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Abstract

For both differentiable and nondifferentiable functions defined in abstract spaces we characterize the
generalized convex property, here called cone-invexity, in terms of Lagrange multipliers. Several
classes of such functions are given. In addition an extended Kuhn-Tucker type optimality condition
and a duality result are obtained for quasidifferentiable programming problems.

1980 Mathematics subject classification (Amer. Math. Soc): 90 C 30.

1. Introduction

The Kuhn-Tucker conditions for a constrained minimization problem become
also sufficient for a (global) minimum if the functions are assumed to be convex,
or to satisfy certain generalized convex properties [14]. Hanson [10] showed that a
minimum was implied when convexity was replaced by a much weaker condition,
called invex by Craven [4], [5]. For the problem,

Minimize fo(x) subject to -g(x) e 5,

where S is a closed convex cone, the vector / = (/0, g) is required to have a
certain property, here called cone-invex, in relation to the cone R+X S. Some
conditions necessary, or sufficient, for cone-invex were given in Craven [5]; see
also Hanson and Mond [12]. However, it would be useful to characterize some
recognizable classes of cone-invex functions.

The present paper (a) represents several classes of cone-invex functions, (b)
characterizes the cone-invex property, for differentiable functions, in terms of
Lagrange multipliers (Theorems 2 and 3), using Motzkin's (or Gale's) alternative
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2 B. D. Craven and B. M. Glover [2 ]

theorem; (c) extends some of these results to a class of nondifferentiable func-
tions, namely quasidifferentiable functions [16]. In this final section we shall also
establish a Kuhn-Tucker type optimality condition and a duality theorem for
cone-invex programs with a quasidifferentiable objective function. Several exam-
ples are given to illustrate the results.

2. Definitions and symbols

Consider the constrained minimization problem:

(P) Minimize fo{x) subject to -g(x) G S,

in which f0: Xo -> R and g: Xo -» Y are (Frechet) differentiable functions, X and
Y are normed spaces, Xo c X is an open set, and 5 c Y is a closed convex cone.
Suppose that (P) attains a local minimum at x = a. If a suitable constraint
qualification is also assumed, then the Kuhn-Tucker conditions hold:
(KT) ( 3 A e S * ) / 0 » + Ag'(a) = 0, Xg(a) = 0, -g(a) e S.

Here S* = { v e Y': (Vy G S)vy > 0}, in which Y' denotes the (topological) dual
space of Y, and vy denotes the evaluation of the functional v at y G Y. (In finite
dimensions, vy may be expressed as vTy, in terms of column vectors. Note that x
and y here do not generally relate to the spaces X and Y.)

The Kuhn-Tucker conditions are valid under weaker differentiability assump-
tions on / 0 and g, in particular, if the functions are linearly Gateaux differentiable
at the point a, ([3]). Now let / = (f0, g): Xo -> R X Y; K = R+X S, where
R + = [0, 00); r = (1, \ ) ; So = {<*(>> + g(a)): a e R+, >> e 5) , AT0 = R+x 50.
Then /iT* = R+X SJ, where 50* = {Ae 5*: Ag(a) = 0}. Then r = (r0, X) with
r o 6 R + 1 A e S o * . Now (KT) holds if and only if there holds:

(KT+) (3retf0*,r0>0)//'(a) = 0, rf(a) =fo(a);-g(a) e S.

Let KT(P) denote the set of a Xo such that (KT + ) holds, for some /• e K%. Let
Z = R X Y. Denote by(D1) the formal Wolfe dual of the problem (P), namely

(£>!> Maximize fo(u) + Xg(u) subject to X e S*,/0'(u) + Ag'(") = °-

Let £: = {x G XQ: -g(jc) e S}, the feasible set of (P); denote by Ĥ  the set of
M G Â Q, such that (u, X) is feasible for (Dx), for some X e 5*. The formal
Lagrangean dual of the problem (P) is the problem

(Z>2) Maximize^X), where<f>(X) = inf{/0(x) + Xg(x): x G ZQ}.
\ ^ s

Note that weak duality ([3]) holds automatically for (P) and (D2), that is
/o(-x)><HX) whenever x is feasible for (P) and X for (Z>2)-
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(3 ] Invex functions and duality 3

A function h: Xo -> Yis S-convex if, whenever 0 < a < 1 and x, y G Xo,

ah(x)+(l - a)h(y) - h(ax + (l - a)y) e S;

/i is locally S-convex at a G I o if this inclusion holds whenever x, y e U, where U
is a neighborhood of a in Xo. If the function h is linearly Gateaux differentiable
then h is S-convex if and only if, for each x, y G Xo,

(1) AOO-M.jO-A'GOO'-.jOeS.

The function h is S-sublinear if /i is S-convex and positively homogeneous of
degree one (that is, h(ax) = ah(x), Va > 0). If Y = R, S = R+ we shall denote
the subdifferential of a convex function h at a G A'Q by 9/i(a), where

3/i(a) = {v G A": u(x - a) < h{x) - A(a), for all* G * „ } .

If /j is continuous at a then 3/i(a) is a non-empty weak* compact convex subset of
X' ([17]); by (1) if h is linearly Gateaux differentiable at a then dh(a) = { h'(a)}.

Following [5], a function / : Xo -> Z is called K0-invex, with respect to a
function TJ: Jf0 X A'Q -» A", if, for each x, u e XQ,

(2) f(x)-f(u)-f'(u)r,(x,u)^K0.

(This property may be called cone-invex when the cone Ko is fixed.) The function
/ is called K0-invex at u on E c Xo if (2) holds for given u & X, and for each
x G E. We are assuming/is linearly Gateaux differentiable.

