INVEX FUNCTIONS AND DUALITY

B. D. CRAVEN and B. M. GLOVER

(Received 25 January 1983; revised 18 June 1983)

Communicated by B. Mond

Abstract

For both differentiable and nondifferentiable functions defined in abstract spaces we characterize the generalized convex property, here called cone-invexity, in terms of Lagrange multipliers. Several classes of such functions are given. In addition an extended Kuhn-Tucker type optimality condition and a duality result are obtained for quasidifferentiable programming problems.

1980 Mathematics subject classification (Amer. Math. Soc.): 90 C 30.

1. Introduction

The Kuhn-Tucker conditions for a constrained minimization problem become also sufficient for a (global) minimum if the functions are assumed to be convex, or to satisfy certain generalized convex properties [14]. Hanson [10] showed that a minimum was implied when convexity was replaced by a much weaker condition, called invex by Craven [4], [5]. For the problem,

$$
\text { Minimize } f_{0}(x) \quad \text { subject to }-g(x) \in S
$$

where S is a closed convex cone, the vector $f=\left(f_{0}, g\right)$ is required to have a certain property, here called cone-invex, in relation to the cone $\mathbf{R}_{+} \times S$. Some conditions necessary, or sufficient, for cone-invex were given in Craven [5]; see also Hanson and Mond [12]. However, it would be useful to characterize some recognizable classes of cone-invex functions.

The present paper (a) represents several classes of cone-invex functions, (b) characterizes the cone-invex property, for differentiable functions, in terms of Lagrange multipliers (Theorems 2 and 3), using Motzkin's (or Gale's) alternative

[^0]theorem; (c) extends some of these results to a class of nondifferentiable functions, namely quasidifferentiable functions [16]. In this final section we shall also establish a Kuhn-Tucker type optimality condition and a duality theorem for cone-invex programs with a quasidifferentiable objective function. Several examples are given to illustrate the results.

2. Definitions and symbols

Consider the constrained minimization problem:

$$
\begin{equation*}
\underset{x \in X_{0}}{\operatorname{Minimize}} f_{0}(x) \quad \text { subject to }-g(x) \in S, \tag{P}
\end{equation*}
$$

in which $f_{0}: X_{0} \rightarrow \mathbf{R}$ and $g: X_{0} \rightarrow Y$ are (Fréchet) differentiable functions, X and Y are normed spaces, $X_{0} \subset X$ is an open set, and $S \subset Y$ is a closed convex cone. Suppose that (P) attains a local minimum at $x=a$. If a suitable constraint qualification is also assumed, then the Kuhn-Tucker conditions hold:
$(K T) \quad\left(\exists \lambda \in S^{*}\right) f_{0}^{\prime}(a)+\lambda g^{\prime}(a)=0, \quad \lambda g(a)=0,-g(a) \in S$.
Here $S^{*}=\left\{v \in Y^{\prime}:(\forall y \in S) v y \geqslant 0\right\}$, in which Y^{\prime} denotes the (topological) dual space of Y, and $v y$ denotes the evaluation of the functional v at $y \in Y$. (In finite dimensions, $v y$ may be expressed as $v^{T} y$, in terms of column vectors. Note that x and y here do not generally relate to the spaces X and Y.)

The Kuhn-Tucker conditions are valid under weaker differentiability assumptions on f_{0} and g, in particular, if the functions are linearly Gâteaux differentiable at the point a, ([3]). Now let $f=\left(f_{0}, g\right): X_{0} \rightarrow \mathbf{R} \times Y ; K=\mathbf{R}_{+} \times S$, where $\mathbf{R}_{+}=[0, \infty) ; r=(1, \lambda) ; S_{0}=\left\{\alpha(y+g(a)): \alpha \in \mathbf{R}_{+}, y \in S\right\}, K_{0}=\mathbf{R}_{+} \times S_{0}$. Then $K_{0}^{*}=\mathbf{R}_{+} \times S_{0}^{*}$, where $S_{0}^{*}=\left\{\lambda \in S^{*}: \lambda g(a)=0\right\}$. Then $r=\left(r_{0}, \lambda\right)$ with $r_{0} \in \mathbf{R}_{+}, \lambda \in S_{0}^{*}$. Now ($K T$) holds if and only if there holds:
$(K T+) \quad\left(\exists r \in K_{0}^{*}, r_{0}>0\right) r f^{\prime}(a)=0, \quad r f(a)=f_{0}(a) ;-g(a) \in S$.
Let $K T(P)$ denote the set of a X_{0} such that ($K T+$) holds, for some $r \in K_{0}^{*}$. Let $Z=\mathbf{R} \times Y$. Denote by $\left(D_{1}\right)$ the formal Wolfe dual of the problem (P), namely
$\left(D_{1}\right) \underset{u \in X_{0}, \lambda \in Y^{\prime}}{\operatorname{Maximize}} f_{0}(u)+\lambda g(u) \quad$ subject to $\lambda \in S^{*}, f_{0}^{\prime}(u)+\lambda g^{\prime}(u)=0$.
Let $E=\left\{x \in X_{0}:-g(x) \in S\right\}$, the feasible set of (P); denote by W the set of $u \in X_{0}$, such that (u, λ) is feasible for $\left(D_{1}\right)$, for some $\lambda \in S^{*}$. The formal Lagrangean dual of the problem (P) is the problem
$\left(D_{2}\right) \quad \underset{\lambda \in S^{*}}{\operatorname{Maximize}} \phi(\lambda), \quad$ where $\phi(\lambda)=\inf \left\{f_{0}(x)+\lambda g(x): x \in X_{0}\right\}$.
Note that weak duality ([3]) holds automatically for (P) and $\left(D_{2}\right)$, that is $f_{0}(x) \geqslant \phi(\lambda)$ whenever x is feasible for (P) and λ for $\left(D_{2}\right)$.

A function $h: X_{0} \rightarrow Y$ is S-convex if, whenever $0<\alpha<1$ and $x, y \in X_{0}$,

$$
\alpha h(x)+(1-\alpha) h(y)-h(\alpha x+(1-\alpha) y) \in S ;
$$

h is locally S-convex at $a \in X_{0}$ if this inclusion holds whenever $x, y \in U$, where U is a neighborhood of a in X_{0}. If the function h is linearly Gâteaux differentiable then h is S-convex if and only if, for each $x, y \in X_{0}$,

$$
\begin{equation*}
h(x)-h(y)-h^{\prime}(y)(x-y) \in S . \tag{1}
\end{equation*}
$$

The function h is S-sublinear if h is S-convex and positively homogeneous of degree one (that is, $h(\alpha x)=\alpha h(x), \forall \alpha \geqslant 0$). If $Y=\mathbf{R}, S=\mathbf{R}_{+}$we shall denote the subdifferential of a convex function h at $a \in X_{0}$ by $\partial h(a)$, where

$$
\partial h(a)=\left\{v \in X^{\prime}: v(x-a) \leqslant h(x)-h(a), \text { for all } x \in X_{0}\right\} .
$$

If h is continuous at a then $\partial h(a)$ is a non-empty weak* compact convex subset of $X^{\prime}([17]) ;$ by (1) if h is linearly Gâteaux differentiable at a then $\partial h(a)=\left\{h^{\prime}(a)\right\}$.

Following [5], a function $f: X_{0} \rightarrow Z$ is called K_{0}-invex, with respect to a function $\eta: X_{0} \times X_{0} \rightarrow X$, if, for each $x, u \in X_{0}$,

$$
\begin{equation*}
f(x)-f(u)-f^{\prime}(u) \eta(x, u) \in K_{0} . \tag{2}
\end{equation*}
$$

(This property may be called cone-invex when the cone K_{0} is fixed.) The function f is called K_{0}-invex at u on $E \subset X_{0}$ if (2) holds for given $u \in X$, and for each $x \in E$. We are assuming f is linearly Gâteaux differentiable.

Define the following (possibly empty) set, contingent on a set $D \subset X$,

$$
\text { aint } D=\{x \in D:(\forall z \in X, z \neq 0)(\exists \delta>0) x+\delta z \in D\}
$$

If D is convex, $x+\alpha \delta z \in D$ also when $0<\alpha<1$, so aint D equals the algebraic interior of D, as usually defined. If the cone S has non-empty (topological) interior int S, then $\varnothing \neq \operatorname{int} S \subset$ aint S. Define the polar sets of sets $V \subset X$ and $A \subset X^{\prime}$ as

$$
\begin{aligned}
V^{0} & =\left\{w \in X^{\prime}:(\forall x \in V) w(x) \geqslant-1\right\} \\
A^{0} & =\{x \in X:(\forall w \in A) w(x) \geqslant-1\} .
\end{aligned}
$$

We shall also require in section V the following (not necessarily linear) concept of differentiability. A function $h: X_{0} \rightarrow Y$ is directionally differentiable at $a \in X_{0}$ if the limit

$$
h^{\prime}(a, x)=\lim _{\alpha \downarrow 0} \alpha^{-1}(h(a+\alpha x)-h(a))
$$

exists for each $x \in X$, in the strong topology of Y. If $Y=\mathbf{R}$ and h is a convex functional then, for each $a \in X_{0}, h^{\prime}(a, \cdot)$ exists and is sublinear ([17]).

