Given

the exponential affine conjecture for the price-dividend ratio provided in Equation (10),

I
f̂
/I and Iφ/I are constants—they are equal to β11 and β12, respectively. Furthermore,

for a wide range of parameter values, numerical computations show that Iφ/I is rather

small and thus its case does not deserve further investigation. A discussion is necessary,

however, for the term I
f̂
/I.

This term mainly depends on the intertemporal elasticity of substitution. If the in-

tertemporal elasticity of substitution is higher than 1, i.e., the investor has preference

for early resolution of uncertainty, I
f̂
/I is positive. In this case, the asset price increases

with an increase in the fundamental. This is the case that we study here, as the price

reacts in a plausible fashion to changes in the fundamental. If the intertemporal elasticity

of substitution is lower than 1, which would be obtained in a CRRA setting with risk

aversion higher than 1, I
f̂
/I is negative. In this case, the asset price decreases with an

increase in the fundamental. Finally, if the intertemporal elasticity of substitution equals

1, then the asset price does not depend on the fundamental. A similar result obtains with

log utility.

The fact that I
f̂
/I and Iφ/I are constants greatly facilitates our discussion—for the

variance of stock returns depends only on attention Φ and uncertainty γ.18 More im-

portant, Equation (14) clearly separates the effect of attention (through the first term)

and uncertainty (through the second term) on the variance. Finally, there is an obvious

quadratic relationship between attention, uncertainty, and stock return variance. Figure

3 depicts the two terms of the variance of stock returns, using parameter values obtained

in Section 2.4. As expected, the variance increases in both attention and uncertainty.

As with the variance of the estimated fundamental, the effect of attention on the stock

return volatility can also be interpreted in terms of weights. First, as attention increases,

18Note that if we had considered an exponential quadratic form for the price-dividend ratio instead of
an exponential affine form, this statement would be altered as I

f̂
/I and Iφ/I would become functions

of the state variables. Nonetheless, we find in separate calculations that an exponential quadratic form
yields exactly the same results.
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Figure 3: Decomposition of stock return variance

Panel (a) depicts the first term of Equation (14), i.e., the quadratic effect of attention Φ
on the variance of stock returns. Panel (b) depicts the second term of Equation (14), i.e.,
the quadratic effect of uncertainty γ on the variance of stock returns. The parameter
values used for these plots are presented in Table 1.

the investor assigns a higher weight to news, hence the stock return volatility increases

by accelerating revelation of news into prices. Second, as attention increases, the investor

assigns a lower weight to the dividend, thus decreasing the stock return volatility by incor-

porating less of the dividend shock into prices. Hence, periods of relatively high attention

have the tendency to disconnect the price from dividend shocks and relate it strongly to

news. This implication is supported by the recent empirical work of Garcia (2013), who

shows that the predictability of stock returns using news’ content is concentrated during

recessions (i.e., during times of high attention). More precisely, Garcia (2013) finds that

one standard deviation shock to news during recessions predicts a change in the condi-

tional average return on the Dow Jones Industrial Average of twelve basis points over one

day.

Do we actually observe a quadratic contemporaneous relationship between stock re-

turn variance, attention, and uncertainty? We perform an empirical evaluation of this

prediction. To this aim, we use three time series: (i) the variance of S&P500 returns,

obtained through a GARCH(1,1) estimation, (ii) the Google attention index described

in Section 2.4, and (iii) a measure of cross-sectional dispersion for quarterly forecasts

for real GDP, obtained from the Federal Reserve Bank of Philadelphia. Under reason-

able assumptions, the distribution of forecasts will match the distribution of beliefs (see

Laster, Bennett, and Geoum, 1999), hence it is common practice to use the cross-sectional

dispersion of analyst forecasts as proxy for uncertainty. The Google attention index is

available only since 2004, while the cross-sectional dispersion of analyst forecasts is avail-

able only at quarterly frequency. This results in a quarterly data set from Q1:2004 to
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Figure 4: Attention, uncertainty, and volatility

Panel (a) plots data points and quadratic fit for attention, uncertainty, and volatility,
resulting from a quarterly data set from Q1:2004 to Q4:2012. Uncertainty (proxied by
the cross-sectional dispersion of analyst estimates of real GDP growth) is scaled between
0 and 1. Panel (b) plots the relationship between attention, uncertainty, and volatility
resulted from our theoretical model. Uncertainty γ is scaled between 0 and 1, to allow
comparison of the two plots. The parameter values for the plot in Panel (b) are presented
in Table 1.

Q4:2012.

Panel (a) of Figure 4 plots the data points and a fitted quadratic regression of the

variance of stock returns on attention and uncertainty. We represent data in volatility

terms for ease of interpretation. Additionally, we scale the values of uncertainty between 0

and 1, to facilitate comparison with the relationship resulting from our theoretical model,

which is depicted in Panel (b). Our model does a good job in describing the quadratic

relation between attention, uncertainty, and volatility. While our aim is to qualitatively

explain this relation, it is worth noting that we do not match the level of the volatility

observed in the data. Still, our model generates substantial excess volatility, almost four

times higher than the volatility of consumption, which is close to 1% in our calibration.19

The coefficients of the quadratic regression between the empirical counterparts of at-

tention, uncertainty, and return variance are presented in Table 2. Specifically, we perform

four ordinary least square regressions. We start by regressing stock return variance on

attention and uncertainty alone (columns 1 and 2), then we carry out the full regression in

19A few extensions of the model could help to match the level of the volatility. For example, we could
assume different dividend and consumption dynamics, as in the long-run risk literature, with dividends
having a volatility several orders of magnitude higher than the consumption volatility (an assumption
backed by the data: the post-war dividend growth volatility has averaged 5% per year). Alternatively, we
can also assume that the volatility of consumption growth is stochastic and has a persistent component, as
in the long-run risk literature, a desirable property according to Beeler and Campbell (2012). Inevitably,
though, these extensions would unnecessarily increase the complexity of our model and the number of
parameters, without altering our qualitative predictions.
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(1) (2) (3) (4)
Nb. Obs 36 36 36 35
Intercept 0.036∗∗∗ 0.022∗∗∗ 0.032∗∗∗ 0.008∗

