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Abstract. We report the results of a comprehensive comparative study of the inviscid spatial stability 
of a parallel compressible mixing layer using various models for the mean flow. The models are (a) the 
hyperbolic tangent profile for the mean speed and the Crocco relation for the mean temperature, with the 

Chapman viscosity-temperature relation and a Prandtl number of one; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) the Lbck profile for the mean 

speed and the Crocco relation for the mean temperature, with the Chapman viscosity-temperature relation 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa h d t l  number of one; and (c) the similarity solution for the coupled velocity and temperature equa- 
tions using the Sutherland viscosity temperature relation and arbitmy but constant Prandtl number. The 
purpose of this study was to determine the sensitivity of the stability characteristics of the compressible 
mixing layer to the assumed thermodynamic properties of the fluid. It is shown that the qualitative features 

of the stability characteristics are quite similar for all models but that there are quantitative differences 
resulting from the difference in the thermodynamic models. In particular, we show that the stability charac- 
teristics are sensitive to the value of the Prandtl number. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lhis work was suppolted by the National Aeronautics and Space Administration under NASA Contract NAS1-18605 while the authors 
welc in residence ;; the Institute for Computer Applications 
23665. 

Science and Engineering, NASA Langley Research Center, Hampton, VA 

! 



- 2 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. Introduction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe study of the stability of compressible shear flows is somewhat more complicated 

than that of incompressible shear flows in that the thermodynamics of the compressible fluid is of major 
importance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a consequence of compressibility the types of disturbances which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan exist are quite varied 
they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be subsonic, sonic, or supersonic modes and these can be either vorticity or acoustic modes (Mack, 
1989); there can be multiple unstable modes with the same ftequency; and finally three dimensional modes 
are of great importance because they may be more unstable than two dimensional modes; the characteristics 
of these modes are dependent upon the thermodynamics choosen. 

The basic formulation of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory of the stability of compressible shear flows, both wall bounded 
and free. is due to Lees and Lin (1946). and Dunn and Lin (1955) first showed the importance of three 

dimensional disturbances. The major additional effort in this area appears to be directed towards under- 
standing the stability characteristics of compressible boundary layers (see Mack; 1965, 1984, and 1987 for 
comprehensive reviews) with much less effort devoted to understanding the stability characteristics of 
compressible free shear layers. 

The earliest calculations of stability characteristics of compressible boundary layers used realistic ther- 

modynamic relations (Brown, 1962, Lees and Reshotko, 1962, and Mack, 1965) and this has continued to be 

the practice to the present day. The situation with regard to stability calculations for free shear layers is 
quite different. Most studies of the stability-of compressible free shear flows have been based on assumed, 
somewhat arbitrary. mean velocity and temperature profiles which are not solutions to the mean flow equa- 
tions but do satisfy the boundary conditions. If both the velocity and temperature profiles are arbitrary it 
might be conjectured that the solutions of the stability problem could be unrelated to those of the physical 

problem. If they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare, at least, rough approximations to the actual solutions, one might conjecture that the 
solutions of the model stability problem would approximate those of physical problem. These solutions of 
the model problems might be useful in elucidating qualitative features of the true stability problem because 

they are easier to treat. Some examples of studies of this type are that of Gill (1965). who studied the tem- 
poral stability of "top hat" jets and wakes and those of Blumen (1970); Blumen, Drazin and Billings (1975). 
and Drazin and Davey (1977) who examined the temporal stability of a compressible mixing layer with the 
mean velocity profile assumed to be given by a hyperbolic tangent and a constant temperature. 

In most compressible free shear stability studies the thermodynamics used was that of the model fluid 
(Stewartson, 1964). This model was originally introduced in order to simplify the thermodynamics of the 

flow in compressible boundary layers. In addition to obeying the perfect gas law (valid for real gases at 
temperatures less than a few thousand degrees K), the model fluid has a unit Prandtl number so that the 
rates of diffusion of heat and momentum are equal, and the Chapman (1950) viscosity law with the viscos- 
ity proportional to the temperature is assumed to be valid. One class of approximate solutions involves 

modeling the mean velocity profile by a hyperbolic tangent and using the Crocco relation for the mean tem- 

perature profile. This approximation has been used by a number of authors, including Ragab and Wu 
(1988), Tam and Hu (1988), and Zhuang, Kubota and Dimotakis (1988). We have also used this model in a 
comprehensive study of the spatial stability of a compressible mixing layer (Jackson and Grosch, 1988; 
hereafter referred to as Part I) as well as in a similar study of a reacting compressible mixing layer (Jackson 
and Grosch, 1989). 