For a function $h: X_{0} \rightarrow \mathbf{R}$, the level sets of $h([24])$ are the sets

$$
L_{h}(\alpha)=\left\{x \in X_{0}: h(x) \leqslant \alpha\right\}, \quad(\alpha \in \mathbf{R})
$$

and the effective domain of $L_{h}(\cdot)$ is the set $G_{h}=\left\{\alpha \in \mathbf{R}: L_{h}(\alpha) \neq \varnothing\right\}$. This point-to-set mapping L_{h} is called lower semi-continuous (LSC) at $\alpha \in G_{h}$ if $x \in L_{h}(\alpha), G_{h} \supset\left(\alpha_{i}\right) \rightarrow \alpha$ imply the existence of an integer k and a sequence $\left(x_{i}\right)$ such that $x_{i} \in L_{h}\left(\alpha_{i}\right)(i=k, k+1, \ldots)$ and $x_{i} \rightarrow x$. The point-to-set mapping L_{h} is strictly lower semi-continuous (SLSC) at $\alpha \in G_{h}$ if $x \in L_{h}(\alpha), G_{h} \supset\left(\alpha_{i}\right)$ $\rightarrow \alpha$ imply the existence of an integer k, a sequence $\left(x_{i}\right)$, and $b(x)>0$ such that $x_{i} \in L_{h}\left(\alpha_{i}-b(x)\left\|x_{i}-x\right\|\right),(i=k, k+1, \ldots)$, and $x_{i} \rightarrow x$.

The range of a function f is denoted by ran f; the nullspace by $N(f)$. For a continuous linear function $B: X \rightarrow Y$ we will denote by $B^{T}: Y^{\prime} \rightarrow X^{\prime}$ the transpose operator of B, defined by $B^{T}(w)=w \circ B$, for each $w \in Y^{\prime}$. The constraint $-g(x) \in S$ of (P) is called locally solvable at $a \in X_{0}$ if $-g(a) \in S$ and, whenever $d \in X$ satisfies the linearized inclusion $-g(a)-g^{\prime}(a) d \in S$, there exists a local solution $x=a+\alpha d+o(\alpha)$ to $-g(x) \in S$, valid for all sufficiently small $\alpha>0$. We are assuming g is linearly Gâteaux differentiable at a, however if g is merely directionally differentiable at a then we can replace the linearized inclusion by $-g(a)-g^{\prime}(a, d) \in S$. In particular, the constraint $-g(x) \in S$ is locally solvable at $a \in X_{0}$ if ([3]) g is continuously Fréchet differentiable and the set $g(a)+$ $\operatorname{ran}\left(g^{\prime}(a)\right)+S$ contains a neighborhood of 0 in Y.

For a set $A \subset X$, we shall denote the closure of A by \bar{A}. We shall assume throughout that the dual space X^{\prime} (or Y^{\prime}) is endowed with the weak* topology (see [3]), thus for a set $V \subset X^{\prime}, \bar{V}$ represents the weak* closure of V. The results in Section 4 do not depend on the dimensions of the spaces, and would extend readily to locally convex spaces (for example, space of distributions).

3. Classes of cone-invex functions

In this section we illustrate the broad nature of cone-invexity by presenting several classes of such functions, and some simple concrete examples.
(I) Each cone-convex function is invex, by (1) with $\eta(x, a)=x-a$.
(II) Let $q: X \rightarrow Y$ and $\varphi: X \rightarrow X$ be Hadamard differentiable with $q S$-convex and φ surjective $(\varphi(X)=X)$. Assume further that either (a) $(\forall a \in X) \operatorname{ran}\left(\varphi^{\prime}(a)\right)$ $=X$, or $(\mathrm{b})(\forall x, a \in X)\left[\operatorname{ran}\left(\varphi^{\prime}(a)\right)\right]^{*} \subset N(\varphi(x)-\varphi(a))$, and $\left[\varphi^{\prime}(a), \varphi(x)-\right.$ $\varphi(a)]^{T}\left(X^{\prime}\right)$ is (weak*) closed. (In (b), we consider $\varphi(x)-\varphi(a) \in X^{\prime \prime}$, the second dual of X; note also that (a) implies (b).) Then the function $g=q{ }^{\circ} \varphi$ is S-invex on X. For hypothesis (a), this follows from [4]. For hypothesis (b), let $A=\varphi^{\prime}(a)$
and let $c=\varphi(x)-\varphi(a)$, given $a, x \in X_{0}$. Then

$$
\begin{aligned}
& {[\operatorname{ran}(A)]^{*} \subset N(c) \Leftrightarrow\left\{\left(\forall \lambda \in X^{\prime}\right) \lambda A=0 \Rightarrow \lambda(c) \geqslant 0\right\}} \\
& \quad \begin{array}{l}
\text { since }[\operatorname{ran}(A)]^{*}=N\left(A^{T}\right) \\
\\
\Leftrightarrow(0,-1) \notin[A, c]^{T}\left(X^{\prime}\right) \quad \text { since }[A, c]^{T}\left(X^{\prime}\right) \text { is closed } \\
\Leftrightarrow(\exists \eta \equiv \eta(x, a) \in X) A \eta=c
\end{array}
\end{aligned}
$$

by Theorem 7 (below) and the Remark following it
$\Rightarrow(q \circ \varphi)^{\prime}(a) \eta(x, a)=q^{\prime}(\varphi(a)) \varphi^{\prime}(a) \eta(x, a)=q(\varphi(a))(\varphi(x)-\varphi(a))$
$=q(\varphi(x))-q(\varphi(a))-s \quad$ for some $s \in S$, since q is S-convex
$\Rightarrow q \circ \varphi$ is S-invex at a.

Example 1. Let $X=\mathbf{R}^{2}, Y=\mathbf{R}, S=\mathbf{R}_{+}, q(x, y)=3 x^{2}-2 x y+2 y^{2}$ and $\varphi(x, y)=\left(x-a x^{3}, y+b y^{3}\right)$, where $a, b>0$. Then $g=q \circ \varphi$ is invex on X but not convex.
(III) Let $\alpha: X_{0} \rightarrow Y$ be S-convex; let $\beta: X_{0} \rightarrow \mathbf{R}$ satisfy $\beta\left(X_{0}\right) \subset \mathbf{R}_{+} \backslash\{0\}$; let α and β be Fréchet (or linearly Gâteaux) differentiable. Assume either (a) β is convex and $\alpha\left(X_{0}\right) \subset-S$; or (b) β is affine; or (c) β is concave and $\alpha\left(X_{0}\right) \subset S$. Then the function $g(\cdot)=\alpha(\cdot) / \beta(\cdot)$ is S-invex on X_{0} with kernel η defined by

$$
\eta(x, a)=(\beta(a) / \beta(x))(x-a) .
$$

The spaces X and Y here may have any dimensions, finite or infinte.
Proof. Let $x, a \in X_{0}$. Then, with the stated η,

$$
\begin{aligned}
g(x)- & g(a)-g^{\prime}(a) \eta(x, a) \\
& =\frac{1}{\beta(x)}\left\{\alpha(x)-\frac{\alpha(a) \beta(x)}{\beta(a)}-\frac{\beta(a) \alpha^{\prime}(a)-\alpha(a) \beta^{\prime}(a)}{\beta(a)}(x-a)\right\}
\end{aligned}
$$

$($ since $\beta(x)>0)$

$$
\begin{aligned}
& =[\beta(x)]^{-1}\left\{\alpha(a)+\alpha^{\prime}(a)(x-a)\right. \\
& -[\alpha(a) / \beta(a)]\left[\beta(a)+\beta^{\prime}(a)(x-a)\right] \\
& \left.\quad-\alpha^{\prime}(a)(x-a)+[\alpha(a) / \beta(a)] \beta^{\prime}(a)(x-a)+s\right\}
\end{aligned}
$$

for some $s \in S$, because $\alpha(x)-[\alpha(a)(x-a)] \in S$ since α is S-convex, and

$$
-\alpha(a) \beta(x)+\alpha(a)\left[\beta(a)+\beta^{\prime}(a)(x-a)\right] \in S
$$

assuming either (a) or (b) or (c). Hence $g(x)-g(a)-g^{\prime}(a) \eta(x, a)=[\beta(x)]^{-1} s$ $\in S$.

Example 2. Let $X=Y=\mathbf{R}^{2}, S=\mathbf{R}_{+}^{2}$ (the nonnegative orthant in \mathbf{R}^{2}), $\beta(x, y)$ $=1-x, \alpha(x, y)=\left(x^{2}+y^{2}, x+2 y\right)$. Then $g(\cdot)=\alpha(\cdot) / \beta(\cdot)$ is \mathbf{R}_{+}^{2}-invex on $\{(x, y): x<1\}$. In this case g is not \mathbf{R}_{+}^{2}-convex since the Hessian matrix of $(x+2 y) /(1-x)$ is never positive semidefinite.