(8.13) (4.98) (5.71) (1.89)
Attentiont −0.074∗∗ −0.073∗∗∗ −0.044∗∗∗

(-2.64) (-4.35) (-3.75)
Attention2

t 0.110∗∗∗ 0.094∗∗∗ 0.086∗∗∗

(3.59) (4.82) (7.28)
Uncertaintyt -0.011 -0.011 0.014

(-0.41) (-0.47) (0.88)
Uncertainty2

t 0.062∗∗ 0.057∗∗ 0.001
(2.37) (2.54) (0.04)

Variancet−1 0.633∗∗∗

(10.55)
Adj. R-Squared 0.238 0.442 0.598 0.839

Table 2: OLS regressions of variance on attention and uncertainty

There are 4 regressions: (1) variance on attention, (2) variance on uncertainty, (3) vari-
ance on attention and uncertainty, and (4) variance on attention, uncertainty, and lagged
variance. The dataset comprises 36 datapoints at quarterly frequency from Q1:2004 to
Q4:2012. The Newey-West t-statistics are reported in brackets and statistical significance
at 10%, 5%, and 1% is labeled respectively with ∗/∗∗/∗∗∗.

column 3. Focusing on this full specification, the quadratic coefficients for both attention

and uncertainty are significant. The adjusted R-squared, which summarizes the fit while

taking into account the number of variables in the model, is close to 0.6. Indeed, attention

and uncertainty seem to explain much of the variation of the variance of stock returns.

One might argue that investors become more attentive to the market exactly because

volatility increased, and not the other way around. If this is true, then controlling for

the lagged variance would eliminate the relationship between attention and variance. We

do not find support for this argument. When controlling for the lagged variance (column

4 of Table 2), the coefficients associated to attention are minimally altered and, most

important, remain strongly significant. It is worth mentioning, however, that uncertainty

loses its explanatory power. This shows that uncertainty alone does not seem to have sup-

plementary explanatory power with respect to lagged variance, whereas attention does.20

When regressing return variance on attention alone (column 1 of Table 2), the linear

coefficient is negative and significant. This might seem puzzling, but the reason is simple.

The lead-lag relationship between attention and uncertainty suggests that attention has

two opposite effects on the return variance. First, the variance increases quadratically

with attention by speeding up revelation of news into prices. Second, higher attention

20As an additional test, we also regressed attention on lagged variance alone. The slope coefficient
obtained is not significant and the adjusted R-squared is 0.003. Although our aim is to explain the
contemporaneous relationship between attention and volatility, we believe we have sufficient evidence to
conclude that lagged volatility is not driving attention.
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means better learning (lower uncertainty), which tends to decrease the variance. Hence the

negative sign for the linear coefficient. We conclude then that the signs of the coefficients

in the first regression have a meaningful economic interpretation.

Our decomposition of the variance from Equation (14) bears similarities with the stud-

ies of Brennan and Xia (2001) and Veronesi (2000). Brennan and Xia (2001) show in an

equilibrium model with incomplete information that learning increases market volatility

beyond what one obtains in an economy with complete information. We share the same

result; in our case, complete information yields zero uncertainty which, in turn, decreases

volatility. One can see this in Panel (b) of Figure 4: volatility for high attention and

low uncertainty (complete information) is below the volatility for low attention and high

uncertainty (incomplete information). But while in Brennan and Xia (2001) the variance

of stock returns is constant—because attention and uncertainty are themselves constant—

in our case it fluctuates with movements in attention and uncertainty. And we actually

obtain higher volatilities when attention can fluctuate; see, for instance, the volatility im-

plied by our model in states of high attention and high uncertainty. Thus, complementary

to Brennan and Xia (2001), our focus is on how much attention is devoted to learning

and how this impacts the dynamics of the volatility of stock returns.

Veronesi (2000) builds an equilibrium model with learning in which the unobservable

fundamental is driven by a continuous-time Markov chain. Investors’ degree of uncertainty

is reflected in the term Vθ, which is equivalent to I
f̂
γ/I in our case. Similar to our

study, Veronesi (2000) obtains a quadratic relationship between stock return variance

and uncertainty, and he goes on to derive—albeit only through comparative statics—asset

pricing implications of information quality. While Veronesi (2000) keeps the quality of

information constant, our main focus is exactly on the dynamics of this variable (investor

attention in our case). Not only we show how it affects uncertainty, but, more important,

how both attention and uncertainty explain variations in stock market volatility.

David (1997) and Veronesi (1999) develop dynamic rational expectation models in

which uncertainty is fluctuating because the unobserved fundamental is assumed to shift

between high-growth and low-growth states. This discreteness of states implies a stochas-

tic variance for the estimated growth rate. We also obtain a stochastic variance for the

estimated growth rate. Our contribution with respect to David (1997) and Veronesi (1999)

is to decompose this variance in two components. The first component is driven by at-

tention and higher attention implies faster learning. The second component is driven

by uncertainty, which itself depends on the learning speed. How much of this stochastic

variance is driven by attention and how much by uncertainty depends endogenously on

our specific intertemporal behavior of investors’ beliefs.

To conclude, our study is—to the best of our knowledge—the first to show how atten-

tion and uncertainty simultaneously drive stock market volatility. Our theoretical model

predicts a clear quadratic relationship between attention, uncertainty, and stock return
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variance, and the data lends support to this prediction. Furthermore, we show that uncer-

tainty alone cannot explain fluctuations in volatility when controlling for lagged volatility,

yet attention remains a powerful driver .

4 Attention, Uncertainty, and Risk Premium

Expectations matter for the risk premium for two reasons. First, they show how fast

investors believe the economy will grow. This is reflected in how the assessed fundamental,

f̂t, enters in investors’ price valuations. Second, expectations can be volatile—if investors

can’t see a clear road ahead, they are most likely going to require a higher risk premium.

This is reflected in the variance of the assessed fundamental, σ2(f̂t), which, in turn, is

a mixture of attention and uncertainty. Our model offers the advantage of conveniently

separating all these effects.

The risk premium follows from Proposition 2

µt − rt =ασδ

[
I
f̂

I

γt
σδ

+ σδ

(
1 +

Iφ
I

)]

+ (1 − ν)


σδ

(
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I
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σδ

+ σδ

)
+

(
I
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I

γt
σδ
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)2

+

(
I
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I

)2

σ2
fΦ

2
t


 .