Another class of models can be defined as those which use the Lock profile (Lock, 1951), the similar- 
ity solution for the velocity profile with the viscosity proportional to the temperature, a Prandtl number of 

i . 
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unity and various temperature profiles. Lessen, Fox and Zien zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1965, 1966) in temporal stability calculations 
used the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALock profile and assumed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthat the flow was iso-energetic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the temperature of the stationary 
gas was much greater than that of the moving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas even at moderately supersonic speeds. Gropengiesser 
(1969) used a generalized hyperbolic tangent profile (see his equation (2.27)) to approximate the Lock 

profile and used the Crocco relation for the temperature in spatial stability calculations. 

The final class of solutions to the mean flow equations are those where the Prandtl number is not 
necessarily one and a reasonably realistic viscosity-temperature relation, such as the Sutherland law, is used. 
The velocity and temperature profiles are exact similarity solutions of the mean flow equations. Quite 
surprisingly, there are few hear  stability calculations for compressible mixing layers with these more realis- 

tic mean velocity and temperature profiles. The only published results, of which we know, are those of 
Ragab and Wu (1988) for spatial stability and those of Macaraeg, Street and Hussaini (1988) for temporal 
stability. It seems that the main interest of Ragab and Wu was to determine the dependence of the max- 

imum growth rate of the disturbances on the velocity ratio of the mixing layer for subsonic flows. They 
concluded that the maximum growth rate depends on the velocity ratio in a complex way, with the max- 
imum growth rate appearing at a particular nonzero velocity ratio. Macaraeg, et a1 studied the temporal sta- 

bility of a compressible mixing layer for a few selected values of the Mach number (I 4). and a few values 
of the free stream temperature ratio. They were the first to point out the sensitivity of the stability charac- 
teristics of this class of flows to variations in the F’randtl number. 

Very recently there has been a revival of interest in the stability of compressible free shear layers, 
particularly at supersonic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspeeds. An unanswered question is the accuracy of the results of those calcula- 
tions in which various models of the mean flow thermodynamics have been used. It is clear that there will 
be quantitative differences in, for example, phase speeds and growth rates of the disturbances depending on 
the model of the mean flow. The important questions are first, the extent to which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqualitative predictions 
of recent, and older, studies are dependent on the models of the mean velocity and temperature used, and 

second, the magnitude of the differences in the quantitative predictions as a function of the mean flow 
model. 

In order to answer these questions we undertook a comprehensive systematic study of the stability of 

one free shear flow, the compressible mixing layer. In this study we calculated the stability characteristics 
of the compressible mixing layer using a number of representative models of the mean velocity and tem- 
perature profiles over a wide range of Mach numbers. The models are (a) the hyperbolic tangent profile for 
the mean speed and the Crocco relation for the mean temperature, with the Chapman viscosity-temperature 
relation and a Prandtl number of one; (b) the Lock profile for the mean speed and the Crocco relation for 
the mean temperature, with the Chapman viscosity-temperature relation and a Prandtl number of one; and 
(c) the similarity solution for the coupled velocity and temperature equations using the Sutherland viscosity 
temperature relation and arbitrary but constant Prandtl number. In section 2 we formulate the problem, 
including defining the thermodynamic models. Our results are presented in section 3. Finally, we summar- 
ize our conclusions in section 4. 