Example 3. Let $X=\mathbf{R}^{n}$; let $\alpha(x)=\left(\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{m}(x)\right) \in \mathbf{R}^{m}$ where each componant α_{i} is convex on an open domain $X_{0} \subset \mathbf{R}^{n}$; let $\beta(x)=c+d^{T} x$, with constant $c \in \mathbf{R}$ and $d \in \mathbf{R}^{n}$; assume that $\beta(x)>0$ when $x \in X_{0}$; let $S=\mathbf{R}_{+}^{m}$. Then $g(\cdot)=\alpha(\cdot) / \beta(\cdot)$ is \mathbf{R}_{+}^{m}-invex on X_{0}, but not generally \mathbf{R}_{+}^{m}-convex.

Example 4. Let X, X_{0} and β be as in Example 3; let $I=[0,1]$. Let h : $X_{0}{ }^{*} \times I \rightarrow \mathbf{R}$ be any function such that $h(\cdot, t)$ is convex on X_{0} for each $t \in I$ and $h(x, \cdot)$ is continuous on I for each $x \in X_{0}$. Let $C(I)$ denote the space of continuous functions from I into \mathbf{R}; let $C_{+}(I)$ denote the convex cone of nonnegative functions in $C(I)$. Define the function $\alpha: X_{0} \rightarrow C(I)$ by $\left(\forall x \in X_{0}\right.$, $\forall t \in I) \alpha(x)(t)=h(x, t)$. Then α is $C_{+}(I)$ convex on X_{0}, and $g(\cdot)=\alpha(\cdot) / \beta(\cdot)$ is $C_{+}(I)$-invex on X_{0}.

Remark. In (III), η depends on β alone, not on α. For a fixed affine function $\beta: X_{0} \rightarrow \mathbf{R}_{+} \backslash\{0\}$, the convex cone $\left\{g(\cdot)=\alpha(\cdot) / \beta(\cdot): \alpha\right.$ is S convex on $\left.X_{0}\right\}$ consists of functions, all of which are S-invex with the same kernel η. A similar statement holds when the hypothesis on β is replaced by another of the hypothesis in (III). (Unfortunately, there is no obvious extension to a cone of invex functions $\alpha(\cdot) / \beta(\cdot)$ with both α and β varying over appropriate classes of functions.) Similarly, if $\varphi: X \rightarrow X$ is surjective and $\operatorname{ran}\left(\varphi^{\prime}(a)\right)=X$ for each $a \in X$, then the convex cone $\{g=q \circ \varphi: q: X \rightarrow Y$ is S-convex $\}$ consists of S-invex functions with the same kernel η, using (II). The result in (III) remains valid when α and β are merely directionally differentiable, provided that the definition of cone-invexity is suitably extended, as given below in (11).
(IV) For real-valued functions (that is, $Y=\mathbf{R}$) it will be shown (in section (IV) that every pseudoconvex function ([14]) is invex. The converse is not valid.
(V) Let $g: X_{0} \rightarrow Y$ be a linearly Gâteaux differentiable function and suppose that there exists a point $\bar{x} \in X_{0}$ such that

$$
\begin{equation*}
g^{\prime}(a) \bar{x} \in-\text { int } S \tag{3}
\end{equation*}
$$

This assumes that int $S \neq \varnothing$. We shall show that g is S-invex at a on X_{0}.
Proof. Since int $S \neq \varnothing$, there is a weak* compact convex set $B \subset Y^{\prime}$ such that $0 \notin B$ and $S^{*}=$ cone B (B is called a base for S^{*}, see [6]). Thus (3) can be expressed equivalently as $(\forall \lambda \in B) \lambda g^{\prime}(a) \bar{x}<0$. Now, since B is weak* compact,
$(\exists \theta \in \mathbf{R})(\forall \lambda \in B) \lambda g^{\prime}(a) \bar{x} \leqslant \theta<0$.

For each $x \in X_{0}$, let $b_{x}=\inf \{\lambda[g(x)-g(a)]: \lambda \in B\}$; clearly $b_{x}>-\infty$ since B is weak* compact and convex. By (4), since $\theta<0$ and $b_{x}>-\infty$, there exists a sufficiently large positive number γ_{x} such that $b_{x} \geqslant \gamma_{x} \theta$ (thus γ_{x} is defined for each $\left.x \in X_{0}\right)$. The invex kernel is now defined by $\eta(x, a)=\gamma_{x} \bar{x}$. Thus

$$
\left(\forall x \in X_{0}\right)(\forall \lambda \in B) \lambda g^{\prime}(a) \eta(x, a) \leqslant \gamma_{x} \theta \leqslant b_{x} \leqslant \lambda[g(x)-g(a)]
$$

Hence g is S-invex at a on X_{0}.
This is a slightly extended version of a result by Hanson and Mond [12] in finite dimensions. Note that (3) is a version of the well-known Slater constraint qualification for a program such as (P).

Example 5. Let $X=Y=\mathbf{R}^{2}$, and $S=\mathbf{R}_{+}^{2}$, then the function $g(x, y)=(y-$ $\left.x^{2}-1, x+y^{2}-2\right)$ is \mathbf{R}_{+}^{2}-invex at the point $a=(0,0)$ on \mathbf{R}^{2}, since

$$
g^{\prime}(0,0)(-1,-1)=(-1,-1) \in-\operatorname{int} \mathbf{R}_{+}^{2} .
$$

Clearly g is not \mathbf{R}_{+}^{2}-convex at $(0,0)$.

4. Differentiable functions

In this section we shall consider invexity in mathematical programming problems involving linearly Gâteaux differentiable functions.

Theorem 1. (a) (Hanson [10], Craven [5]) Let $a \in K T(P)$; let foe K_{0}-invex at a with respect to η on $E=\left\{x \in X_{0}:-g(x) \in S\right\}$. Then (P) attains a global minimum at the point a.
(b) Let f_{0} be invex on X_{0}, then $a \in X_{0}$ is a (global) minimum of f_{0} over X_{0} if and only if $f_{0}^{\prime}(a)=0$.

Proof. (a) Let $x \in E$. Then, since $\lambda g(x) \leqslant 0$ and $\lambda g(a)=0$ for each $\lambda \in S_{0}^{*}$,

$$
f_{0}(x)-f_{0}(a) \geqslant r f(x)-r f(a) \geqslant r f^{\prime}(a) \eta(x, a)=0
$$

since $a \in K T(P)$. Here $r=(1, \lambda)$, where λ is the Lagrange multiplier associated to a.
(b) Since X_{0} is an open set we need only establish sufficiency, which follows immediately by (2) with $f_{0}^{\prime}(a)=0$.

Remark 1. If E is replaced by $E \cap U$, where U is a neighborhood of a in X_{0}, then (P) attains a local minimum at a in (a). As a consequence of Theorem 2 (to follow) we will establish the converse to part (b) above (see Remark 3), thus if every stationary point of f_{0} is a minimum then f_{0} is invex on X_{0}.

Theorem 2. Let $a \in K T(P)$; define K_{0} from K and $g(a)$; assume the regularity hypotheses, that the convex cone $J_{x}=\left[f(x)-f(a), f^{\prime}(a)\right]^{T}\left(K_{0}^{*}\right)$ is weak* closed for each $x \in E$, and that $g^{\prime}(a) u \in-$ aint S for some $u \in X$. Then f is K_{0}-invex on E at a, for some η, if and only if

$$
\begin{equation*}
(\forall x \in E) f_{0}(x)+\lambda g(x) \geqslant f_{0}(a)+\lambda g(a) \tag{5}
\end{equation*}
$$

where λ is any Lagrange multiplier satisfying ($K T$). Also, if fis K_{0}-invex on W and J_{x} is weak* closed for each $x \in W$ then $\left(D_{1}\right)$ reaches a maximum at $(u, v)=(a, \lambda)$.