(15)

Equation (15) has two terms. Only the first term matters in the CRRA case, i.e.,

when ν = 1. Still in the CRRA case, if the risk aversion coefficient is higher than 1, stock

prices fall with expected dividend growth, and thus I
f̂
/I < 0. Hence, as uncertainty gets

higher, the first term of (15) gets lower, and thus the risk premium gets lower. Moreover,

a higher risk aversion amplifies this effect. Veronesi (2000) obtains a similar result: for

a coefficient of risk aversion higher than 1, lower uncertainty increases the risk premium,

whereas the opposite holds for a coefficient of risk aversion lower than 1.

A different story emerges when the intertemporal elasticity of substitution and the

coefficient of relative risk aversion are treated separately. First, as soon as ν 6= 1, the

second term in Equation (15) becomes relevant. Second, if both the coefficient of risk

aversion and the intertemporal elasticity of substitution are higher than 1, then I
f̂
/I > 0

and (1 − ν) > 0. This in turn implies that the risk premium increases with uncertainty,

and both the first and the second term in Equation (15) contribute positively to the risk

premium. In other words, the risk premium increases with both attention and uncer-

tainty. The relationship between risk premium, attention, and uncertainty is, once again,

quadratic.

We perform an empirical evaluation of these predictions. The analysis is similar with

the one from Section 3, with the main difference that we replace the volatility with

risk premium. For equity risk premium values, we rely on quarterly surveys reported

27



0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1

0.02

0.04

Atten
tion

Uncertainty

(a) Data

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1

0.02

0.04

Atten
tion

Uncertainty

(b) Model

Figure 5: Attention, uncertainty, and risk premium

Panel (a) plots data points and quadratic fit for attention, uncertainty, and risk premium,
resulting from a quarterly data set from Q1:2004 to Q4:2012. Uncertainty (proxied by the
cross-sectional dispersion of analyst estimates of real GDP growth) is scaled between 0
and 1. Panel (b) plots the relationship between attention, uncertainty, and risk premium
resulted from our theoretical model. Uncertainty γ is scaled between 0 and 1, to allow
comparison of the two plots. The parameter values for the plot in Panel (b) are presented
in Table 1.

by Graham and Harvey (2013). These 17,500 survey responses over more than 10 years

(averaging 352 individual responses of U.S. CFOs each quarter) offer a clear measure of

expectations. And this dataset perfectly fits our needs: the surveys were conducted from

June 2000 to December 2012. For the attention and uncertainty we use the same proxies

as in previous section, resulting in a quarterly data set from Q1:2004 to Q4:2012.

Panel (a) of Figure 5 plots the data points and a fitted quadratic regression of risk

premium on attention and uncertainty. As in the previous section, we scale the values of

uncertainty between 0 and 1, to facilitate comparison with the relationship resulting from

our theoretical model, which is depicted in Panel (b). There is indeed a quadratic relation

between attention, uncertainty, and risk premia, and our model is able to capture it.

Two things are worth mentioning about the level of risk premia resulting from

our model. First, we are able to match the overall level of risk premia collected

by Graham and Harvey (2013). Second, both the case of perfect learning, i.e., point

{Φ = 1, γ = 0} on the plot, and the case of no learning, i.e., point {Φ = 0, γ = 1} on the

plot, generate lower risk premia than a wide range of cases characterized by relatively

high attention and high uncertainty. Not only this feature will prove to be crucial for

our analysis of the dynamic properties of risk premia and volatility, in Section 5, but also

it clearly distinguishes our paper from the rest of the theoretical literature. Specifically,

while other papers usually perform comparative statics of cases of learning vs perfect

information (see, for example, Brennan and Xia, 2001, Veronesi, 2000, or Ai, 2010), we
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(1) (2) (3)
Nb. Obs 36 36 36
Intercept 0.036∗∗∗ 0.037∗∗∗ 0.040∗∗∗

(13.19) (11.48) (9.91)
Attentiont -0.022 −0.023∗

(-1.56) (-1.87)
Attention2

t 0.030∗∗ 0.027∗∗

(2.21) (2.15)
Uncertaintyt −0.028∗∗ −0.029∗∗

(-2.08) (-2.25)
Uncertainty2

t 0.039∗∗∗ 0.039∗∗∗

(3.29) (3.27)
Adj. R-Squared 0.086 0.210 0.278

Table 3: OLS regressions of risk premia on attention and uncertainty

There are 3 regressions: (1) risk premia on attention, (2) risk premia on uncertainty, and
(3) risk premia on attention and uncertainty. The dataset comprises 36 datapoints at
quarterly frequency from Q1:2004 to Q4:2012. The Newey-West t-statistics are reported
in brackets and statistical significance at 10%, 5%, and 1% is labeled respectively with
∗/∗∗/∗∗∗.

are able to show that learning with fluctuating attention can generate risk premia and

volatilities beyond levels obtained with constant attention.

Table 3 confirms that the relationship between risk premia, attention, and uncertainty

is indeed quadratic. Precisely, column 3 shows that all coefficients are significant and

the adjusted R-squared is close to 0.3. Uncertainty seems to be a stronger driver of risk

premium, yet attention adds explanatory power. The coefficients of Φ from columns 1

and 3 (i.e., the linear coefficients of attention) reveal an interesting result. The first is

not significant while the second is only marginally significant at 10%. Close inspection

of Equation (15) suggests why this is the case. Attention enters in the definition of risk

premium only with a quadratic term. The practical implication of this is that one should

expect to obtain a not significant coefficient, which turns out to be the case.

Building on David (1997) and Veronesi (1999), Ozoguz (2009) tests whether investor

require a risk premium to be compensated for high uncertainty and finds support for this

prediction, but she does not find a significant relationship between uncertainty and market

volatility. Massa and Simonov (2005) confirm that uncertainty is priced. Our paper differs

from Ozoguz (2009) and Massa and Simonov (2005) in its emphasis, as our main focus

is the fluctuating attention and its effects on risk premium and volatility. We find that

investor attention is the main driver of volatility, which could explain the weak relationship

between uncertainty and volatility documented by Ozoguz (2009). Concerning the risk

premium, we find that uncertainty indeed is an important factor, but we also find that

attention adds explanatory power. Most important, the relationship between attention,
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uncertainty, and risk premium is not linear but quadratic, and we find strong support for

this in the data.