2. Formulation of the Problem. 

2.1. The Mean Flow The problem considered here is the inviscid spatial stability of the steady two 
dimensional flow of a compressible mixing layer which lies between two streams with different speeds and 
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temperatures. We take one of the streams to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe moving at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi- and the other to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstationary at -. The 
equations are nondimensionalized by the values of the density, temperature, and speed in the moving 
stream. The length scale is a characteristic length of the mean flow, and the time scale is the ratio of the 
length and speed scales. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx axis is along the direction of flow, the y axis is normal to the flow direc- 

tion, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt axis is in the cross stream direction. U and V are the velocity components in the x and y 
directions, respectively. p is the density, and T the temperature. We assume that the equations governing 
the mean flow are the compressible boundary layer equations (Stewartson, 1964). 

These equations are transformed into the incompressible form by the Howarth-Dorodnitzyn 
mation 

i 
Y 

Y = [ p d y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = p V + U  p x d y .  

Because the pressure gradient is zero, 

p T = l .  

transfor- 

(2.la,b) 

(2.2) 

Assuming that the mean flow is given by a similarity solution. we transform to the similarity variable 

Y q=-  
2 -5- 

the equations for the mean flow quantities U and T reduce to 

r 'I' 

A T '  + 2  fT '+(y-  1)M2 .E cf")*=o, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[pr  I [ T I  

(2.3) 

where the primes indicates differentiation with respect to q. Here p is the viscosity coefficient, Pr is the 
Prandtl number, y is the ratio of specific heats of the gas, and M the Mach number of the moving stream. 

The mean flow field is found by solving equations (2.5) and (2.6) subject to the boundary conditions, 

f '(+) = 1, T (i-) = 1, (2.7a,b) 

(2.8a,b) 

with pT the ratio of the temperature in the stationary gas to that of the moving gas. If pT is less than one, 
the stationary stream is relatively cold compared to the moving stream, and if PT is greater zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan one it is 
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relatively hot. 

It should zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnoted that equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2.5) through (2.8) constitute a fifth order boundary value problem, 
but that there are only four boundary conditions. Ting (1959) has shown that an appropriate boundary con- 
dition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be obtained by matching the freestream pressures on either side of the mixing layer if at least one 
of the streams is supersonic. However, Klemp and Acrivos (1972) have shown that this condition is incom- 

plete if both streams are subsonic. These conditions are equivalent to a specification off zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-). This value, 
a specification of the stream function, can be varied so as to ensure that f (0) takes on any particular value. 
This will not effect the physics of the flow, only the location of the origin of the coordinate system. 

The structure of the mean flow clearly depends on the variation of p, and Pr with temperature and 
pressure. In general, both p and Pr are very weakly dependent on pressure and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be taken to be indepen- 
dent of pressure. The Randtl number is somewhat dependent on the temperature but, for this study, will be 

assumed to be constant, with calculations being carried out over a range of Pr between 0.7 and 1.0. Finally, 
the dependence of viscosity on temperature is quite important and the choice of that dependence leads to 
several thermodynamic models discussed in the following section. 

2.2. Flow Models Given a value of Pr and p( T ) the mean flow is detennined by the solution to 
equations (2.5) and (2.6) with the boundary conditions (2.7) and (2.8) and a specification of > (0). We will 

consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree models for the mean flow. 

If it is assumed that the viscosity is proportional to the temperature, that is we use the Chapman 
viscosity law. equation (2.5) is uncoupled from (2.6). With Pr = 1, equation (2.6) can be solved in closed 
form to give the Crocco relation, which with the boundary conditions (2.7) and (2.8). is given by 

T = 1 - ( l -b)( l -U) + M 2 U  ( 1 4 ) .  (2.9) 2 

The first model of the mean flow involves using (2.9) for the mean temperature profile and appmxi- 
mating the mean velocity profile by a hyperbolic tangent 

(2.10) 
1 
2 

U = - (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtmh(T)). 

We will call this approximation the Tanh model. The results for this model were presented in Part I. Some 
of these results will be reproduced here for ease of reference and comparison purposes. 

The second model of the mean flow again uses (2.9) for the mean temperature profile, and the solu- 
tion to (2.5) with p, proportional to T and Pr = 1, for the mean velocity profile. We will call this the Lock 
model. 