Define the following (possibly empty) set, contingent on a set D c X,

aint D = { x e Z ) : ( V z 6 l , z # 0 ) ( 3 « > 0 ) x + « z G D } .

If £> is convex, x + aSz e Z) also when 0 < a < 1, so aint D equals the algebraic
interior of D, as usually defined. If the cone S has non-empty (topological)
interior int S, then 0 ¥= int S c aint S. Define the />o/ar sets of sets V <z X and

F ° = ( w e A": (Vx e V) w(x) > - 1 } ;

^ ° = {x G A": (Vw e 4) W(JC) > -1} .

We shall also require in section V the following (not necessarily Unear) concept
of differentiability. A function h: Xo —» Y is directionally differentiable at a e I o

if the limit

h'(a, x) = Uma"1(/i(a + ax) - h(a))

exists for each x G A", in the strong topology of 7. If Y = R and h is a convex
functional then, for each a G A'O, h\a, •) exists and is sublinear ([17]).
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For a function h: Xo -» R, the level sets of h ([24]) are the sets

L , ( a ) = {xeX0:h(x)^a}, (a e R),

and the effective domain of L A ( ) is the set GA = (a e R: Lh(a) # 0 } . This
point-to-set mapping LA is called /otver semi-continuous (LSC) at a ^ Gh if
x e Lh(a), Gh^> (a,) -> a imply the existence of an integer A: and a sequence
(x,) such that x, e £/,("/) (/ = &,& + 1,...) and x, -» x. The point-to-set map-
ping Lh is strictly lower semi-continuous (SLSC) at a e GA if x e Lh(a), Gh z> (a,)
-> a imply the existence of an integer k, a sequence (x,), and b(x) > 0 such that

x t e L A ( « , - b ( x ) \ \ x i - x | | ) , ( i = k , k + l , . . . ) , a n d x , - » x .
The range of a function/is denoted by ran / ; the nullspace by N(f). For a

continuous linear function B: X -» y we will denote by BT:Y'-> X' the trans-
pose operator of 2?, defined by 2?r(w) = w ° B, for each w e Y'. The constraint
-g(x) e S of (.P) is called locally solvable at a e Xo if -g(a) e S and, whenever
d & X satisfies the linearized inclusion -g(a) — g'(a)d e 5, there exists a local
solution x = a + ad + o(a) to -g(x) e 5, valid for all sufficiently small a > 0.
We are assuming g is linearly Gateaux differentiable at a, however if g is merely
directionally differentiable at a then we can replace the linearized inclusion by
-g(a) — g'(a, d) G S. In particular, the constraint -g(x) e S is locally solvable
at a e Xo if ([3]) g is continuously Frechet differentiable and the set g(a) +
ran(g'(a)) + S contains a neighborhood of 0 in Y.

For a set y4 c A', we shall denote the closure of A by A. We shall assume
throughout that the dual space X' (or Y') is endowed with the weak* topology
(see [3]), thus for a set V c X', V represents the weak* closure of V. The results in
Section 4 do not depend on the dimensions of the spaces, and would extend
readily to locally convex spaces (for example, space of distributions).

3. Classes of cone-invex functions

In this section we illustrate the broad nature of cone-invexity by presenting
several classes of such functions, and some simple concrete examples.

(I) Each cone-convex function is invex, by (1) with TJ(X, a) = x — a.
(II) Let q: X -» Y and <p: X -» X be Hadamard differentiable with q 5-convex

and (JP surjective (<p(X) = X). Assume further that either (a) (Va e X)ran(qp'(«))
= X, or (b) (Vx, a e X) [ran(<p'(a))]* c N(<p(x) - q>(a)\ and [<p'(a), <p(x) -
<p(a)]T(X') is (weak*) closed. (In (b), we consider <p(x) — q>(a) e X", the second
dual of X; note also that (a) implies (b).) Then the function g = q ° q> is 5-invex
on X. For hypothesis (a), this follows from [4]. For hypothesis (b), let A = cp'(a)
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[ s ] Invex functions and duality 5

and let c = <p(x) - <p(a), given a, x e Xo. Then

[ran(^)]* c AT(c) « {(V\ e A")X^ = 0 => X(c) 3* 0}

since [ran(/4)]* = N(AT)

« (0,-1) <2 [^,c]r(A") since [A,c]T(X') is closed

<=> (3TJ = TJ(X, a) e X)AT\ = c

by Theorem 7 (below) and the Remark following it

=> (#°<p)'(a)i)(x, a) = q'{y{a))<p'{a)t\{x,a) = q(<p(a))(<p(x) - <p(a))

= <7(<p(x)) — ^(<p(a)) - s for somes G S, since f̂ is S'-convex

=> q ° <p is S-invex at a.

EXAMPLE 1. Let X = R2, 7 = R, S = R+, qr(x, y) = 3x2 - 2xy + 2y2 and

(p(x, y) = (x — ax3, y + by3), where a, b > 0. Then g = q ° <p is invex on X but
not convex.

(HI) Let a: Xo -> 7 be S-convex; let /?: Xo -» R satisfy ^ (A 'Q) C R + \ { 0 } ; let a
and fi be Frechet (or linearly Gateaux) differentiable. Assume either (a) fl is
convex and a(X0) c - S ; or (b) fi is affine; or (c) fi is concave and a(X0) c S.
Then the function g() = a(- )/fi( •) is 5-invex on Xo with kernel TJ defined by

The spaces X and Y here may have any dimensions, finite or infinte.