Finally, we would like to emphasize that our paper investigates only the “induced uncer-

tainty” generated by learning. Real life is probably messier than that; there is uncertainty

about government policy (Pastor and Veronesi, 2012), uncertainty about monetary policy,

uncertainty about regulatory policy, uncertainty about foreign policy, uncertainty about

U.S. fiscal policy, uncertainty about the national debt, and the list goes on. Plausible

extensions of our model could incorporate exogenous movements in uncertainty, exactly as

the long-run risk model has introduced exogenous time-varying risk in the fundamentals

(Bansal and Yaron, 2004; Bloom, 2009), while maintaining fluctuating attention as a criti-

cal component. Although these extensions are expected to provide additional insights, we

leave them for future work and keep the focus of our paper on the clean effect of learning

uncertainty on asset prices.

5 Accumulation of Uncertainty and Panic States

Our model generates strong effects on the dynamics of volatilities and risk premia, espe-

cially during times of crisis. These effects are the result of the joint dynamics of investor

attention and uncertainty, which give rise to the lead-lag relation described in Section

2.3. We show that the economy can go at times in “panic states,” or states of high atten-

tion and high uncertainty. These states are characterized by spikes in volatility and risk

premium, as we witnessed during the turmoil in the Fall of 2008.

To begin with, consider a relatively long period of low investor attention. During this

period, investors are less concerned about the economy and therefore pay less attention

to news. This, in turn, propagates an accumulation of uncertainty, through the lead-lag

relation between Φ and γ: the less attentive investors are, the more uncertain the economy

becomes. It suffices a few notable events grabbing investor attention to bring fragility into

focus. The economy switches suddenly to a panic state, i.e., a state of high attention and

high uncertainty. Consequently, volatility and risk premium spike. Since now investors

pay attention to news, uncertainty necessarily goes down through the lead-lag relation

between Φ and γ. This gradual reduction of uncertainty lowers the volatility and risk

premium. Ultimately, as the crisis unwinds and recovery takes hold, investors become

less concerned about the economy, and we are back to square one.

We illustrate this intuition in Figure 6, where we plot four time series: (i) investor

attention, measured by the Google search volume index, (ii) uncertainty, measured by the

dispersion of analyst forecasts of real GDP growth, (iii) stock market volatility, obtained

through a GARCH(1,1) estimation from the S&P500 returns, and (iv) risk premium

obtained from quarterly surveys reported by Graham and Harvey (2013). These quarterly

time series are aligned at same dates in order to facilitate interpretation.
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Figure 6: Accumulation of uncertainty and panic states

The figure plots 4 time series: (i) investor attention, measured by the Google search vol-
ume index, (ii) uncertainty, measured by the dispersion of analyst forecasts of real GDP
growth, (iii) stock market volatility, obtained through a GARCH(1,1) estimation from
the S&P500 returns, and (iv) risk premium obtained from quarterly surveys reported by
Graham and Harvey (2013). Series are at quarterly frequency and aligned at same dates.

Uncertainty and attention were both low before 2007, consistent with what economists

called the “great moderation.” In 2007, however, uncertainty rises gradually, while atten-

tion remains low. During most of 2008, attention remains low but uncertainty keeps rising,

bringing up both volatilities and risk premia. In the Fall of 2008, a spike in investor at-

tention brings volatilities and risk premia to all time highs. Then, attentive investors

gradually solve the uncertainty, which brings back down volatilities and risk premia. New

spikes, although of smaller magnitude, occur in 2011 and 2012 in connection with the

European debt crisis.

An additional point to make here is that volatility and risk premium depend differently

on attention and uncertainty. For example, in Section 3 we show that attention is the

main driver of volatility, whereas in Section 4 we show that uncertainty is the main driver

of risk premium. This should explain why we observe high risk premia and low volatility

at the end of 2007 and the end of 2012: both times are characterized by high uncertainty

and low attention, leading to an apparent disconnect between volatility and risk premium.

Although our model is far less complex than actual financial markets, at a qualitative

level it does connect to events observed in recent years. After all, our model is only a pure

exchange economy with a representative agent who learns with a variable attention—an
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accurate description of financial markets would probably be too much to ask for such a

standard model. What we want to emphasize is that investor attention is indeed a critical

component and our model shows exactly why this is the case. A reasonable extension,

which probably would make the model even more realistic, is to assume that attention

does not only depend on economic conditions, but also on important events, such as the

Lehman Brothers bankruptcy. One way or another, the message remains the same: spikes

in investor attention in highly uncertain times might be the trigger of financial panics.

Finally, assuming a brief disconnect between investor attention and economic condi-

tions could also help explain the events that occurred in the mid- to late 1990s. While the

stock market was rising, considerable attention was paid to the internet sector, fuelling

the technology boom. But this period of “irrational exuberance,” characterized by highly

volatile returns, was quite uncertain given the large unpredictability of new technolo-

gies (Pastor and Veronesi, 2006). Ultimately, the U.S. Federal Reserve increased interest

rates several times, the economy began to lose speed, Nasdaq’s profitability plummeted—

triggering probably a spike in investors’ attention—and the dot-com bubble burst in March

2000.

A related paper trying to rationalize fluctuations of uncertainty is Timmermann (2001).

In Timmermann (2001)’s model, observable structural breaks generate a spike in uncer-

tainty and push agents to filter out the new (unknown) value of the fundamental. As new

data comes in, uncertainty is gradually reduced. Timmermann (2001)’s model bears a

similar flavor with ours, in that learning gradually reduces uncertainty. In our case, a pe-

riod of high attention gradually reduces uncertainty. We also provide the flip side of this

argument: periods of low attention propagate accumulation of uncertainty, a precursor of

panic states. Our model of fluctuating attention is therefore the origin of rich dynamics

of uncertainty, volatilities, and risk premia.

Bacchetta, Tille, and van Wincoop (2012) develop a model of time-varying risk in the

fundamentals. They show that, if the asset price depends negatively on its future vari-

ance, any fundamental variable which affects this future variance may generate a circular

relationship and thus a self-fulfilling shift in risk. This fundamental variable becomes a

focal point of fear in the market during a panic. Similarly, in our model news become a

focal point during periods of high attention. The key aspect of our model is, however, dif-

ferent from theirs. While in Bacchetta et al. (2012) the time-varying risk is self-fulfilling

and appears in sunspot equilibria, in our model the time-varying risk is determined by

fluctuations in investor attention and appears in a pure exchange economy equilibrium.