The third model is one in which the Prandtl number is constant but not necessarily one and a reason- 
ably realistic viscosity-temperature relation is used. For temperatures greater than about 100 K O ,  a Suther- 
land type of relation 

p =  Q T” l  (b + T ) ,  Q = 1 + b ,  b = 110.4KO / T’, (2.11) 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe reference temperature, is reasonably accurate. The mean velocity and temperature profiles are 
the solutions of (2.5) to (2.8) and p given by (2.11). We will zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcall this the Sutherland model. 

23. The  Stability Problem The stability problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be formulated independently of the detailed 

form of the U and T profiles. The flow field is perturbed by introducing two dimensional wave disturbances 
in the velocity, pressure, temperature and density with amplitudes which are functions of q. For example, 

the pressure perturbation is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P = ~(q)erp[i  (a - ot)l. (2.12) 

with I7 the amplitude, a the complex wavenumber and o the frequency which is taken to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreal because 
we are only treating the spatial stability problem. Substituting the expression (2.12) for the pressure perm- 
bation and similar expressions for the other flow quantities into the inviscid compressible equations yields 
the ordinary differential equations for the perturbation amplitudes. It is straightforward to derive a single 

equation governing n, given by 

n" - - " n' - a2T [T - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 2  ( U - C ) ~ ]  ll = 0, (2.13) u-c 

where c is the complex phase speed 

(2.14) 

and primes indicate differentiation with respect to the similarity variable q. Since a is complex, the real 
part of a is the wave number in the x direction, while the imaginary part of a indicates whether the distur- 
bance is amplified, neutral, or damped depending on whether q is negative, zero, or positive. The phase 
speed, cph, is given by o / 4. If a, is zero, c = cN is the phase speed of a neutral mode. 

The boundary conditions for I7 are obtained by considering the limiting form of equation (2.13) as 
q + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfm. The solutions to (2.13) are of the form 

n + f=P t+&q), 

where 

Q2 + - - a 2 [I - M ~ ( ~ - C ) ~ ] ,  Q2- = a2PT [PT 

We define c* to be the values of the phase speed for which Q2, vanishes. 
- 

d P T  c- = - 1 c + = 1 - -  
M' M *  

(2.15) 

- M 2 c 2 ] .  (2.16) 

Thus, 

(2.17) 

Note that c+ is the phase speed of a sonic disturbance in the moving stream and c- is the phase speed of a 

sonic disturbance in the stationary stream. At 

M = M .  E l + &  (2.18) 
- 

c*  are equal, and this value is denoted 2 I 
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The nature of the disturbances and the appropriate boundary conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan now be illustrated by 

reference to Figure 1, where we plot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc* versus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM.  In what follows we assume that a', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> These 

curves divide the c, -M plane into four regions, where c, is the real part of c. If a disturbance exists with 
a M and c, in region 1, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa'+ and Q2- are both positive, and the disturbance is subsonic at both boun- 

daries. In region 3, both a'+ and Q2- are negative and hence the disturbance is supersonic at both boun- 
daries. In region 2. Q'+ is positive and Q2- is negative, and the disturbance is subsonic at +oo and super- 
sonic at -, and we classify it as a fast mode. Finally, in region 4, Q', is negative and Q2- is positive so 

the disturbance is supersonic at +oo and subsonic at -, and we classify it as a slow mode. 

One zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that the appropriate boundary condition for either damped or outgoing waves in the 
moving and stationary streams are, respectively, 

-ill- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I + ~ - ~ + " ,  if c, >c+, II + e  , if c, c c+, (2.19a) 

if c, < c-, + 1 J-n2-. . if c, > c-. (2.19b) 

To solve the disturbance equation (2.13). we first transform it to a Riccati equation by setting 

G = A  (2.20) 
a T n '  

Thus, (2.13) becomes 

2U' T' 
G ' + a T G 2 - [ - - - I C  = a [ T  -M2(U-c) '1. 

U-c T 

The boundary conditions can be found from (2.19) and (2.20). 