Proof. Let $-g(x) \in S$ and $x \neq a$. Let $M=f^{\prime}(a)$ and $c=f(x)-f(a)$. Then,

$$
\begin{align*}
& (\exists \eta \in X) f(x)-f(a)-f^{\prime}(a) \eta \in K_{0} \tag{6}\\
& \left.\Leftrightarrow \quad(\exists \mu \in X, \exists t \in \mathbf{R}) c t-M \mu \in K_{0}, t \in \operatorname{int} \mathbf{R}_{+} \text {(by substituting } \eta=\mu / t\right) \\
& \Leftrightarrow \quad(\exists(t, \mu) \in \mathbf{R} \times X)[c, M]\left[\begin{array}{c}
t \\
\mu
\end{array}\right] \in K_{0},[0,1]\left[\begin{array}{c}
t \\
\mu
\end{array}\right] \in \operatorname{int} \mathbf{R}_{+} \\
& \Leftrightarrow \quad(\exists, q) p[1,0]+q[c, M]=0, q \in K_{0}^{*}, 0 \neq p \in \mathbf{R}_{+} \\
& \text {(by Motzkin's alternative theorem, see [3, p. 32], } \\
& \text { since the cone } \left.J_{x}=[c, M]^{T}\left(K^{*}\right) \text { is weak* closed }\right) \text {. } \\
& \Leftrightarrow \quad\left(\exists r \in K_{0}^{*}\right) r(c)=-1, r M=0 \quad \text { (substituting } r=p^{-1} q \text {) } \\
& \text { (7) } \Leftrightarrow\left[\left(r \in K_{0}^{*}, r M=0\right) \Rightarrow r(c) \geqslant 0\right] \\
& \text { (8) } \Leftrightarrow\left[\left(r \in K_{0}^{*}, r_{0}>0, r M=0\right) \Rightarrow r(c) \geqslant 0\right] \\
& \text { (since if } 0 \neq r \in K_{0}^{*}, r_{0}=0, r M=0 \text { then } \\
& 0=\lambda g^{\prime}(a) u<0 \text {, from } 0 \neq \lambda \in S^{*} \text { and } g^{\prime}(a) u \in-\text { aint } S \text {; } \\
& \text { the case } r=0 \text { is trivial. Note } r=\left(r_{0}, \lambda\right) \text {.). } \\
& \Leftrightarrow \quad f_{0}(x)+\lambda g(x) \geqslant f_{0}(a)+\lambda g(a)
\end{align*}
$$

(since $(1, \lambda) M=0$ for any Lagrange multiplier λ satisfies $(K T)$).

Finally if f is K_{0}-invex on W then, using the above characterization,

$$
f_{0}(z)+\bar{\lambda} g(z) \geqslant f_{0}(y)+\bar{\lambda} g(y),
$$

for all $z, y \in W$ with $(y, \bar{\lambda})$ feasible for $\left(D_{1}\right)$. Since $a \in K T(P),(a, \lambda)$ is feasible for $\left(D_{1}\right)$, thus $f_{0}(a)=f_{0}(a)+\lambda g(a) \geqslant f_{0}(a)+\bar{\lambda} g(a) \geqslant f_{0}(y)+\bar{\lambda} g(y)$, for each $y \in W$. Hence (a, λ) is optimal for $\left(D_{1}\right)$. It is easily shown that if f is K_{0}-invex on $W \cup E$ then duality holds between (P) and $\left(D_{1}\right)$, (see [10]).

Remark 2. The proof that (5) characterizes K_{0}-invexity at a in Theorem 2 does not require the assumption that $\lambda g(a)=0$. If it is assumed then (5) is equivalent to $f_{0}(x)-f_{0}(a) \geqslant-\lambda g(x) \geqslant 0$, and thus to something a little stronger than a minimum of (P) at the point a. A corresponding result for local minimization follows if x is restricted to $E \cap U$, where U is a neighborhood of a.

If the cone J_{x} is not assumed weak* closed, then the Kuhn-Tucker conditions ($K T$) may be replaced by the doubly asymptotic Kuhn-Tucker conditions (see [25], [18], [7])
$(A K T) \quad\left(\exists \operatorname{net}\left(r_{\alpha}\right) \subset K^{*}\right) r_{\alpha} f^{\prime}(a) \rightarrow 0, \quad r_{\alpha} f(a) \rightarrow f_{0}(a), a \in E$,
where the net $\left(r_{\alpha}\right)$ need not converge. Denote by $A K T(P)$ the set of points a at which ($A K T$) holds for (P). Then the result of applying Motzkin's theorem in the proof of Theorem 2 is replaced by

$$
\left(\exists \operatorname{net}\left(r_{\alpha}\right) \subset K_{0}^{*}\right) r_{\alpha}(c) \rightarrow-1, \quad r_{\alpha} M \rightarrow 0
$$

Hence with $a \in A K T(P)$ and $g^{\prime}(a) u \in-$ aint S for some $u \in X, f$ is K_{0}-invex at a on E if and only if

$$
f_{0}(x)+\lambda_{\alpha} g(x) \geqslant f_{0}(a)+\lambda_{\alpha} g(a)
$$

holds eventually, that is for all $\alpha \geqslant \bar{\alpha}$ (some index).
We now establish Theorem 2 under alternative regularity assumptions and characterize K_{0}-invexity using the Lagrangean dual, (D_{2}).

Theorem 3. Let $a \in K T(P)$; define K_{0} from K and $g(a)$; assume that J_{x} is weak* closed for each $x \in E$. In addition suppose that one of the following is satisfied:
(a) g is S-convex at a.
(b) $\left(\forall \lambda \in S_{0}^{*} \backslash\{0\}\right)(\exists x=x(\lambda) \in X) \lambda g^{\prime}(a) x<0$.

Then f is K_{0}-invex at a on E if and only if (5) holds for each $x \in E$ and each Lagrange multiplier λ. Furthermore, if J_{x} is weak* closed for each $x \in X_{0}$, then f is K_{0}-invex at a on X_{0} if and only if the Lagrangean dual $\left(D_{2}\right)$ reaches a maximum at λ (the Lagrange multiplier satisfying $(K T)$ at a) with $\varphi(\lambda)=f_{0}(a)$.

Proof. By inspection of the proof of Theorem 2 we need only establish $(8) \Rightarrow(7)$ and the result will follow. Hence assume $r \in K_{0}^{*}, r_{0}=0$ and $r M=0$. Thus, letting $r=\left(r_{0}, \lambda\right), \lambda g^{\prime}(a)=0$ with $\lambda \in S_{0}^{*}$. If (a) holds then, by (1), $\lambda g(x) \geqslant \lambda g(a),(\forall x \in E)$ and consequently $r(c) \geqslant 0$ as required. If (b) holds then the result follows as in Theorem 2, since $\lambda g^{\prime}(a) \neq 0$, for each $\lambda \in S_{0}^{*} \backslash\{0\}$.

Finally, suppose $\left(D_{2}\right)$ reaches a maximum at λ with $\phi(\lambda)=f_{0}(a)$ and $a \in$ $K T(P)$. Then, by weak duality, we have

$$
f_{0}(x)+\lambda g(x) \geqslant \phi(\lambda)=f_{0}(a)=f_{0}(a)+\lambda g(a), \quad \forall x \in X_{0}
$$

Thus by the above f is K_{0}-invex at a on X_{0}. Conversely, if f is K_{0}-invex at a on X_{0} then $\phi(\lambda)=f_{0}(a)+\lambda g(a)=f_{0}(a)$ using (5).

Remark 3. (i) From the proof of Theorem 2 (in particular since (6) \Leftrightarrow (7)) we have the following equivalent condition for cone-invexity, namely f is K-invex at a
on a set $D \subset X$ if and only if

$$
\begin{equation*}
\left[\left(r \in K^{*}, r f^{\prime}(a)=0\right) \Rightarrow r f(x) \geqslant r f(a), \forall x \in D\right] \tag{9}
\end{equation*}
$$

(we are assuming J_{x} is weak* closed for each $x \in D$). For real-valued functions the condition (9) gives the following: f is invex on D if and only if every stationary point of f in D is a (global) minimum. Functions satisfying this latter condition have been extensively studied by Zang, Choo and Avriel [24] (see also [22], [23]). Using the characterization (9) we easily obtain
f is K-invex at a on $D \Leftrightarrow r f$ is invex at a on D, \quad for all $r \in K^{*}$.
Note that we do not need to specify that η be the same for all $r \in K^{*}$, this follows since (9) is independent of η. Now, coupling this result with the work in [24] we obtain the following technical characterization of cone-invexity:
f is K-invex on an open set $D \subset \mathbf{R}^{n}$ if and only if $\left(\forall r \in K^{*}\right) L_{r f}(\cdot)$ is strictly lower semi-continuous on $G_{r f}$.
(ii) Under suitable regularity assumptions [3], the Fritz John conditions
(FJ) $\quad\left(\exists \lambda \in S^{*}, \exists \tau \geqslant 0,(\tau, \lambda) \neq(0,0)\right) \tau f_{0}^{\prime}(a)+\lambda g^{\prime}(a)=0, \quad \lambda g(a)=0$,
are necessary for optimality at $a \in E$; equivalently,
$(F J+) \quad\left(\exists r \in K_{0}^{*}, r \neq 0\right) r f^{\prime}(a)=0$.
Hence, using (9) above, it follows that f is K_{0}-invex at a on E if and only if either, $(F J+)$ is not satisfied at $a \in E$ or, the corresponding Lagrangean function $L(r, x)=r f(x)$ (for $r \in \mathbf{R} \times Y^{\prime}$) attains a minimum at a over E. This result assumes that J_{x} is weak* closed for each $x \in E$, but does not require the other regularity conditions of Theorems 2 and 3. It is possible to consider Fritz John type conditions in an asymptotic form (see [7]) which would be applicable when J_{x} is not necessarily closed. The conditions ($F J$) are known to be satisfied when the cone S has non-empty (topological) interior ([3]).
(iii) The weak* closure assumption on the convex cone J_{x} is satisfied under either of the following assumptions:
(a) K_{0} is a polyhedral cone, (in particular if $K=\mathbf{R}_{+}^{n}$).
(b) $\left[f(x)-f(a), f^{\prime}(a)\right]\left(\mathbf{R}_{+} \times X\right)+K_{0}=\mathbf{R} \times Y$, for each $x \in E$.