PROOF. Let x, a e Xo. Then, with the stated ij,

g(x) - g ( a ) -g ' (a) r j (x , a)

) P(a)C(a) - a(g)/3'(a) (

fi(a) fi(a) {X

(since fi(x) > 0)

) + fi'(a)(x - a)]

-a'(a)(x -a)+ [a(a)/fi(a)]fi'(a)(x - a) + s)

for some s e S, because a(x) — [a(a)(JC ~ a)] G S since a is 5-convex, and

-o(a)/?(jc) + o(fl)[/8(a) + /8'(a)(x - a)] e S

assuming either (a) or (b) or (c). Hence g(x) — g(a) — g'(a)rj(x, a) = [^(x)]"1^
G S.
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6 B. D. Craven and B. M. Glover [6)

EXAMPLE 2. Let X = Y = R2, S = R2
+ (the nonnegative orthant in R2), B(x, y)

= 1 - x, a(x, y) = (x2 + y2, x + 2y). Then g(-) = a(-)/B(-) is R2
+-invex on

{(x, y): x < 1). In this case g is not R2
+-convex since the Hessian matrix of

(x + 2y)/(l — x) is never positive semidefinite.

EXAMPLE 3. Let X = R"; let a(x) = (a^x), a2(x),.. .,am(x)) G Rm where each
componant a, is convex on an open domain Xo c R"; let B(x) = c + dTx, with
constant c G R and d G R"; assume that /i(x) > 0 when x G Xo; let 5 = R"J.
Then g(-) = a( •)//?(•) is R™-invex on A'Q, but not generally R™-convex.

EXAMPLE 4. Let X, Xo and /} be as in Example 3; let / = [0,1]. Let h:
Xo* X / -» R be any function such that h{•, t) is convex on Xo for each ? e / and
/i(x, •) is continuous on / for each x e ZQ. Let C(I) denote the space of
continuous functions from / into R; let C+(/) denote the convex cone of
nonnegative functions in C(/). Define the function a: Xo -» C(I) by (Vx G A'Q,
V/ G I)a(x)(t) = h(x, t). Then a is C+(/) convex on Xo, and g(-) = a(-)/)8()
is C+(/)-invex on Xo.

REMARK. In (III), TJ depends on P alone, not on a. For a fixed affine function
/?: A^ -» R+\{0}, the convex cone {g ( - ) = « ( " ) / ^ ( ) : a is S convex on A^}
consists of functions, all of which are 5-invex with the same kernel TJ. A similar
statement holds when the hypothesis on /? is replaced by another of the hypothe-
sis in (III). (Unfortunately, there is no obvious extension to a cone of invex
functions a( •)//}(•) with both a and /? varying over appropriate classes of
functions.) Similarly, if <p: X -* X is surjective and ran(<p'(a)) = X for each
a G X, then the convex cone (g = q°<p: q: X -* Y is 5-convex} consists of
S-invex functions with the same kernel TJ, using (II). The result in (III) remains
valid when a and /? are merely directionally differentiable, provided that the
definition of cone-invexity is suitably extended, as given below in (11).

(IV) For real-valued functions (that is, Y — R) it will be shown (in section (IV)
that every pseudoconvex function ([14]) is invex. The converse is not valid.

(V) Let g: Xo -* Y be a linearly Gateaux differentiable function and suppose
that there exists a point 3c G Xo such that
(3) g'(a)5cG-intS.

This assumes that int S # 0 . We shall show that g is 5-invex at a on Xo.

PROOF. Since int 5 ^ 0 , there is a weak* compact convex set B c Y' such that
0 <£ 5 and S* = coneB (B is called a base for S*, see [6]). Thus (3) can be
expressed equivalently as (VX e B)\g'(a)x < 0. Now, since B is weak* compact,
(4) (30 G R ) ( V A G B)\g'{a)x < 6 < 0.
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[7 ] Invex functions and duality 7

For each x e Xo, let bx = inf{X[g(.x) - g(a)]: X e B}\ clearly bx > -oo since B
is weak* compact and convex. By (4), since 0 < 0 and bx > -oo, there exists a
sufficiently large positive number yx such that bx > yx6 (thus YX is defined for each
x e Xo). The invex kernel is now defined by -q(x, a) = yxx. Thus

(Vx e X0)(VX e 5 ) Xg'(a)i}(*. a) < Y^ < *, < M*(*) - g(a)] .
Hence g is 5-invex at a on Xo.

This is a slightly extended version of a result by Hanson and Mond [12] in
finite dimensions. Note that (3) is a version of the well-known Slater constraint
qualification for a program such as (P).

EXAMPLE 5. Let X = Y = R2, and 5 = R2
+, then the function g(x, y) = (y -

x2 — I, x + y2 — 2) is R2
+-invex at the point a = (0,0) on R2, since

g'(0,0)(- l , - l ) = (-1,-1) e -intR2
+.

Clearly g is not R2
+-convex at (0,0).

4. Differentiable functions

In this section we shall consider invexity in mathematical programming prob-
lems involving linearly Gateaux differentiable functions.

THEOREM 1. (a) (Hanson [10], Craven [5]) Let a e KT{P); let f be K0-invex at a
with respect to T\ on E = {x e Xo: -g(x) e S ) . Then (P) attains a global
minimum at the point a.

(b) Let f0 be invex on Xo, then a e Xo is a (global) minimum of f0 over Xo if and

PROOF, (a) Let x e E. Then, since \g(x) < 0 and Xg(a) = 0 for each X e S$,

/o(*) -/o(a) > rf(x) ~ rf{a) > rf'(a)v(x, a) = 0,
since a e KT(P). Here r = (1, X), where X is the Lagrange multiplier associated
to a.