(2.21) 

The stability problem is thus to solve equation (2.21) for a given real frequency o and Mach number 
M. The eigenvalue is the wavenumber a. Because this equation has a singularity at U = cN, we integrate 
it along the complex contour (q-,-l) to (0,-1) and (q+,-l) to (0,-1) using a variable step Runge-Kutta 
scheme. In our calculations we have taken q* to be 6 for the Tanh and Lock profiles. However, we found 

that q- needs to be larger for the Sutherland model because the decay at -00 is slower than for the other two 
models, with the rate of decay decreasing as PT is decreased (Mack, 1989). We choose an initial value of a 
and compute the boundary conditions from (2.19). We then iterate on a, using Muller's method, until the 
boundary conditions are satisfied and the jump in G at (0,-1) is less than lo4. All calculations were done 
in 64 bit precision. 

3. Results. In this section we present results for the regularity condition, phase speeds, growth rates, 

and eigenfunctions of the stability problem. In all of our calculations we have taken y =  1.4 and 
0 I M I 7. The choice of a maximum value of 7 for M is based on the results of our previous calculations 
for the Tanh profile wherein we took 0 I M I 10, (Part I). It is clear from these results that the asymptotic 
( M + QO ) behavior of the solutions to the stability problem are apparent by Mach 7. Finally, we have 
taken the reference temperature T' to be 1500KO. We have also carried out stability calculations for 
values of T' of 5 0 0 K O  and 1OOOK" and found at most only a 2% change in the eigenvalues. Thus, we 

conclude that the actual value of the reference temperature T' is not the important parameter, rather it is the 
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ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the temperatures in the stationary stream to that of the moving stream zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPT which is the important 
parameter. 

3.1 The Regularity Condition. The Lees and Lin (1946) regularity condition is given by 

Let qc be a root of S(q). and define E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(q,). If E lies in region 1 of the c, - M diagram, then Lees 
and Lin (1946) have shown that E = cN is the phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspeed of a m e  neutral mode. The corresponding neu- 
tral wave number and frequency must be determined numerically. These modes are called subsonic neutral 
modes. It has been used by number of authors, for example, Lessen, et al. (1965). Gropengiesser (1969). 
Jackson and Grosch (1988). and Macaraeg, et al. (1988). to find the phase speed of subsonic neutral modes. 

If E lies in regions 2.3, or 4 of the c, - M diagram, then E does zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot correspond to the phase speed of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
true neutral mode. The phase speeds in these regions must be found numerically. 

Figures (2-5) are plots of S (q) versus q for the three thermodynamic models, particular values of PT 
and Pr, and Mach numbers of 3 and 5. All of these curves have been normalized so that their maximum is 
one. All of these plots show similar behavio~ S has a single root at Mach 3, but three roots at Mach 5. 
This is quite apparent for the Tanh, Lock, and Sutherland profiles with Pr = 1 but is not so readily apparent 
for the Sutherland profile with Pr = 0.7 because of the scale. However, there are a pair of zeros of S in the 

interval [-2,0]. 

We have shown in Part I, for the Tanh profile, that S is a cubic in tanh(r\) and therefore has either 
one or tht& real roots. There is one real mot for M cM,  and three real roots for M 2M,, where M, is 
given by (3.6) of part I. This is illustrated in Figure 6 for = 1, with the dashed curves the sonic curves. 
We see that one root, that which exists at Mach zero, has a constant value of E = 0.5. The other two roots 

form a "bubble" for Mach numbers greater than M,. The bubble is symmetric because of the symmetry of 
the mean profiles. We note here from Part I that if PT > 1, the value of E for the single root is a mono- 
tonic curve greater than 112, with a bubble below it. Also, if c 1, the value of E for the single root is 
also a monotonic curve less than 1/2, with the bubble now appearing above it. Thus at PT = 1 there is a 
saddle point in the E - M  plane. This value of pT, which we denote by PT, plays a critical role in the 
behavior of the solutions of the stability problem, as will be shown below. The corresponding value of the 
root which appears at Mach zero is denoted by 6 .  