In part (b) we need the additional assumption that X and Y are complete, for the details see Nieuwenhuis [15], or Glover [7, Lemma 3]. Other sufficient conditions are given in Zalinescu [20] and Holmes [13].
(iv) In Section 3 it was claimed that every pseudoconvex function is invex, this now follows easily from part (i) above since every stationary point of a pseudoconvex function is a (global) minimum. A related result was given in [24, Theorem 2.3] where it was shown that for a pseudoconvex function, $f: X \rightarrow \mathbf{R}, L_{f}(\cdot)$ is SLSC on G_{f}; which is equivalent to invexity by part (i) above.
(v) In this section we have characterized cone-invexity at Kuhn-Tucker points using the Motzkin alternative theorem; for finite systems of differentiable functions on \mathbf{R}^{n}, a similar approach was suggested by Hanson [10] using Gale's alternative theorem.

5. Nondifferentiable functions

In this section we shall discuss cone-invexity for a class of nondifferentiable functions. We use the concept of quasidifferentiability to show that under cone-invex hypotheses the generalized Kuhn-Tucker conditions of Glover [7] are sufficient for optimality.

Definition. A function $g: X_{0} \rightarrow Y$ is S^{*}-quasidifferentiable at $a \in X_{0}$ if g is directionally differentiable at a and, for each $\lambda \in S^{*}$, there is a non-empty weak* compact convex set $\tilde{\partial}(\lambda g)(a)$ such that

$$
\begin{equation*}
g^{\prime}(a, x)=\sup \{w(x): w \in \tilde{\partial}(\lambda g)(a)\} \tag{10}
\end{equation*}
$$

Clearly if g is S^{*}-quasidifferentiable at a then $\lambda g^{\prime}(a, \cdot)$ is a continuous sublinear functional for each $\lambda \in S^{*}$. Hence $\tilde{\partial}(\lambda g)(a)$ coincides with $\partial(\lambda g)^{\prime}(a, 0)$ that is the subdifferential of $\lambda g^{\prime}(a, \cdot)$ at 0 in the sense of convex analysis (see [17]). If g is S-convex at a then $\tilde{\partial}(\lambda g)(a)=\partial(\lambda g)(a)$; for convenience we shall omit the \sim in the sequel.

Clearly every linearly Gâteaux differentiable function is S^{*}-quasidifferentiable with $\partial(\lambda g)(a)=\left\{\lambda g^{\prime}(a)\right\}$. For more general classes of nondifferentiable functions which are quasidifferentiable see Pshenichnyi [16], Craven and Mond [6], Clarke [2], and Borwein [1].

Let $g: X_{0} \rightarrow Y$ be directionally differentiable at $a \in X_{0}$, then g will be called S-invex at a on a set $D \subset X_{0}$ if, for each $x \in D$, there is a $\eta(x, a) \in X$ with

$$
\begin{equation*}
g(x)-g(a)-g^{\prime}(a, \eta(x, a)) \in S . \tag{11}
\end{equation*}
$$

Theorem 4 (Sufficient Kuhn-Tucker Theorem). Consider problem (P) with $a \in E$. Let f_{0} be quasidifferentiable at a and $g S^{*}$-quasidifferentiable at a. Further suppose that f is K-invex at a on E and that the generalized Kuhn-Tucker conditions

$$
\begin{equation*}
0 \in\left(\partial f_{0}(a) \times\{0\}\right)+\overline{\bigcup_{\lambda \in S^{*}}(\partial(\lambda g)(a) \times\{\lambda g(a)\})} \tag{12}
\end{equation*}
$$

are satisfied. Then a is optimal for (P).

Proof. It is easily seen that (12) is equivalent to the existence of $w \in \partial f_{0}(a)$ and nets $\left(\lambda_{\alpha}\right) \subset S^{*},\left(w_{\alpha}\right) \subset X^{\prime}$ with $w_{\alpha} \in \partial\left(\lambda_{\alpha} g\right)(a)$ for all α, such that

$$
\begin{equation*}
w+w_{\alpha} \rightarrow 0, \quad \lambda_{\alpha} g(a) \rightarrow 0 . \tag{13}
\end{equation*}
$$

Let $x \in E$, then

$$
\begin{aligned}
f_{0}(x)-f_{0}(a) & \geqslant f_{0}^{\prime}(a, \eta), \quad \text { by invexity } \\
& \geqslant w(\eta), \quad \text { since } w \in \partial f_{0}(a) \\
& =\lim _{\alpha}\left[-w_{\alpha}(\eta)\right], \quad \text { by }(13) \\
& \geqslant \liminf _{\alpha}\left[-\lambda_{\alpha} g^{\prime}(a, \eta)\right], \quad \text { since } w_{\alpha} \in \partial\left(\lambda_{\alpha} g\right)(a), \forall \alpha \\
& \geqslant \liminf _{\alpha}\left(-\lambda_{\alpha}(g(x)-g(a))\right), \quad \text { by invexity } \\
& \geqslant \liminf _{\alpha} \lambda_{\alpha} g(a), \quad \text { as } x \in E \text { and } \lambda_{\alpha} \in S^{*} \\
& =0, \quad \text { by }(13) .
\end{aligned}
$$

Thus $f_{0}(x)-f_{0}(a) \geqslant 0$, for all $x \in E$ and so a is optimal.
Remark 4. Theorem 4 generalizes the result of Hanson [10] and Craven [5] given in Theorem 1(a). The condition (12) has been shown to be necessary for optimality by Glover [7, Theorem 4] under the quasidifferentiability assumptions of Theorem 4 and the additional hypotheses that f_{0} is arc-wise directionally differentiable at a ([6]) and g is locally solvable at a. In the special case of Theorem 4 in which f_{0} and g are linearly Gâteaux differentiable at a it is easily shown that (12) is equivalent to ($A K T$).

We shall now consider an alternative characterization of optimality for invex programs under stronger hypotheses.

Theorem 5. For problem (P) let $a \in E$; let f_{0} be quasidifferentiable at a and let g be linearly Gâteaux differentiable at a. Furthermore assume $\operatorname{ran}\left(\left[g^{\prime}(a), g(a)\right]\right)$ is closed, X and Y are complete, and g is locally solvable at a. Then a necessary condition for a to be a minimum of (P) is that

$$
\begin{equation*}
(\exists v \in \bar{Q}) 0 \in \partial f_{0}(a)+v g^{\prime}(a), \quad v g(a)=0 \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=S^{*}-N\left(\left[g^{\prime}(a), g(a)\right]^{T}\right) \tag{15}
\end{equation*}
$$

If f is K-invex at a on E then (14) is sufficient for optimality at a.

Proof. (Necessity) Let $a \in E$ be optimal for (P). Then by Craven and Mond [6], using the local solvability hypothesis, there is no solution $(\alpha, x) \in \mathbf{R} \times X$ to

$$
\begin{equation*}
f_{0}^{\prime}(a, x)<0, \quad \alpha g(a)+g^{\prime}(a) x \in-S . \tag{16}
\end{equation*}
$$

Let $A=\left[g^{\prime}(a), g(a)\right]$, then (16) is equivalent to

$$
\begin{equation*}
A(\alpha, x) \in-S \Rightarrow f_{0}^{\prime}(a, x) \geqslant 0 \tag{17}
\end{equation*}
$$

Thus, by the separation theorem, ([16]), (17) is equivalent to

$$
\begin{equation*}
0 \in\left(\partial f_{0}(a) \times\{0\}\right)-\left[A^{-1}(-S)\right]^{*} \tag{18}
\end{equation*}
$$

By Theorem 1 in [8], $\left[A^{-1}(-S)\right]^{*}=A^{T}(\bar{Q})$ with Q given by (15). Thus (14) and (18) are equivalent as required.
(Sufficiency) Suppose (14) is satisfied at $a \in E$ and f is K-invex at a on E. Let $x \in E$. By (14) there are nets $\left(\lambda_{\alpha}\right) \subset S^{*},\left(w_{\alpha}\right) \subset N\left(A^{T}\right)$ with $v=\lim _{\alpha}\left(\lambda_{\alpha}-w_{\alpha}\right)$.

Now,

$$
\begin{aligned}
f_{0}(x)-f_{0}(a) & \geqslant f_{0}^{\prime}(a, \eta), \\
& \geqslant-\operatorname{vg}^{\prime}(a) \eta, \quad \text { by }(14) \\
& =\lim _{\alpha}\left[-\left(\lambda_{\alpha}-w_{\alpha}\right) g^{\prime}(a) \eta\right] \\
& =\lim _{\alpha}\left[-\lambda_{\alpha} g^{\prime}(a) \eta\right], \quad \text { since } w_{\alpha} \in N\left(A^{T}\right), \forall \alpha \\
& \geqslant \liminf _{\alpha}\left[-\lambda_{\alpha}(g(x)-g(a))\right], \quad \text { by invexity } \\
& \geqslant \liminf _{\alpha}\left[\lambda_{\alpha} g(a)\right], \quad \text { since } x \in E \\
& =v g(a), \quad \text { as } w_{\alpha} g(a)=0, \forall \alpha \\
& =0, \quad \text { by }(14) .
\end{aligned}
$$

Thus a is optimal for (P).