(b) Since Xo is an open set we need only establish sufficiency, which follows
immediately by (2) with/g(a) = 0.

REMARK 1. If E is replaced by E n U, where U is a neighborhood of a in Xo,
then (/*) attains a local minimum at a in (a). As a consequence of Theorem 2 (to
follow) we will establish the converse to part (b) above (see Remark 3), thus if
every stationary point of/0 is a minimum then/0 is invex on Xo.
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8 B. D. Craven and B. M. Glover [ 81

THEOREM 2. Let a G KT(P); define K0from K and g(a); assume the regularity
hypotheses, that the convex coneJx = [f(x) - f(a),f'(a)]T(K*) is weak* closed for
each x G E, and that g'(a)u e -aint S for some u e X. Then f is K0-invex on E at
a, for some TJ, if and only if

(5) (V* e £)/„(*) + \g(x) > fo(a) + Xg(a),

where X is any Lagrange multiplier satisfying (KT). Also, iff is K0-invex on W and
Jx is weak* closed for each x G W then (Dx) reaches a maximum at (u, v) — {a, X).

PROOF. Let -g{x) G S and x # a. Let M = f'(a) and c = f{x) - f{a). Then,

(6) (3V<EX)f(x)-f(a)-f'(a)71<=K0

<=» (3n e X, 3/ G R)ct - Mfi e Ko, t ^ int R+ (by substituting 17 = ju/r)

** (3(/, M) e R X X)[c, M][^] e ^0, [0,1][^] G intR+

« (3, q)p[l, 0] + 9[c, M] = 0 , ? e ^ , 0 ^ e R +

(by Motzkin's alternative theorem, see [3, p. 32],
since the cone Jx — [c, M]T(K*) is weak* closed)-

<=> ($r e K*)r(c) = - 1 , rM = 0 (substituting r = p~lq)
(7) « [(r G ^* , rM = 0) =* r(c) > 0]
(8) « [(r G K*, r0 > 0, rM = 0) ^ r(c) > 0]

(since if 0 * r G #*, r0 = 0, rM = 0 then
0 = Xg'(a)u < 0, from 0 * X e S* and g'(a)« G -aint 5;

the case r = 0 is trivial. Note r = (r0, X).).

(since (1, X)M = 0 for any Lagrange multiplier X satisfies (KT)).

Finally i f / i s AT0-invex on W then, using the above characterization,

for all z, y G W with (^, X) feasible for (Z)^. Since a e KT(P), (a, X) is feasible
for (DO, thus/0(fl) = / 0 ( f l ) + Xg(a) > fQ(a) + Xg(a) > fo(y) + Xg(y), for each
y G W. Hence (a, X) is optimal for (D^. It is easily shown that i f / i s ^0-invex on
W U E then duahty holds between (P) and ( D J , (see [10]).

REMARK 2. The proof that (5) characterizes AT0-invexity at a in Theorem 2 does
not require the assumption that Xg(a) = 0. If it is assumed then (5) is equivalent
to fo(x) — fQ(a) > -Xg(x) > 0, and thus to something a little stronger than a
minimum of (P) at the point a. A corresponding result for local minimization
follows if x is restricted to E n U, where U is a neighborhood of a.
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[9] Invex functions and duality 9

If the cone Jx is not assumed weak* closed, then the Kuhn-Tucker conditions
(KT) may be replaced by the doubly asymptotic Kuhn-Tucker conditions (see
[25], [18], [7])

(AKT) (3net(ro)c **)/•„/ '(«)->0, rj(a) - fo{a), a e E,

where the net (ra) need not converge. Denote by AKT(P) the set of points a at
which (AKT) holds for (P). Then the result of applying Motzkin's theorem in the
proof of Theorem 2 is replaced by

( ? n e t ( r a ) c t f j ) r a ( c ) - » - l , raii-* 0.

Hence with a G AKT(P) and g'(a)u G -aint 5 for some u G X,fis ^T0-invex at a
on E if and only if

/o(*) + *»g (* )> /o (« )+ *»*(«)
holds eventually, that is for all a > a (some index).

We now establish Theorem 2 under alternative regularity assumptions and
characterize #0-invexity using the Lagrangean dual, (D2).

THEOREM 3. Let a G KT(P); define Ko from K and g(a); assume that Jx is
weak* closed for each x e E. In addition suppose that one of the following is
satisfied:

(a) g is S-convex at a.
(b) (VX G Sg \ (0})(3x = JC(X) e X)Xg'(a)x < 0.

Then f is K0-invex at a on E if and only if (5) holds for each x e E and each
Lagrange multiplier X. Furthermore, ifJx is weak* closed for each x e Xo, then f is
K0-invex at a on Xo if and only if the Lagrangean dual (Z)2) reaches a maximum at
X (the Lagrange multiplier satisfying (KT) at a) with <p( A.) = fo(a).

PROOF. By inspection of the proof of Theorem 2 we need only establish
(8) =» (7) and the result will follow. Hence assume r e K J , r o = 0 and rM = 0.
Thus, letting r = (r0, X), Xg'(a) = 0 with X e So*. If (a) holds then, by (1),
Xg(x) > Xg(a), (Vx e E) and consequently r(c) > 0 as required. If (b) holds
then the result follows as in Theorem 2, since Xg'(a) =£ 0, for each \ s S 0 * \ (0).

Finally, suppose (D2) reaches a maximum at X with <>(X) = fo(a) and a G
KT(P). Then, by weak duality, we have

fo(x) + Xg(x) > <f>(X) = fo(a) = fo(a) + Xg(a), Vx e Xo.

Thus by the above/is ^fo-invex at a on Xo. Conversely, if / i s ^T0-invex at a on Xo

then <>(X) = fo(a) + Xg(a) = fo(a) using (5).