We have not been able to demonstrate these properties analytically for the Lock and Sutherland 
profiles, but have been able to do so numerically. Some of the numerical evidence is presented in Figures 
7-9 where we plot E versus M for the different thermodynamic models and values of PT. The dashed 
curves are the sonic curves, shown for reference. Results are shown for the Lock profile in Figure 7 for the 
saddle point value of & = 0.57753. The surface is not symmemc about the line c  ̂ = 0.4318 because the 
Lock profile is slightly asymmetric about q = 0. Figures 8 and 9 show results for the Sutherland model with 

Pr = 1 (Figure 8) and 0.7 (Figure 9). In both figures the monotonic curve and the bubble are visible with 
asymmetries c a d  by the asymmetry of the Sutherland profile. In both cases the value of PT was chosen 

to be close to the saddle point value &. Since the mean profiles are now coupled through the viscosity, the 
exact saddle point value is difficult to determine numerically. From Figures 8 and 9 it is clear that the 
value of & is strongly dependent on the value of the Praxxitl number. The dependence on Pr is shown very 
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clearly in the results presented in Figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 and 11. Figure 10 is a plot of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIsT for the Sutherland profile as 
a function of the Prandtl number. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the F’randtl number is decreased from one, the saddle point value 

decreases dramatically. Figure 11 shows the variation of the corresponding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc^ with F’randtl number. This 
value also decreases as the Prandtl number decreases. 

For all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree thermodynamic models the three real roots of S always lie in regions 2, 3, or 4 for two 
dimensional modes. Therefore, for a two dimensional mode, only the single root which lies in region 1 is 
the phase speed of a true neutral mode. However, the sonic speeds c* are functions of the angle of propo- 
gation of the waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(M is replaced by M cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 in (2.17)). and as the angle is increased, the sonic curves 
shift towards higher Mach numbers thus increasing the extent of region 1. It is therefore clear that there 

will be some angle of propagation for which all three zeros of S lie in region 1. For this angle and all 

greater angles less than 90’. all three zeros of S yield the phase speed of true neutral subsonic modes. 

3.2 Neutral modes. In this section we present the phase speeds, hquencies, and wavenumbers of the 
neutral modes for the three models with pT of 2.0, 1.0, and 0.5 and Pr = 0.7 for the Sutherland model. 

Figure 12 shows plots of the phase speeds of the neutral modes as a function of Mach number for 
PT = 2 obtained by using the Tanh, Lock, and Sutherland models. The results for all three models show 
qualitatively similar behavior and small quantitative differences. It should be noted that PT of 2.0 is consid- 
erably larger than the saddle point value of PT for all three models. As the Mach number is increased past 
M,, the Mach number at which the phase speed equals that of the sonic wave, the subsonic neutral mode in 
region 1 is transformed into a fast supersonic neutral mode in region 2. At M, a slow supersonic neutral 

mode appears in region 4. There are some quantitative differences between the results using the different 
models. For example, in region 1, the neutral mode of the Tanh model has the lowest phase speed and that 
of the Lock model the highest with the phase speed of the Sutherland model in between. However there is 
only about a 10% maximum difference in the phase speeds. The same ordering with respect to magnitude 
of the phase speed is also Due for the fast supersonic neutral mode in region 2. The phase speeds of the 
slow supersonic neutral iodes in region 4 are very nearly the same for all of the models over the range of 

Mach numbers shown. The corresponding wave numbers of the neutral modes are plotted in Figure 13 and 
the corresponding frequencies in Figure 14. The magnitudes of aN and oN are similar for all of the models 

for the slow modes appearing in region 4. The neutral wave numbers and frequencies of the fast modes for 
all models eventually increases with increasing Mach number, while those of the slow modes decrease in 
this range of Mach numbers. 