Remark 5. Theorem 5 generalizes the results in [8]. If $Y=\mathbf{R}^{n}$ then the closed range condition is automatically satisfied. This result provides a non-asymptotic Kuhn-Tucker condition even if the usual 'closed cone' condition is not satisfied.

Consider the following program related to (P).

$$
\begin{equation*}
\text { Maximize } f_{0}(u)+v g(u) \tag{3}
\end{equation*}
$$

$$
\text { subject to } \quad v \in \overline{Q(u)}, 0 \in \partial f_{0}(u)+v g^{\prime}(u)
$$

where f_{0} is quasidifferentiable, g is linearly Gâteaux differentiable and $Q(u)=S^{*}$ $-\underline{N\left(\left[g^{\prime}(u), g(u)^{T}\right]\right) \text {. Let } W_{1}=\left\{u \in X:(u, v) \text { is feasible for }\left(D_{3}\right) \text { for some } v\right.}$ $\in \overline{Q(u)}\}$.

Theorem 6. Let f be K-invex on $W_{1} \cup E$ then weak duality holds for (P) and $\left(D_{3}\right)$. Let $a \in E$ be optimal for (P) and let (14) be satisfied for some $v \in \bar{Q}$, then $\left(D_{3}\right)$ reaches a maximum at (a, v) with $\operatorname{Min}(P)=\operatorname{Max}\left(D_{3}\right)$. Thus $\left(D_{3}\right)$ is a dual program to (P).

Proof. Let $x \in E$ and let (u, \bar{v}) be feasible for $\left(D_{3}\right)$. Then,

$$
\begin{aligned}
f_{0}(x)-f_{0}(u)-\bar{v} g(u) \geqslant & f_{0}^{\prime}(u, \eta)-\bar{v} g(u) \\
= & -\bar{v} g^{\prime}(u) \eta-\lim _{\alpha}\left(\lambda_{\alpha}-w_{\alpha}\right) g(u) \\
& \quad \text { where we choose }\left(\lambda_{\alpha}\right) \text { and }\left(w_{\alpha}\right) \text { as in Theorem } 5 \\
& =-\bar{v} g^{\prime}(u) \eta+\lim _{\alpha}^{\lim }\left[-\lambda_{\alpha} g(u)\right], \quad \text { as } w_{\alpha} g(u)=0 \\
\geqslant & -\bar{v} g^{\prime}(u) \eta+\liminf _{\alpha}\left[\lambda_{\alpha}(g(x)-g(u))\right], \quad \text { as } x \in E \\
\geqslant & -\bar{v} g^{\prime}(u) \eta+\liminf _{\alpha} \lambda_{\alpha} g^{\prime}(u), \quad \text { by invexity } \\
& =-\bar{v} g^{\prime}(u) \eta+\bar{v} g^{\prime}(u) \eta, \quad \text { as } w_{\alpha} g^{\prime}(u)=0, \forall \alpha \\
& =0 .
\end{aligned}
$$

Thus weak duality holds for (P) and $\left(D_{3}\right)$.
Let $a \in E$ be optimal for (P). Now by assumption there is a $v \in \bar{Q}=\overline{Q(a)}$ such that (14) holds. Thus (a, v) is feasible for $\left(D_{3}\right)$. Hence, by weak duality,

$$
f_{0}(a)+v g(a)=f_{0}(a) \geqslant f_{0}(u)+v \bar{g}(u)
$$

for all (u, \bar{v}) feasible for $\left(D_{3}\right)$. Thus (a, v) is optimal for $\left(D_{3}\right)$ and $\operatorname{Min}(P)=$ $f_{0}(a)=\operatorname{Max}\left(D_{3}\right)$.

In order to establish a version of Theorem 2 for quasidifferentiable functions we require the following theorem of the alternative. We no longer require the completeness assumptions on X and Y.

Theorem 7. Let $h: X \rightarrow Y$ be S-sublinear and weakly continuous. Let $z \in Y$. Then exactly one of the following is satisfied:
(i) $(\exists x \in X)-h(x)+z \in S$.

$$
\begin{equation*}
(0,1) \in \bigcup_{\lambda \in S^{*}}(\partial(\lambda h)(0) \times\{\lambda(z)\}) \tag{ii}
\end{equation*}
$$

Proof. [Not (ii) \Rightarrow (i)]. For convenience let $B=\bigcup_{\lambda \in S^{*}}(\partial(\lambda h)(0) \times\{\lambda(z)\})$. Clearly B is a convex cone. Now suppose $(0,-1) \notin B$. Thus, by the separation theorem $([3, \mathrm{p} .23]), \exists(\hat{x}, \beta) \in X \times \mathbf{R}$ such that

$$
\begin{align*}
-\beta & >\sup \{\bar{w}(\hat{x}, \beta): \bar{w} \in \bar{B}\} \\
& =\sup \{\bar{w}(\hat{x}, \beta): \bar{w} \in B\} \tag{19}\\
& \geqslant \sup \{w(\hat{x}): w \in \partial(\lambda h)(0)\}+\beta \lambda(z), \quad \text { for any } \lambda \in S^{*} \\
& =\lambda h(\hat{x})+\beta \lambda(z), \quad \text { by continuity and sublinearity of } \lambda h .
\end{align*}
$$

Also as $0 \in S^{*},-\beta>0$. Let $\gamma=-\beta$. Then, for any $\lambda \in S^{*}$,

$$
\begin{aligned}
\lambda h(\hat{x})-\lambda(\gamma z) & <\gamma \Leftrightarrow \lambda(h(\bar{x})-z)<1, \quad \text { where } \bar{x}=\hat{x} / \gamma \\
& \Rightarrow-h(\bar{x})+z \in\left(S^{*}\right)^{0}=S, \quad \text { as } S \text { is a closed convex cone } \\
& \Rightarrow \text { (i) is satisfied by } \bar{x} .
\end{aligned}
$$

$[(\mathrm{i}) \Rightarrow$ Not (ii)]. Suppose $-h(x)+z \in S$ for some $x \in X$; and suppose, if possible, that $(0,-1) \in \bar{B}$. Hence there are nets $\left(\lambda_{\alpha}\right) \subset S^{*}$ and $\left(w_{\alpha}\right) \subset X^{\prime}$ such that $w_{\alpha} \in \partial\left(\lambda_{\alpha} h\right)(0), \forall \alpha$, and $w_{\alpha} \rightarrow 0, \lambda_{\alpha}(z) \rightarrow-1$. Thus $w_{\alpha}(x) \rightarrow 0$. Now, for each $\alpha, 0 \geqslant \lambda_{\alpha}(h(x)-z) \geqslant w_{\alpha}(x)-\lambda_{\alpha}(z) \rightarrow 1$. Thus we have a contradiction, hence $(0,-1) \notin \bar{B}$ and (ii) is not satisfied.

Remark 6. Vercher [19] (see also Goberna et al. [9]) has established a result similar to Theorem 7 for arbitrary systems of sublinear functions defined on \mathbf{R}^{n}. It is possible to weaken the continuity requirement in Theorem 7 to λh lower semi-continuous for each $\lambda \in S^{*}$ (the proof is identical since (19) remains valid using [21, Theorem 1]). Consider the special case of Theorem 7 in which $h=C$, a continuous linear function. Then (ii) becomes

$$
\begin{equation*}
(0,-1) \in \overline{[\dot{C}, z]^{T}\left(S^{*}\right)} \tag{20}
\end{equation*}
$$

If the convex cone $[C, z]^{T}\left(S^{*}\right)$ is weak* closed then (20) becomes

$$
\begin{equation*}
\left(\exists \lambda \in S^{*}\right) \lambda C=0, \quad \lambda(z)=-1 \tag{21}
\end{equation*}
$$

Thus the first section of proof in Theorem 2 has established this 'linear' version of Gale's alternative theorem.

Consider the generalized Kuhn-Tucker conditions given in Theorem 4. If the convex cone $U_{\lambda \in S^{*}}(\partial(\lambda g)(a) \times\{\lambda g(a)\})$ is weak* closed then (12) is equivalent to

$$
\begin{equation*}
\left(\exists \lambda \in S^{*}\right) 0 \in \partial f_{0}(a)+\partial(\lambda g)(a), \quad \lambda g(a)=0 \tag{GKT}
\end{equation*}
$$

Let $G K T(P)$ denote the set of $a \in E$ such that ($G K T$) holds for some λ.

Theorem 8. Let $a \in G K T(P)$; at a, let f_{0} be quasidifferentiable and let g be S_{0}^{*}-quasidifferentiable. For each $x \in E$, assume that the convex cone

$$
J_{x}^{\prime}=\bigcup_{r \in K_{0}^{*}}(\partial(r f)(a) \times\{r(f(x)-f(a))\})
$$

is weak* closed. Further assume that one of the following conditions is satisfied:
(i) g is S-convex at a.
(ii) $(\exists u \in X) g^{\prime}(a, u) \in-$ aint S.