REMARK 3. (i) From the proof of Theorem 2 (in particular since (6) <=» (7)) we
have the following equivalent condition for cone-in vexity, namely/is AT-invex at a
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10 B. D. Craven and B. M. Glover [ io]

on a set D c X if and only if

(9) [(r e K*, rf'(a) = 0) =» r/(x) > r / (a) , Vx e D],

(we are assuming / x is weak* closed for each x e D). For real-valued functions
the condition (9) gives the following: / is invex on D if and only if every
stationary point of / in D is a (global) minimum. Functions satisfying this latter
condition have been extensively studied by Zang, Choo and Avriel [24] (see also
[22], [23]). Using the characterization (9) we easily obtain

/ i s K-invex at a on D <=» //is invex at a on D, for all r e K*.

Note that we do not need to specify that TJ be the same for all r e K*, this follows
since (9) is independent of ij. Now, coupling this result with the work in [24] we
obtain the following technical characterization of cone-invexity:

/ i s K-invex on an open set D c R" if and only if

(Vr G K*)Lrf{ •) is strictly lower semi-continuous on Grf.

(ii) Under suitable regularity assumptions [3], the Fritz John conditions

(FJ) (3Xe5*,3T>0, (T,X)#(0 ,0) )T/ 0 ' ( f l )+Xg ' ( f l ) = 0, Xg(a) = 0,

are necessary for optimality at a e £; equivalently,

(FJ+) (3r^K*,r*0)rf'(a) = 0.

Hence, using (9) above, it follows that / i s Ag-invex at a on E if and only if either,
(FJ + ) is not satisfied at a e E or, the corresponding Lagrangean function
L(r, x) = rf(x) (for r e R X Y') attains a minimum at a over £\ This result
assumes that Jx is weak* closed for each x e £, but does not require the other
regularity conditions of Theorems 2 and 3. It is possible to consider Fritz John
type conditions in an asymptotic form (see [7]) which would be applicable when
Jx is not necessarily closed. The conditions (FJ) are known to be satisfied when
the cone S has non-empty (topological) interior ([3]).

(iii) The weak* closure assumption on the convex cone Jx is satisfied under
either of the following assumptions:

(a) Ko is a polyhedral cone, (in particular if K = R"+).
(b) [f(x)-f(a),f'(a)](R+X X) + Ko = R X Y, for each x e E.

In part (b) we need the additional assumption that X and Y are complete, for the
details see Nieuwenhuis [15], or Glover [7, Lemma 3]. Other sufficient conditions
are given in Zalinescu [20] and Holmes [13].

(iv) In Section 3 it was claimed that every pseudoconvex function is invex, this
now follows easily from part (i) above since every stationary point of a pseudo-
convex function is a (global) minimum. A related result was given in [24, Theorem
2.3] where it was shown that for a pseudoconvex function, / : X -» R, Lf(-) is
SLSC on Gf; which is equivalent to invexity by part (i) above.
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(v) In this section we have characterized cone-invexity at Kuhn-Tucker points
using the Motzkin alternative theorem; for finite systems of differentiable func-
tions on R", a similar approach was suggested by Hanson [10] using Gale's
alternative theorem.

5. Nondifferentiable functions

In this section we shall discuss cone-invexity for a class of nondifferentiable
functions. We use the concept of quasidifferentiability to show that under
cone-invex hypotheses the generalized Kuhn-Tucker conditions of Glover [7] are
sufficient for optimality.

DEFINITION. A function g: Xo -* Y is S*-quasidifferentiable at a e Xo if g is
directionally differentiable at a and, for each X e S*, there is a non-empty weak*
compact convex set 9(Xg)(a) such that

(10) g'(a, x) = sup{w(x): w e 9(Xg)(a)}.

Clearly if g is S*-quasidifferentiable at a then \g'(a,- ) is a continuous sublinear
functional for each X e S*. Hence 3(XgXa) coincides with 9(Xg)'(a,0) that is
the subdifferential of \g'(a,- ) at 0 in the sense of convex analysis (see [17]). If g
is S-convex at a then 9(Xg)(a)=9(Xg)(a); for convenience we shall omit
the ~ in the sequel.

Clearly every linearly Gateaux differentiable function is 5*-quasidifferentiable
with 9(Xg)(a) = {Xg'(a)}. For more general classes of nondifferentiable func-
tions which are quasidifferentiable see Pshenichnyi [16], Craven and Mond [6],
Clarke [2], and Borwein [1].

Let g: Xo -* Y be directionally differentiable at a e Xo, then g will be called
S-invex at a on a set D c Xo if, for each X G D , there is a TJ(JC, a) e X with

(11) g(x)-g(a)-g'(a,T,(x,a))eS.

THEOREM 4 (Sufficient Kuhn-Tucker Theorem). Consider problem (P) with
a G E. Let f0 be quasidifferentiable at a and g S*-quasidifferentiable at a. Further
suppose that f is K-invex at a on E and that the generalized Kuhn-Tucker conditions

(12) 0e(9 / 0 (a )x{0})+ \J (3(Xg)(a) X {Xg(a)})

are satisfied. Then a is optimal for (P).

https://doi.org/10.1017/S1446788700022126 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022126


12 B. D. Craven and B. M. Glover [ 121

PROOF. It is easily seen that (12) is equivalent to the existence of w e 9/0(a)
and nets (Xa) c S*, (wa) c X' with wa e 9(X a g)(a) for all a, such that

(13) w + wa - 0, Xag(a) -» 0.