6 Extensions and Other Comments

This Section is dividend in two parts. First, we consider the extension of our model to

the case when attention depends on stock return surprises. Second, we perform two tests
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that further sustain counter-cyclical attention and tend to reject the potential assumption

that noise in the signals is counter-cyclical.

6.1 The Case When Attention Depends on Return Surprises

The performance index depends now on past return surprises

φt =
∫ t

0
e−ω(t−u)

(
dSu + δudu

Su
− µudu

)
. (16)

Applying Itô’s lemma to Equation (16) yields the following dynamics

dφt = −ωφdt+ σtdWt,

where σ ≡
(
σ1t σ2t

)
is the stock return diffusion vector.

The relation between attention and the performance index is provided in Definition

1. As before we approximate the price-dividend ratio by the exponential form exposed

in Equation (10). Applying Itô’s lemma to that equation yields the following functional

form for the stock return diffusion

σt ≡
(
σ1t σ2t

)
=
(
σδ + β11

γt
σδ

+ β12σ1t β11σfΦt + β12σ2t

)
.

Solving for σ1 and σ2 yields

σt =
(
β11γt+σ2

δ

(1−β12)σδ

β11σfΦt
1−β12

)
.

Note that now the performance index features stochastic volatility, as returns do. Sub-

stituting the above expression in the dynamics of the performance index φ and proceeding

exactly as in Section 2.5.1 yields the price-dividend ratio.

When attention depends on return surprises, the price-dividend ratio satisfies

I(x) ≈ eβ0+β11f̂+β12φ+β13γ,

where

β0 = 3.6156 β11 = 1.1207 (17)

β12 = −0.0006 β13 = −11.3618.

The coefficients exposed in (11) and (17) show that the price-dividend ratio doesn’t

depend on whether attention is driven by dividend or return surprises. Moreover, the

diffusion of the price-dividend ratio is also very similar in both cases because β12 is small.

Consequently, the levels of the price-dividend ratio, risk free rate, stock return volatility,
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Parameter Symbol (a) Estimate based on (b) Estimate based on
dividend surprises return surprises

Mean price-dividend E(I) 38.24 38.26

Volatility price-dividend Vol
(
dI
I

)
2.73% 2.74%

Mean risk premium E(µ− r) 2.56% 2.46%
Volatility risk premium Vol (d(µ− r)) 1.27% 2.52%
Mean risk free rate E(r) 2.93% 2.96%
Volatility risk free rate Vol (dr) 1.77% 2.24%
Mean return volatility E(||σ||) 3.98% 3.92%
Volatility of return volatility Vol (d||σ||) 0.83% 1.37%

Table 4: Unconditional Moments

Columns (a) and (b) show the unconditional asset pricing moments when attention de-
pends on dividend surprises and return surprises, respectively. 20’000 simulations of
daily data are performed over a 100 years horizon. First, averages are computed over
each time-series to provide 20’000 estimates. Then, the median of the 20’000 estimates
is reported above.

market prices of risks, and risk premia are very close to each other in both cases.

Table 4 exposes the unconditional asset pricing moments resulting from 20’000 simu-

lations of daily data considered over an horizon of 100 years. This table confirms that the

average levels of the price-dividend, risk free rate, stock return volatility, and risk premia

are basically the same for both attention specifications.

Because the performance index is more volatile when it depends on return surprises,

attention becomes also more volatile in that case. Consequently, the variables that are

significantly driven by attention inherit a larger volatility when the performance index

depends on return surprises. As shown in Proposition 2 and Equations (14) and (15),

these variables are the market prices of risk, the risk free rate, the stock return volatility,

and the risk premium. Table 4 confirms that the volatility of risk premia almost doubles

when we move from dividend to return surprises. While Chien et al. (2012) show that

the presence of “infrequent traders” helps explain the observed volatility of risk premia,

our complementary explanation resides in the fact that investors become more attentive

to news when return surprises are negative, and vice versa. Moreover, the volatility of

volatility increases by a factor of 1.65, whereas the volatility of the risk free rate rises by

a factor of 1.27 only.

6.2 Attention versus Noise in the Signals

Our estimation implies that attention is higher in bad economic times than in good

economic times (Λ > 0). The question is: do we really extract from the data counter-
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(1) (2) (3)
All Sample NBER Rec. NBER Exp.

Nb. Obs 176 29 147
Intercept 0.002 −0.015∗ 0.015∗∗∗

(0.50) (-1.88) (3.23)
Slope 0.974∗∗∗ 0.859∗∗ 0.634∗∗∗

(7.52) (2.22) (4.31)
R-Squared 0.245 0.155 0.113
Wald p-value 0.821 0.093 0.003

Table 5: Test of forecast optimality: NBER recessions vs. NBER expansions

The Mincer and Zarnowitz (1969) regression specification is Yt+1 = a0 + a1Ŷt+1,t + ut+1,
where Yt+1 is the predicted variable (real GDP growth in our case) and Ŷt+1,t is the

forecast based on information available at time t (f̂t in our case). The t-statistics are
in parenthesis below the coefficients. The Wald test specification is the joint restriction
{a0 = 0, a1 = 1}. Statistical significance at 10%, 5%, and 1% is labeled respectively with
∗/∗∗/∗∗∗.

cyclical attention or rather counter-cyclical noise21 in the signals? Intuitively, more noise

in the signals generates more uncertainty, and consequently larger risk premia and return

volatility as in our fluctuating attention model (see Sections 3 and 4).

In order to differentiate counter-cyclical attention and counter-cyclical noise in the

signals, we perform two tests. The first consists in investigating whether analysts forecasts

are more accurate in bad times than in good times. If attention is counter-cyclical, then

forecasts should be more accurate in recessions than in expansions, whereas the reverse

assertion should hold if the noise in the signals is counter-cyclical.

The first test is performed as follows. We use Mincer and Zarnowitz (1969) regressions

of realized real GDP growth on a constant and the corresponding analyst forecast . The

testable implication of these regressions is that the associated coefficients should be 0 and

1, i.e., that the forecast error is conditionally (and unconditionally) unbiased.22

Accordingly, we use NBER monthly recession indicators to divide our sample in two

parts: recessionary and expansionary periods. Given that the Philadelphia Fed sends the

questionnaires and the advance report from Bureau of Economic Analysis to panelists

at the end of the first month of each quarter, we use the NBER indicator exactly at

that date in order to decide if we are in a recession or an expansion. Then, we perform

Mincer and Zarnowitz (1969) regressions for the whole sample and the two resulting sub-

samples. In each case, we perform Wald tests of the joint restriction on the intercept and

the slope. The results are presented in Table 5.