Then f is K_{0}-invex at a on E if and only if $f_{0}(x)+\lambda g(x) \geqslant f_{0}(a)+\lambda g(a)$, where λ is any Lagrange multiplier satisfying (GKT) at a, for all $x \in E$. Also f is K_{0}-invex on X_{0} at a if and only if the Lagrangean dual $\left(D_{2}\right)$ reaches a maximum at (a, λ) with $\phi(\lambda)=f_{0}(a)$.

Proof. Let $x \in E, x \neq a$. Then
f is K_{0}-invex at a on E

$$
\begin{aligned}
\Leftrightarrow & (\exists \eta \in X) f(x)-f(a)-f^{\prime}(a, \eta) \in K_{0} \\
\Leftrightarrow & (0,-1) \notin \bar{J}_{x}^{\prime}=J_{x}^{\prime}, \quad \text { by Theorem } 7 \\
& \quad \text { (since } f \text { is } K_{0} \text {-quasidifferentiable at } a \text { it follows that } \\
& \left.\quad f^{\prime}(a, \cdot) \text { is } K_{0} \text {-sublinear and } r f^{\prime}(a, \cdot) \text { is continuous }\left(r \in K_{0}^{*}\right)\right) \\
(22) \quad \Leftrightarrow & {\left[(0, \gamma) \in J_{x}^{\prime} \Rightarrow \gamma \geqslant 0\right] } \\
\Leftrightarrow & {\left[r \in K_{0}^{*}, r_{0}>0,0 \in \partial(r f)(a) \Rightarrow r f(x) \geqslant r f(a)\right] } \\
& \\
& \text { (since (i) and (ii) will ensure that the case } r_{0}=0 \text { is } \\
\Leftrightarrow & \quad \text { satisfied as in the proof of Theorem 2) } \\
& \\
& \\
& \text { (where } \lambda \text { is any multiplier satisfying }(G K T) \text { at } a .
\end{aligned}
$$

Now since $a \in G K T(P), \exists \lambda \in S_{0}^{*}$ with $0 \in \partial f_{0}(a)+\partial(\lambda g)(a)$. Also as $f_{0}^{\prime}(a, \cdot)$ and $\lambda g^{\prime}(a, \cdot)$ are continuous convex functions we have $\partial\left(f_{0}+\lambda g\right)(a)=\partial f_{0}(a)$ $+\partial(\lambda g)(a)$. Thus $0 \in \partial(r f)(a)$ where $r=(1, \lambda))$. The final result then follows as in Theorem 2.

Remark 7. If we remove the closed cone assumption on J_{x}^{\prime} then (22) becomes $\left[(0, \gamma) \in \bar{J}_{x}^{\prime} \Rightarrow \gamma \geqslant 0\right]$ which is equivalent to

$$
\left[\left(r_{\alpha}\right) \subset K_{0}^{*}, w_{\alpha} \in \partial\left(r_{\alpha} f\right)(a), w_{\alpha} \rightarrow 0, r_{\alpha}(f(x)-f(a)) \rightarrow \gamma \Rightarrow \gamma \geqslant 0\right]
$$

This is the analogue of the asymptotic conditions discussed following Theorem 2.
We can consider generalized Fritz John conditions (under suitable regularity and quasidifferentiability assumptions (see [7]) for problems (P) to attain a minimum at $a \in E$; namely

(GFJ)

$\left(\exists \lambda \in S^{*}, \exists \tau \geqslant 0,(\tau, \lambda) \neq(0,0)\right) 0 \in \tau \partial f_{0}(a)+\partial(\lambda g)(a), \quad \lambda g(a)=0$.
Equivalently, since $f_{0}^{\prime}(a, \cdot)$ and $\lambda g^{\prime}(a, \cdot)$ are continuous, we have
$(G F J+) \quad\left(\exists r \in K_{0}^{*}, r \neq 0\right) 0 \in \partial(r f)(a)$.
Thus, analogously to Remark 3, part (ii), f is K_{0}-invex at a on E if and only if either $(G F J+$) is not satisfied at $a \in E$, or, the corresponding Lagrangean function attains a minimum at a over E. This result follows easily from (22); we need only assume J_{x}^{\prime} is weak* closed for each $x \in E$.

6. Examples

$$
\begin{array}{ll}
\text { (i) }\left(P_{1}\right) & \text { Minimize }
\end{array} \quad f_{0}(x, y)=x^{3}+y^{3}, ~=y^{2}-4 \leqslant 0 .
$$

Let $a=(0,-2) \in E$. It is easily shown that a is a Kuhn-Tucker point for (P_{1}) with (unique) Lagrange multiplier $\lambda=(3,0)$. Let $(x, y) \in E$, then it is easily shown that $y=\mu x-2$, for some $\mu \in[0,1]$; and $x \geqslant 0$. Thus,

$$
\begin{aligned}
f_{0}(x, y)+3 g_{1}(x, y) & =x^{2}+y^{3}+3 x^{2}+3 y^{2}-12 \\
& =\left(1+\mu^{3}\right) x^{3}+3\left(1-\mu^{2}\right) x^{2}-8 \\
& \geqslant-8=f_{0}(0,-2)+3 g_{1}(0,-2)
\end{aligned}
$$

Thus, since the constraints of $\left(P_{1}\right)$ are convex, we have by Theorem 3 that $f=\left(f_{0}, g_{1}, g_{2}\right)$ is \mathbf{R}_{+}^{3}-invex on E at a. Hence, by Theorem $1(a), a$ is a minimum of $\left(P_{1}\right)$.

We can actually define a suitable function η as follows:
Let $\eta(x, y)=\left(\eta_{1}(x, y), \eta_{2}(x, y)\right)$, for $(x, y) \in E$, where

$$
\begin{aligned}
\eta_{1}(x, y) & =\max \left\{-g_{1}(x, y) / 4:(x, y) \in E\right\}-\min \left\{g_{2}(x, y):(x, y) \in E\right\} \\
\eta_{2}(x, y) & =-g_{1}(x, y) / 4
\end{aligned}
$$

We do not have duality between $\left(P_{1}\right)$ and $\left(D_{1}\right)$ in this case; we will show that if f is not \mathbf{R}_{+}^{3}-invex on $W \cup E$. Let $\alpha>0$ and consider the point $(0,-\alpha)$.

$$
\begin{aligned}
f_{0}^{\prime}(0,-\alpha)+\lambda_{1} g_{1}^{\prime}(0,-\alpha) & +\lambda_{2} g_{2}^{\prime}(0,-\alpha)=\left(-\lambda_{2}, 3 \alpha^{2}-2 \alpha \lambda_{1}+\lambda_{2}\right)=0 \\
& \Leftrightarrow \lambda_{2}=0, \lambda_{1}=3 \alpha / 2, \quad(\text { thus }(0,-\alpha) \in W, \forall \alpha>0)
\end{aligned}
$$

Now,

$$
\begin{aligned}
f_{0}(0,-\alpha)+(3 \alpha / 2) g_{1}(0,-\alpha) & =-\alpha^{3}+(3 \alpha / 2)\left(\alpha^{2}-4\right) \\
& =\frac{1}{2} \alpha\left(\alpha^{2}-12\right) \\
& >-8, \quad \text { for all } \alpha \in[0,2) \\
& =f_{0}(0,-2)+3 g_{1}(0,-2) .
\end{aligned}
$$

Thus a is not a maximum of $\left(D_{1}\right)$ and f is not \mathbf{R}_{+}^{3}-invex on $W \cup E$. It should be noted that f is not \mathbf{R}_{+}^{3}-convex at a.
(ii) (Hanson and Mond [12])
$\left(P_{2}\right) \quad$ Minimize $f_{0}(x, y)=-2 y^{3}-6 x^{2}+3 y^{2}+6 x+6 y-7$
subject to $g_{1}(x, y)=-3 x^{4}+y^{2}-3 x-3 y+2 \leqslant 0$

$$
\begin{aligned}
& g_{2}(x, y)=2 x^{4}+2 x^{2}-y^{2}+1 \leqslant 0 \\
& g_{3}(x, y)=2 x y-6 x-1 \leqslant 0
\end{aligned}
$$

In [12] it was shown that $f=\left(f_{0}, g_{1}, g_{2}, g_{3}\right)$ is K_{0}-invex on E at $a=(0,1)$ by constructing a suitable function η. We shall apply Theorem 2 . At the point a only g_{1} and g_{2} are binding constraints, thus $S=\mathbf{R}_{+}^{3}, S_{0}=\mathbf{R}_{+}^{2} \times \mathbf{R}, S_{0}^{*}=\mathbf{R}_{+}^{2} \times\{0\}$ and $K_{0}=\mathbf{R}_{+}^{3} \times \mathbf{R}$. Theorem 2 is applicable since, for $g=\left(g_{1}, g_{2}, g_{3}\right)$ we have

$$
g^{\prime}(0,1)(1,1)=(-3,-2,-4) \in-\operatorname{int} S
$$

Clearly a is a Kuhn-Tucker point with (unique) Lagrange multiplier $\lambda=(2,3,0)$. It is easily shown that $f_{0}(x, y)+2 g_{1}(x, y)+3 y_{2}(x, y)=-2$, for all $(x, y) \in E$. Thus f is K_{0}-invex at a on E, and consequently a is a minimum of $\left(P_{2}\right)$.
(iii) (Craven [5])
$\left(P_{3}\right) \quad$ Minimize $f_{0}(x, y)=\frac{1}{3} x^{3}-y^{2}$
subject to $\quad g_{1}(x, y)=\frac{1}{2} x^{2}+y^{2}-1 \leqslant 0$