Let x G E, then

fo(x) ~ fo(a) ^ /o'(fl' T?)> by invexity

> VV(TJ), since w e 9/0(a)

= lim[-wa(i,)], by (13)

> Uminf[-Xag'(a,i})], since wa e 9(Xag)(a),Va
a

> liminf (-Xa(g(x) - g(a))), by invexity
a

> liminfXag(a), a s x e E and Aa e S*
a

= 0, by (13).

Thus/0(x) — fo(a) > 0, for all x e E and so a is optimal.

REMARK 4. Theorem 4 generalizes the result of Hanson [10] and Craven [5]
given in Theorem l(a). The condition (12) has been shown to be necessary for
optimality by Glover [7, Theorem 4] under the quasidifferentiability assumptions
of Theorem 4 and the additional hypotheses that / 0 is arc-wise directionally
differentiable at a ([6]) and g is locally solvable at a. In the special case of
Theorem 4 in which f0 and g are linearly Gateaux differentiable at a it is easily
shown that (12) is equivalent to (AKT).

We shall now consider an alternative characterization of optimality for invex
programs under stronger hypotheses.

THEOREM 5. For problem (P) let a e E; let f0 be quasidifferentiable at a and let g
be linearly Gateaux differentiable at a. Furthermore assume ran([g'(a), g(a)\) is
closed, X and Y are complete, and g is locally solvable at a. Then a necessary
condition for a to be a minimum of(P) is that

(14) (3v e Q) 0 e 3/0(a) + vg'(a), vg(a) = 0,

where

(15) Q = S*-N([g>(a),g(a)]T).

Iffis K-invex at a on E then (14) is sufficient for optimality at a.

PROOF. (Necessity) Let a e E be optimal for (P). Then by Craven and Mond
[6], using the local solvability hypothesis, there is no solution (a, x ) e R x ! t o

(16) /0'(a,x)<0, ag(a)+g'(a)x^-S.
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Let A = [g'(a), g(a)], then (16) is equivalent to

(17) A(a,x)e-S=»fi(a,x)>0.

Thus, by the separation theorem, ([16]), (17) is equivalent to

(18) 0e (3 / o ( a )x{0}) - [^ - 1 ( -5 ) ]* .

By Theorem 1 in [8], [ ^ ( - S ) ] * = AT(Q) with Q given by (15). Thus (14) and
(18) are equivalent as required.

(Sufficiency) Suppose (14) is satisfied a t a G f and / is K-invex at a on E. Let
x G E. By (14) there are nets (Xa) c S*, (wa) c N(AT) with v = lima(Xa - wa).

Now,

/<>(•*)-/o(«O >fi(a,ri),

> -vg'(a)i), by (14)

= lim[-(Aa-WJg'(fl)i,]
a

= lim[-Xag'(a)7i], since wa G N(AT),Va
a

> liminf [-Xa(g(x) - g(a))], by invexity
a

> liminf [\ag(a)], sincex G E
a

= ug(a), as wag(a) = 0, Va

= 0, by (14).

Thus a is optimal for (P).

REMARK 5. Theorem 5 generalizes the results in [8]. If Y = R" then the closed
range condition is automatically satisfied. This result provides a non-asymptotic
Kuhn-Tucker condition even if the usual 'closed cone' condition is not satisfied.

Consider the following program related to (P).

Maximize fo(u) + vg(u)
3 subject to v G Q(u) , 0 G 8/0(u) + vg'(u)

where/0 is quasidifferentiable, g is linearly Gateaux differentiable and Q(u) = S*
- N([g'(u), g(u)T)). Let W1 = {u G X: (u, v) is feasible for (D3) for some v

THEOREM 6. Lef / be K-invex on W1U E then weak duality holds for (P) and
(Z>3). Let a G E be optimal for (P) and let (14) be satisfied for some v G Q, then
(£>3) reaches a maximum at (a, v) with Min(P) = Max(Z>3). Thus (Z>3) is a dual
program to (P).
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P R O O F . Let x e E and let (« , v) be feasible for (D 3 ) . Then,

fo(x) - /o(") - vg{u) >fo{u,r\) - vg(u)

= -vg'{u)j] - lim(Aa - wa)g(u)
a

where we choose (Xa) and (wa) as in Theorem 5

= -ugX")7? + lim[-Xag(w)], aswag(«) = 0

> -vg'iu)!) + liminf Aag'(w), by invexity
a

= -vg'(u)r\ + vg'(u)r), as wag'(u) = 0, Va

= 0.

Thus weak duality holds for (P) and (I>3).
Let flG£be optimal for (P). Now by assumption there is a v e (? = Q(a)

such that (14) holds. Thus (a, v) is feasible for (Z>3). Hence, by weak duality,

/ 0 (a) + Bg(a) =/0(fl) > / 0 (« ) + »g(«)

for all (u, v) feasible for (D3). Thus (a, t>) is optimal for (Z)3) and Min(P) =
fo(a) = Max(Z)3).

In order to establish a version of Theorem 2 for quasidifferentiable functions
we require the following theorem of the alternative. We no longer require the
completeness assumptions on X and Y.

THEOREM 7. Let h: X -> Y be S-sublinear and weakly continuous. Let z e Y.
Then exactly one of the following is satisfied:

(i) (3JC G X) -h(x) + z G 5.

(") (0,1) e U (9(A/0(0)x{X(z)}).