21Note that the signal would be defined by dst = ftdt + σs
t dZs

t , with σs counter-cyclical.
Bansal and Shaliastovich (2010) consider this type of signal specification and fit the variance of s to
observed analyst forecast dispersion using a jump-diffusion model.

22See Patton and Timmermann (2007) for a discussion and an application of Mincer and Zarnowitz
(1969) regressions.
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When we use the entire sample (first column of Table 5), the data tells us that pre-

dictions are quite accurate. The Wald joint test of the coefficients cannot be rejected.

When we split the data in NBER recessions (column 2) and NBER expansions (column

3), we observe a higher R-squared for the recession sample. More important, the Wald

test cannot be rejected at 5% confidence level in the recession sample, while it is rejected

in the expansion sample. As such, these regressions should be viewed as evidence that we

observe better forecasts in bad times, offering support to a positive parameter Λ and thus

to counter-cyclical attention.23 Also, this first test rejects the assumption that signals are

more noisy in recessions than in expansions.

The second test consists in looking at the interdependence between returns and news

shocks in recessions and in expansions. If attention is counter-cyclical, then returns should

be more correlated to news shocks in recessions than in expansions. In contrast, if the

noise in the signals is counter-cyclical, then returns should be less correlated to news

shocks in recessions than in expansions.

Figure 7 depicts the model implied slope βRN and correlation coefficient ρRN obtained

by regressing returns on news shocks. These coefficients satisfy

βRNt ≡
Covt

(
dSt+δtdt

St
, dW s

t

)

Vart (dW
s
t )

(18)

ρRNt ≡
Covt

(
dSt+δtdt

St
, dW s

t

)

Volt (dW s
t ) Volt

(
dSt+δtdt

St

) . (19)

Figure 7 confirms that both the slope and the correlation increase with attention. Hence

the model implied interconnection between news and returns is strong in bad times and

weak in good times, consistent with the empirical findings in Garcia (2013). In contrast,

counter-cyclical noise in the signals implies that the weight assigned by the investor to

news shocks declines in bad times, making returns less sensitive to news in recessions

than in expansion. The latter prediction is inconsistent with Garcia (2013), who shows

that Dow Jones Industrial Average returns are significantly more connected to Wall Street

Journal news in recessions than in expansions. To summarize, our two tests lend strong

support to counter-cyclical attention and reject counter-cyclical noise in the signals.

23As an additional exercise, we also divide our sample in periods when the Google attention index
is higher than its mean and periods when it is lower that its mean. The adjusted R-squared nearly
doubles (from 0.16 to 0.30) when moving from the low to the high attention state. Also, note that
Van Nieuwerburgh and Veldkamp (2006) find that the absolute forecast error on the level of the nominal
GDP tends to be larger in bad times than in good times. This finding does absolutely not contradict our
results given that we focus on the growth rate of real GDP.
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Figure 7: Connection between news shocks and returns

Panel (a) depicts the slope coefficient βRN obtained by regressing returns on news shocks
(see definition in Equation 18). Panel (b) depicts the correlation, ρRN , between returns
and news shocks (see definition in Equation 19). The parameter values used for these
plots are presented in Table 1.

7 Concluding Remarks

We have developed a simple setup to show how investors’ attention and learning un-

certainty affect simultaneously the dynamics of asset returns. The model predicts that

volatilities and risk premia increase quadratically with attention and uncertainty. These

predictions are supported by our empirical analysis. Furthermore, investors’ learning gen-

erates a lead-lag relation between attention and uncertainty. We have shown that this

feature can yield “panic states,” when stock prices are volatile and investors demand a

high risk premia. This connects our model to events observed in recent years, such as the

turmoil in the Fall of 2008.

We hope this paper makes a useful step forward in the important task of understanding

the effect of learning on asset prices. No doubt that more complicated extensions of the

present model deserve to be addressed in future research. Here are a few ideas.

For instance, and as we mentioned earlier, investors’ processing of information en-

compasses several dimensions, including dispersion of beliefs. Massa and Simonov (2005)

show that both learning uncertainty and dispersion of beliefs are priced. It is there-

fore of interest to integrate both of them in the same setup. Our conjecture is that

if investors learn from different sources of information, or if they have different priors,

spikes in investors’ attention might contribute to polarization of beliefs. We could ob-

serve states of high uncertainty associated with wildly divergent views. Recent results

from Carlin, Longstaff, and Matoba (2013) indicate that this might be a fruitful research

avenue. They find that increased disagreement is associated with higher expected re-

37



turns, higher return volatility, and larger trading volume. Moreover, disagreement is time

varying and increases during periods of extreme uncertainty.

Learning can also be biased. For example, investors could be overconfident, as in

Dumas et al. (2009). Moreover, high uncertainty probably feeds biased expectations. This

could further increase the volatility of asset prices and, when expectations turn out to

be wrong, could generate major corrections of the stock market. One such episode is

the Nasdaq “bubble,” when investors overlooked traditional valuation metrics such as the

P/E ratio in favor of (over)confidence in technological advancements.

We believe that a richer setup with leveraged firms and market liquidity can provide

additional insights. Extended periods of low attention and low uncertainty, or “great

moderations,” may cause firms to be less concerned about liquidity and to hold less capital.

This, in turn, encourages increased debt levels and enables a period of financial instability.

When uncertainty and attention start rising again, leverage and market liquidity collapse,

and the economy enters into a financial panic.

Finally, Karlsson et al. (2009) suggest that, because retail investors temporarily ignore

their portfolios, liquidity dries up exactly in major market downturns. Examples provided

are the Asian crisis of 1997, the Russian debt default in 1998, and the credit crunch of

2008. If these investors are believed to be “unsophisticated,” then their failure to rebalance

their portfolios can help to explain the counter-cyclical volatility of aggregate risk (see

Chien et al. 2012, Duffie 2010, and other papers in the literature on slow moving capital).

Fluctuations in investors’ attention to news can only reinforce these effects, providing an

interesting connection between attention to wealth and attention to news.
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A Appendix

A.1 Unconditional moments of the performance index φ and

probability density function of the attention Φ

Consider

Yt =

[
ft
φt

]
, dYt = (A − BYt) dt + C

[
dZf

t

dZδ
t

]

with

B =

[
λ 0
0 ω

]

and

C =

[
σf 0
0 σδ

]
.