$g_{2}(x, y)=x^{2}+(y-1)^{2}-\rho^{2} \leqslant 0$
(for $\rho>0$ (to be specified) sufficiently small). For this problem the point $a=(0,1)$ is a Kuhn-Tucker point with (unique) Lagrange multiplier $\lambda=(1,0)$. Now, $f_{0}(x, y)+g_{1}(x, y)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-1 \geqslant-1=f_{0}(0,1)+g_{1}(0,1)$, for all $(x, y) \in \mathbf{R}^{2}$ with $x \geqslant-3 / 2$, (this determines ρ so that $(x, y) \in E \Rightarrow x \geqslant-3 / 2$). Thus $f=\left(f_{0}, g_{1}, g_{2}\right)$ is $\mathbf{R}_{+}^{2} \times \mathbf{R}$-invex at a on E and consequently a is a minimum of $\left(P_{3}\right)$. Note that $g=\left(g_{1}, g_{2}\right)$ is \mathbf{R}_{+}^{2}-convex so that Theorem 3 is applicable.
(iv) In [11] Hanson and Mond defined the following class of generalized convex functions, to extend the concept of invexity. Let $\psi: X \rightarrow \mathbf{R}$ be a differentiable function. Then ψ is in this class over a set $C \subset X$ if, for each $x, a \in C$, there is a sublinear functional $F_{x, a}: X^{\prime} \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
\psi(x)-\psi(a) \geqslant F_{x, a}\left(\psi^{\prime}(a)\right) \tag{23}
\end{equation*}
$$

They claimed this extended the idea of invexity to a wider class of function. We shall show that if ψ satisfies (23) then ψ is actually invex on C. The proof follows immediately from part (i) of Remark 3. For if $\psi^{\prime}(a)=0$ for some $a \in C$, then $F_{x, a}\left(\psi^{\prime}(a)\right)=0$ (by sublinearity) for all $x \in C$, thus $\psi(x) \geqslant \psi(a)$, and consequently every stationary point of ψ in C is a minimum. Hence ψ is invex on C.

Now suppose $\psi=\psi_{i}$ satisfies (23) for $i=1, \ldots, n$. Let $\beta_{i} \geqslant 0(\forall i)$ and $\beta=$ $\left(\beta_{1}, \ldots, \beta_{n}\right)$ define $\Phi(\beta, \cdot)=\sum \beta_{i} \psi_{i}(\cdot)$. Thus

$$
\begin{aligned}
F_{x, a}\left(\Phi^{\prime}(\beta, a)\right) & =F_{x, a}\left(\sum \beta_{i} \psi_{i}^{\prime}(a)\right) \\
& \leqslant \sum \beta_{i}\left(\psi_{i}(x)-\psi_{i}(a)\right) \\
& =\Phi(\beta, x)-\Phi(\beta, a), \quad \text { for all } x \in C, \beta \in \mathbf{R}_{+}^{n}
\end{aligned}
$$

Hence if $\Phi^{\prime}(\beta, a)=0$ then $\Phi(\beta, x) \geqslant \Phi(\beta, a)$, for all $x \in C$. Thus, by (9) and part (ii) in Remark 3, $\Psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ is \mathbf{R}_{+}^{n}-invex on C. Thus $F_{x, a}$ can be assumed linear and (23) is equivalent to invexity.

Hanson and Mond [11] also defined another class of generalized invex functions from (23) (in a manner analogous to the definition of pseudoconvex functions from convex functions); namely a differentiable function ψ is in this new class over $C \subset X$ if, for each $x, a \in C$, there is a sublinear functional $F_{x, a}$: $X^{\prime} \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
\left[F_{x, a}\left(\psi^{\prime}(a)\right) \geqslant 0 \Rightarrow \psi(x) \geqslant \psi(a)\right] \tag{24}
\end{equation*}
$$

It now follows immediately, as above, that if ψ satisfies (24) then ψ is invex on C, since every stationary point is a (global) minimum.

Example 4 in Section 3 shows that these invex concepts are also applicable in infinite dimensions.

Acknowledgement

The authors thank two referees for their comments, which have improved the presentation of the paper.

References

[1] J. M. Borwein, 'Fractional programming without differentiability', Math. Programming 11 (1976), 283-290.
[2] F. H. Clarke, 'Generalized gradients of Lipschitz functionals', Adv. in Math. $\mathbf{4 0}$ (1981), 52-67.
[3] B. D. Craven, Mathematical programming and control theory (Chapman and Hall, London, 1978).
[4] B. D. Craven, 'Duality for generalized convex fractional programs', Generalized concavity in optimization and economics, edited by S. Schaible and W. T. Ziemba, pp. 473-490 (Academic Press, New York), 1981.
[5] B. D. Craven, 'Invex functions and constrained local minima', Bull. Austral. Math. Soc. 24 (1981), 357-366.
[6] B. D. Craven and B. Mond, 'Lagrangean conditions for quasidifferentiable optimization', Survey of mathematical programming, Volume 1, Akadémiai Kiadó, Budapest, 1979, edited by A. Prékopa, pp. 177-192, (proceedings of the 9th International Programming Symposium, Budapest, 1976).
[7] B. M. Glover, 'A generalized Farkas lemma with applications to quasidifferentiable programming', Z. Oper. Res. 26 (1982), 125-141.
[8] B. M. Glover, 'Differentiable programming in Banach spaces', Math. Operationsforsch. Statist. Ser. Optimization 14 (1983), 499-508.
[9] M. A. Goberna, M. A. Lopez, J. Pastor and E. Vercher, 'An approach to semi-infinite programming via consequence relations', Conference paper, Intern. Symposium Semi-infinite Programming and Applications, University of Texas, Austin, September, 1981.
[10] M. A. Hanson, 'On sufficiency of the Kuhn-Tucker conditions', J. Math. Anal. Appl. 80 (1981), 545-550.
[11] M. A. Hanson and B. Mond, 'Further generalizations of convexity in mathematical programming', J. Inform. Optim. Sci. 3 (1982), 25-32.
[12] M. A. Hanson and B. Mond, Necessary and sufficient conditions for global optimality in constrained optimization, FSU Statistics Report M-600, Florida State University, Tallahassee, November, 1981.
[13] R. B. Holmes, Geomerric functional analysis and its applications (Springer-Verlag, New York, 1975).
[14] O. L. Mangasarian, Nonlinear programming (McGraw-Hill, New York, 1969).
[15] J. W. Nieuwenhus, 'Another application of Guignard's generalized Kuhn-Tucker conditions', J. Optim. Theory Appl. 30 (1980), 117-125.
[16] B. N. Pshenichnyi, Necessary conditions for an extremum (Marcel Dekker, New York, 1971).
[17] R. T. Rockafellar, Conjugate duality and optimization (SIAM Regional Conference Series in Applied Mathematics 16, Philadelphia, 1974).
[18] L. I. Trudzik, 'Asymptotic Kuhn-Tucker conditions in abstract spaces', Numer. Funct. Anal. Optim. 4 (1982), 355-369.
[19] E. Vercher, Teoremas de alternativa para sistemas infinitos aplicación a la programación y juegos semi-infinitos (Tesis Doctoral, Universidad de Valencia, Spain, 1981).
[20] C. Zalinescu, 'A generalization of the Farkas lemma and applications to convex programming', J. Math. Analy. Appl. 66 (1978), 651-678.
[21] C. Zalinescu, 'On an abstract control problem', Numer. Funct. Anal. Appl. 2 (1980), 531-542.
[22] I. Zang and M. Avriel, 'On functions whose local minima are global', J. Optim. Theory Appl. 16 (1975), 183-190.
[23] I. Zang, E. U. Choo and M. Avriel, A note on functions whose local minima are global, J. Optim. Theory Appl. 18 (1976), 555-559.
[24] I. Zang, E. U. Choo and M. Avriel, 'On functions whose stationary points are global minima', J. Optim. Theory Appl. 22 (1977), 195-207.
[25] S. Zlobec, 'Extensions of asymptotic Kuhn-Tucker conditions in mathematical programming', SIAM J. Appl. Math. 21 (1971), 448-460.

Department of Mathematics
 University of Melbourne
 Parkville, Victoria 3052
 Australia

[^0]: (C) 1985 Australian Mathematical Society 0263-6115/85 $\$ \mathrm{~A} 2.00+0.00$