PROOF. [Not (ii) => (i)]. For convenience let B = UXeS.(3(X/0(0) X
Clearly B is a convex cone. Now suppose (0, -1) £ 5. Thus, by the separation
theorem ([3, p. 23]), 3(x, j8) e X X R such that

-/? > sup{>v(jc, 0) : w e 5}

= sup{vv(Jc, B): w e B)
(19) F l v y '

> sup{w(jc): »v G 3(Afc)(0)} + BX(z), for any X G S*

= Xh(x) + BX(z), by continuity and sublinearity of Xh.
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Also as 0 G S*, -B > 0. Let y = -fi. Then, for any X e S*,
Xh(x) - X(yz) < Y <=> X(h(x) - z) < 1, where x = x/y

=» -A(5c) + z e (S*) = 5 , as 5 is a closed convex cone

=> (i) is satisfied by x.

[(i) => Not (ii)]. Suppose -h{x) + z e S for some x e X; and suppose, if
possible, that (0,-1) e B. Hence there are nets (Xa) c 5* and (wj c A" such
that wa e 9(Aa/z)(0), Va, and wa -» 0, \ a (z ) -» - 1 . Thus wo(x) -> 0. Now, for
each a, 0 > Xa(/i(x) - z) ^ wa(x) - Aa(z) -• 1. Thus we have a contradiction,
hence (0, -1) £ B and (ii) is not satisfied.

REMARK 6. Vercher [19] (see also Goberna et al. [9]) has established a result
similar to Theorem 7 for arbitrary systems of sublinear functions defined on R".
It is possible to weaken the continuity requirement in Theorem 7 to X/i lower
semi-continuous for each X e S* (the proof is identical since (19) remains valid
using [21, Theorem 1]). Consider the special case of Theorem 7 in which h = C, a
continuous linear function. Then (ii) becomes

(20) ( 0 , - l ) e [ C , z ] r ( S * ) .
If the convex cone [C, z]T(S*) is weak* closed then (20) becomes
(21) (3AeS*)AC = 0, \(z) = - 1 .
Thus the first section of proof in Theorem 2 has established this 'linear' version of
Gale's alternative theorem.

Consider the generalized Kuhn-Tucker conditions given in Theorem 4. If the
convex cone Uxes*(<K^£)(a) X {\g(a)}) is weak* closed then (12) is equivalent
to

(GKT) ( 3 \ G S * ) O G 3 / o ( a ) + 9(Xg)(a), Xg{a) = 0.

Let GKT(P) denote the set of a <= E such that (GKT) holds for some A.

THEOREM 8. Let a e GKT(P); at a, let f0 be quasidifferentiable and let g be
S*-quasidifferentiable. For each x e E, assume that the convex cone

J'x= U (Hrf)(a)x{r(f(x) -f(a))})
re Kg

is weak* closed. Further assume that one of the following conditions is satisfied:
(i) g is S-convex at a.
(ii) (3u <= X) g'(a, u) e -aint S.

Then f is K0-invex at a on E if and only iffo(x) + Xg(x) > /o(<z) + Xg(a), where X
is any Lagrange multiplier satisfying (GKT) at a, for all x e E. Also f is K0-invex
on Xo at a if and only if the Lagrangean dual (D2) reaches a maximum at (a,\)
with <t>(\) = /0(a).
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PROOF. Let x G E, x ¥= a. Then

/ is AT0-invex at a on E

<=> (0, -1) <£ J'x = / ; , by Theorem 7
(since/is AT0-quasidifferentiable at a it follows that
f'(a, •) is Ao-sublinear and rf'(a, •) is continuous (r G K%))

(22) «* [(0, y) e / ; =» y > 0]
~ [r G * • , r0 > 0, 0 G 3(r/)(a) =* r/(x) > j/(a)]

(since (i) and (ii) will ensure that the case r0 = 0 is
satisfied as in the proof of Theorem 2)

** fo(x) + Xg(x) > fo(a) + \g(a)
(where A is any multiplier satisfying (GKT) at a.

Now since a e GKT(P), 3A G SO* with 0 e 9/0(a) + 3(Ag)(a). Also as/0'(a,- )
and Ag'(«r ) a r e continuous convex functions we have 3(/0 + Xg)(a) = 3/0(a)
+ d(\g)(a). Thus 0 G d(rf)(a) where r = (1, A)). The final result then follows as
in Theorem 2.

REMARK 7. If we remove the closed cone assumption on J'x then (22) becomes
[(0, y) £ J'x =» Y > 0] which is equivalent to

[ ( r j C K*o, wa G 3 ( r a / ) ( a ) , >va -» 0, r a ( / ( x ) - / ( a ) ) - y - y > 0].

This is the analogue of the asymptotic conditions discussed following Theorem 2.

We can consider generalized Fritz John conditions (under suitable regularity
and quasidifferentiability assumptions (see [7]) for problems (P) to attain a
minimum at a G E; namely

(GFJ)

(3A G S*, 3T > 0, (T , A) * (0,0)) 0 G T3/0(a) + 3(Xg)(a), Ag(a) = 0.

Equivalently, since/o'(a,- ) and Ag'(a,- ) are continuous, we have

(GFJ+) (3r G is:*,/• * 0 ) 0 G 9(r / ) (a) .

Thus, analogously to Remark 3, part (ii), / is ^0-invex at a on E if and only if
either {GFJ + ) is no/ satisfied at a G E, or, the corresponding Lagrangean
function attains a minimum at a over £. This result follows easily from (22); we
need only assume J'x is weak* closed for each x G E.
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6. Examples

(iXPj Minimize fo{x, y) = x3 + y3

subject to gi(x, y) = x2 + y2 - 4 < 0

g 2 ( x , y ) = y - x + 2 ^ 0 .