The solution is found by applying Itô’s lemma to

Ft = eBtYt =

[
eλtft
eωtφt

]
.

After integrating from 0 to t we obtain

Ft − F0 =

[ ∫ t
0 λf̄eλudu +

∫ t
0 σfeλudZf

u∫ t
0 σδe

ωudZδ
u

]
.

Thus, the first moments of f and φ solve the following system of equations





eλtE [ft] − f0 = f̄
(
eλt − 1

)

eωtE [φt] − φ0 = 0.

It follows that the long term mean of f is f̄ and the long term mean of φ is 0. The variance of
f is found with the standard formula

Var [ft]= E [(ft − E [ft]) (ft − E [ft])]

= E

[(∫ t

0
σfeλudZf

u

)2
]

=
σ2
f

(
1 − e−2λt

)

2λ
.

The long term variance of f is then
σ2
f

2λ . Similarly, the long term variance of φ is
σ2
δ

2ω . The density
function of attention Φ is written

fΦ (Φt) =

∣∣∣∣
1

g′ (g−1 (Φt))

∣∣∣∣ fφ
(
g−1 (Φt)

)
=

exp


−

ω log2

(
Φ̄(Φt−1)

(Φ̄−1)Φt

)

Λ2σ2
δ




√
π
(
ΛΦt − ΛΦ2

t

)√σ2
δ

ω
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A.2 Details on ζ, f̂ , φ, and γ

We have

dft =
(
λf̄ + (−λ) ft

)
dt + σfdZf

t +
[

0 0
] [ dZδ

t

dZs
t

]

or (as in Liptser and Shiryaev (2001))

dft = [a0 (t, ϑ) + a1 (t, ϑ) ft] dt + b1 (t, ϑ) dZf
t + b2 (t, ϑ)

[
dZδ

t

dZs
t

]
.

Moreover, the observable process is given by

dϑt =

([
−1

2σ2
δ

0

]
+

[
1
0

]
ft

)
dt +

[
0
Φt

]
dZf

t +

[
σδ 0

0
√

1 − Φ2
t

] [
dZδ

t

dZs
t

]

or

dϑt = [A0 (t, ϑ) + A1 (t, ϑ) ft] dt + B1 (t, ϑ) dZf
t + B2 (t, ϑ)

[
dZδ

t

dZs
t

]
.

Using Liptser and Shiryaev (2001)’s notations, we get

b ◦ b = b1b′
1 + b2b′

2 = σ2
f

B ◦ B = B1B′
1 + B2B′

2 =

[
σ2
δ 0

0 1

]

b ◦ B =
[

0 σfΦt

]
.

Then, Theorem 12.7 (Liptser and Shiryaev, 2001) shows that the filter evolves according to

df̂t =
[
a0 + a1f̂t

]
dt +

[
(b ◦ B) + γtA

′
1

]
(B ◦ B)−1

[
dϑt −

(
A0 + A1f̂t

)
dt
]

γ̇t = a1γt + γta
′
1 + (b ◦ b) +

[
(b ◦ B) + γtA

′
1

]
(B ◦ B)−1 [(b ◦ B) + γtA

′
1

]′

where γ represents the posterior variance. Notice that the dynamics of γ depend on φ through
the term, b ◦ B. Consequently, we cannot follow Scheinkman and Xiong (2003) and solve for
the steady-state. We have no other choice than including the posterior variance γ in the state
space.

A.3 Solutions for ζ, f̂ , φ, and γ

Since the dividend process δ is a geometric Brownian motion, its solution is immediately given
by

δt = δve
∫ t
v
f̂udu− 1

2
σ2
δ

(t−v)+σδ(W δ
t −W δ

v ), t ≥ v.

In order to solve for f̂ and φ, we have to notice that the vector defined by

Yt =

[
f̂t
φt

]
, dYt = (A − BYt) dt + C

[
dW δ

t

dW s
t

]

with

B =

[
λ 0
0 ω

]
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C =

[
γt
σδ

σfΦt

σδ 0

]

is a bivariate Ornstein-Uhlenbeck process. The solution is found by applying Itô’s lemma to

Ft = eBtYt =

[
eλtf̂t
eωtφt

]
.

The dynamics of F obey

dFt =

[
etλ(σfσδΦtdW s

t +γtdW δ
t +dtλf̄σδ)

σδ

etωσδdW δ
t

]
.

After integrating from v to t and rearranging we obtain

f̂t = e−λ(t−v)f̂v + f̄
(
1 − e−λ(t−v)

)
+

1

σδ

∫ t

v
e−λ(t−u)γudW δ

u + σf

∫ t

v
e−λ(t−u)ΦudW s

u

φt = e−ω(t−v)φv +

∫ t

v
σδe

−ω(t−u)dW δ
u .

The dynamics of the posterior variance γ can be rewritten as

∂

∂t

[
Gt Ft

]
=
[

Gt Ft
] [ −2λ 1

σ2
δ

σ2
f (1 − Φ2

t ) 0

]

where γt = Gt
Ft

. The solution is obtained through exponentiation and is given by

γt =
σδ

(
σδ (iv,t − ∆λγv) sinh

(√
∆

√
iv,t+∆λ2σ2

δ

σδ

)
+

√
∆γv

√
iv,t + ∆λ2σ2

δ cosh

(√
∆

√
iv,t+∆λ2σ2

δ

σδ

))

∆
(
γv + λσ2

δ

)
sinh

(√
∆

√
iv,t+∆λ2σ2

δ

σδ

)
+

√
∆σδ

√
iv,t + ∆λ2σ2

δ cosh

(√
∆

√
iv,t+∆λ2σ2

δ

σδ

)

where

∆ = t − v

iv,t = σ2
f

∫ t

v
(1 − Φ2

u)du.

A.4 Moment Conditions

Note that γ depends on the attention Φ, Φ depends on the dividend performance φ, and φ is
driven by surprises in the dividend growth. Hence, the posterior variance γt, the attention Φt,
and the dividend performance index φt, for t = 0, ∆, . . . , T ∆, have to be constructed recursively.
These (implicit) time series are used for some of the moment conditions that follow.