Let a = (0, -2) e E. It is easily shown that a is a Kuhn-Tucker point for (Px)
with (unique) Lagrange multiplier X = (3,0). Let (x, y) e E, then it is easily
shown that >> = fix — 2, for some \t. e [0,1]; and x ^ 0. Thus,

/0(x, >>) + 3gl(jc, j ) = x2 + y3 + 3x2 + 3y2 - 12

= (1 + p,3)x3 + 3(1 - ^2)x2 - 8

> - 8 = / 0 ( 0 , - 2 ) + 3g l(0,-2).

Thus, since the constraints of ( i \ ) are convex, we have by Theorem 3 that
/ ~ ( /c £i> 82) is R3+-invex on E at a. Hence, by Theorem l(a), a is a minimum
of(P1).

We can actually define a suitable function 17 as follows:
Let •»)(*, y) = (ili(x, y), T)2(JC, y)), for (x, y) G £, where

, y) = maxl-g^x, >^)/4: (JC, y) e £} - min{g2(x, y): (x, y) G £ } ,

We do not have duality between (Pj) and (DJ in this case; we will show that if
/ i s not R3

+-invex on W U £. Let a > 0 and consider the point (0, -a).

/<;((), -a) + Xlg{(0, -a) + \2g'2(0, -a ) = (-X2,3a2 - 2a\1 + X2) = 0

«=» X2 = 0, Xl = 3a/2, (thus (0, -a) e W, Va > 0).

Now,

/o(O,-a) +(3a /2) g l (0 , -a ) = -a3 +(3a/2)(«2 - 4)

= ^a(a2 - 12)

> -8 , for all a <= [0,2)

= /0(0,-2) + 3g l (0,-2).

Thus a is not a maximum of (Z)j) and / is not R3
+-invex on W L) E. It should be

noted that / is not R3
+ -convex at a.
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(ii) (Hanson and Mond [12])

(P2) Minimize fo(x, y) = -2y3 - 6x2 + 3y2 + 6x + 6y - 7

subject to gx(x, y) = -3x* + y2 - 3x - 3y + 2 < 0

g2(x, y) = 2x4 + 2x2 - y2 + 1 < 0

g3(x, y) = 2xy - 6x - 1 < 0.

In [12] it was shown that / = (/0, glt g2, g3) is K0-invex on E at a = (0,1) by
constructing a suitable function TJ. We shall apply Theorem 2. At the point a only
gx and g2 are binding constraints, thus S = R3

+, 50 = R2
+ X R, SJ = R2

+ X {0}
and Ko = R3

+ X R. Theorem 2 is applicable since, for g = (glt g2, g3) we have

g'(0, l)( l , l ) = (-3,-2,-4) e - i n t S.

Clearly a is a Kuhn-Tucker point with (unique) Lagrange multiplier A = (2,3,0).
It is easily shown that/0(x, y) + 2gx(x, y) + 3y2(x, y) = -2, for all (x, y) e E.
Thus/is A"0-invex at a on E, and consequently a is a minimum of (P2).

(iii) (Craven [5])

(P3) Minimize fo(x, y) = ±x3 - y2

subject to gi(x, y) = \x2 + y2 - 1 < 0

(for p > 0 (to be specified) sufficiently small). For this problem the point
a = (0,1) is a Kuhn-Tucker point with (unique) Lagrange multiplier X = (1,0).
Now, fo(x, y) + gl(x, y) = }x3 + \x2 - 1 > -1 = /0(0,1) + gl(0,1), for all
(x, y) e R2 with x > -3/2, (this determines p so that (x, y) e E =» x > -3/2).
Thus / = (/0, gv g2) is R2

+ X R-invex at a on £ and consequently a is a
minimum of (/>

3). Note that g = (gl5 g2) is R2
+-convex so that Theorem 3 is

applicable.
(iv) In [11] Hanson and Mond defined the following class of generalized convex

functions, to extend the concept of invexity. Let i/<: X -* R be a differentiable
function. Then \j/ is in this class over a set C c X if, for each x, a e C, there is a
sublinear functional Fx a: X' —» R such that

(23) ^ ( x ) - ^ ( a ) > f c , a ( ^ ( « ) ) -

They claimed this extended the idea of invexity to a wider class of function. We
shall show that if \p satisfies (23) then \p is actually invex on C. The proof follows
immediately from part (i) of Remark 3. For if ty'{a) = 0 for some a e C, then
Fx a(\p'(a)) = 0 (by sublinearity) for all x e C, thus >|/(x) > ^(a), and conse-
quently every stationary point of ip in C is a minimum. Hence \p is invex on C.
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N o w suppose \j/ = \pt satisfies (23) for i = l , . . . , / i . Let /?, ^ 0 (V/) and /? =

(fa,... ,&) define 9(0,- ) = EjS..^-). Thus

= 0 ( 0 , * ) - $( /? ,a) , for all x e C, £ e R"+.
Hence if 4>'(yS, a) = 0 then $(/?, x) ^ <*>(£, a), for all x e C. Thus, by (9) and
part (ii) in Remark 3, ^ = (i//1,...,^n) is R"+-invex on C. Thus Fx a can be
assumed linear and (23) is equivalent to invexity.

Hanson and Mond [11] also defined another class of generalized invex func-
tions from (23) (in a manner analogous to the definition of pseudoconvex
functions from convex functions); namely a differentiable function \p is in this
new class over C c X if, for each x, a e C, there is a sublinear functional Fx a:
X' -» R such that

(24) [Fx,f l(*'(fl))>0 = » * ( * ) > * ( * ) ] .
It now follows immediately, as above, that if xj/ satisfies (24) then xp is invex on C,
since every stationary point is a (global) minimum.

Example 4 in Section 3 shows that these invex concepts are also applicable in
infinite dimensions.
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