We approximate the continuous-time processes pertaining to the solution of the system of
equations (4) using the following simple discretization scheme

∫ t2

t1

κ1,udu ≈ κ1,t1∆

∫ t2

t1

κ2,udWu ≈ κ2,t1εt1+∆

where κ1 and κ2 are some arbitrary processes, ∆ = t2 − t1 = 1
4 , and εt1+∆ ∼ N(0, ∆).
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A.4.1 Conditional mean of f̂t+∆

We have

f̂t+∆ =e−λ∆f̂t + f̄
(
1 − e−λ∆

)
+

1

σδ

∫ t+∆

t
e−λ(t+∆−u)γudW δ

u + σf

∫ t+∆

t
e−λ(t+∆−u)ΦudW s

u

(20)

The following moment condition must hold

Et

[
f̂t+∆

]
= e−λ∆f̂t + f̄

(
1 − e−λ∆

)

or, its empirical counterpart

0 =
1

T

t∑

i=1

[
f̂i∆ − e−λ∆f̂(i−1)∆ − f̄

(
1 − e−λ∆

)]

The Federal Reserve Bank of Philadelphia not only provides the 1-quarter ahead forecast (which
in our case is denoted by f̂t), but also 2-quarters ahead and 3-quarters ahead forecasts, i.e.,
g1,t ≡ Et[f̂t+∆] and g2,t ≡ Et[f̂t+2∆]. This establishes two additional moment conditions:

g1,t = e−λ∆f̂t + f̄
(
1 − e−λ∆

)

and

g2,t = e−λ∆g1,t + f̄
(
1 − e−λ∆

)

or, their empirical counterpart

0 =
1

T

t∑

i=1

[
g1,i∆ − e−λ∆f̂i∆ − f̄

(
1 − e−λ∆

)]

0 =
1

T

t∑

i=1

[
g2,i∆ − e−λ∆g1,i∆ − f̄

(
1 − e−λ∆

)]

A.4.2 Unconditional autocovariance of f̂t

The following moment condition must hold

Cov
(
f̂t+∆, f̂t

)
= e−λ∆Var

(
f̂t
)

or, its empirical counterpart

0 =
1

T

T∑

i=1

[(
f̂i∆ − µ

f̂ ,1:T

) (
f̂(i−1)∆ − µ

f̂ ,0:T−1

)
− e−λ∆

(
f̂(i−1)∆ − µ

f̂ ,0:T−1

)2
]

where µ(·) represents the sample average.
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A.4.3 Unconditional autocovariance of φt

The following moment condition must hold

Cov (φt+∆, φt) = e−ω∆Var (φt)

or, its empirical counterpart

0 =
1

T

T∑

i=1

[
(φi∆ − µφ,1:T )

(
φ(i−1)∆ − µφ,0:T−1

)
− e−ω∆

(
φ(i−1)∆ − µφ,0:T−1

)2
]

A.4.4 Unconditional variance of φt

The following moment condition must hold

Var (φt) =
σ2
δ

2ω

or, its empirical counterpart

0 =
1

T

T∑

i=1

[
(φi∆ − µφ,1:T )2

]
− σ2

δ

2ω

A.4.5 Conditional variance of f̂t+∆

Take the first diffusion term in Equation (20):

Vart

(
1

σδ

∫ t+∆

t
e−λ(t+∆−u)γudW δ

u

)
=

1

σ2
δ

e−2λ(t+∆)
Et



(∫ t+∆

t
eλuγudW δ

u

)2



=
1

σ2
δ

e−2λ(t+∆)
Et

[∫ t+∆

t
e2λuγ2

udu

]

≈ 1

2λσ2
δ

γ2
t

(
1 − e−2λ∆

)

(21)

The second equality in Equation (21) results from Itô isometry, whereas the third equality comes
from the approximation γu ≈ γt. The variance of the second diffusion term in Equation (20) is
obtained similarly. The conditional variance of f̂t+∆ is then

Vart
(
f̂t+∆

)
=

(
γ2
t

σ2
δ

+ σ2
fΦ2

t

)
1 − e−2λ∆

2λ

which represents a moment condition. Its empirical counterpart is

0 =
1

T

T∑

i=1

[(
f̂i∆ − e−λ∆f̂(i−1)∆ − f̄

(
1 − e−λ∆

))2
−
(

γ2
(i−1)∆

σ2
δ

+ σ2
fΦ2

(i−1)∆

)
1 − e−2λ∆

2λ

]

A.4.6 Conditional variance of φt+∆

We know that

φt+∆ = φte
−ω∆ + σδ

∫ t+∆

t
e−ω(t+∆−u)dW δ

u
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Thus

Vart (φt+∆) = σ2
δe

−2ω(t+∆)
Et



(∫ t+∆

t
eωudW δ

u

)2



= σ2
δe

−2ω(t+∆)
Et

[∫ t+∆

t
e2ωudu

]

=
σ2
δ

2ω

(
1 − e−2ω∆

)

(22)

or

0 =
1

T

T∑

i=1

[(
φi∆ − e−ω∆φ(i−1)∆

)2
− σ2

δ

2ω

(
1 − e−2ω∆

)]

The second equality in Equation (22) results from Ito isometry.

A.4.7 Unconditional mean of Φt

The process Φ has a long term mean that can be approximated by Φ̄. Therefore, one can write

E [Φt] ≈ Φ̄

or, its empirical counterpart

0 =
1

T

T∑

i=1

[
Φi∆ − Φ̄

]

A.4.8 Unconditional variance of Φt

The unconditional variance of the attention implied by our model should match the unconditional
variance of the Google attention index (which has been adjusted to take values between 0 and
1)

Var [Φt] = 0.054

or, its empirical counterpart

0 =
1

T

T∑

i=1

[
(Φi∆ − µΦ,1:T )2 − 0.054

]

A.4.9 Unconditional variance of dδt
δt

− f̂tdt

Let’s define the observable process d as

dt+∆ ≡ log
δt+∆

δt
− f̂t∆ = −1

2
σ2
δ∆ + σδε

δ
t+∆

We can thus write

Var (dt+∆) = σ2
δ∆

or, its empirical counterpart

0 =
1

T

T∑

i=1

[
(di∆ − µd,1:T )2 − σ2

δ∆
]
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To summarize, there are 11 boxed equations which define a system of 11 moment conditions that
needs to be solved to obtain the 7-dimensional vector of parameters Θ = (λ, f̄ , ω, Φ̄, Λ, σf , σδ)

>.
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