Similar results are shown in Figures 15-17 for PT = 1.0. The phase speed of the neutral modes are 
plotted in Figure 15 and one can see a marked difference between the results for the Tanh model and the 

others. This is due to the fact that PT of one is the saddle point value for the Tanh model while [ j ~  occurs 
at a considerably lower value for the other models. Thus the phase speeds of the neutral modes increases 
for the Lock and Sutherland models as M increases, while that of the Tanh model is constant. At M,, the 
phase speeds of the Lock and Sutherland models are transformed from subsonic to fast supersonic neutral 
models. In conmt, the subsonic neutral mode of the Tanh profile is split at M, =Me into both fast and 
slow supersonic neutral modes. Figure 16 is a plot of the corresponding wavenumbers of the neutral modes. 
For M > MI,  the Tanh model yields values of uN which are equal for both the fast and slow supersonic 
neutral modes. This is due to the fact that the mean profiles of both velocity and temperature are symmetric 

about q = 0. Beyond this, all of the models yield neutral wavenumbers which have the same general 
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behavior with increasing Mach number. Finally, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe variation of the hequency of the neutral modes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoN, as 

a function of Mach number is shown in Figure 17. If M a .  then oN is essentially independent of the ther- 
modynamic model. For M>M., all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree models yield similar behavior. 

Finally, Figures 18-20 show the variation of the phase speed, wavenumber, and frequency of the neu- 
tral wave with Mach number for PT = 0.5. This value of PT is less than the saddle point value for the Tanh 
(= 1.0) and the Lock (= 0.57753) models but substantially greater than the saddle point value of the Suther- 
land model (= 0.145). Because of this, the results from the Tanh and Lock models are similar and both 

differ from those of the Sutherland model. In region 1 of Figure 18 the neutral phase speed obtained from 

the Tanh and Lock models is less than 2 because a pT of 0.5 is less than the saddle point value for these 
models. The opposite is m e  for the Sutherland model. Further, in this region the CN value for the Tanh 
model is smaller than that of the Lock model because a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPT of 0.5 is considerably smaller than the saddle 
point value for the Tanh model and only slightly smaller than that of the Lock model. Because the PT of 
0.5 is smaller than the saddle point values for the Tanh and Lock models the subsonic neutral modes of 

these models are transformed into slow supersonic neutral modes at M, and fast supersonic neutral modes 
appear at M.. Conversely, the subsonic neutral mode for the Sutherland model is transformed to a fast 

supersonic neutral mode at M,, while a slow supersonic neutral mode appears at M.. In regions 2 and 4 it 
can be seen that the phase speeds of the fast and slow supersonic neutral modes are quite similar for all 

models. 

The variation of the neutral wave number with Mach number is shown in Figure 19. It is apparent 
from the results shown in this figure, and those of Figures 13 and 16, that aN increases in the subsonic 
region with decreasing values of pT. The Tanh model has the largest rate of change, followed by the Lock 
model with the SutherIand model having the smallest rate of change. In contrast to the results for the other 
values of pT, the slow supersonic neutral mode of the Tanh model has a larger wavenumber than that of 
the fast supersonic neutral mode. The wavenumbers of the neutral supersonic modes are roughly equal for 

the Lock model. At larger values of the Mach number, aN increases with increasing Mach number for all 
cases except that of the slow supersonic mode of the Sutherland model. Also, Figure 20 shows the change 
in the frequency of the neutral modes with Mach number. The behavior is qualitatively similar to that 
found for other values of PT. 

Figures 21 thru 23 are plots of selected two dimensional slow supersonic neutral eigenfunctions for 
PT = 1 and Mach 5. These plots show the variation of II with ql on the contour zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqi = -1. All of these have 
been normalized so that the maximum of the absolute value of l7 is unity. All show a rapid phase shift 
near the center of the mixing layer. Because these are slow supersonic neutral modes they have exponential 
decay at q = -0 and oscillate with constant amplitude and linear phase at q = 00. The exponential decay is 
the slowest in the Sutherland model and most rapid in the Tanh model. The Sutherland model also yields 
the slowest rate of change in the supersonic region. Despite these quantitative differences, the eigenfunc- 

tions obtained from all the models are qualitatively similar. 

3.3 Growth rates. The growth rates of the unstable modes are presented in this section and com- 
pared as a function of Mach number and pT for the *-models. In addition the variation of the growth 

rate with frequency for PT = 2.0 is presented at selected values of the Mach number. It should be noted 
that the phase speeds of the unstable modes lie in the vicinity of the phase speed of the neutral mode in 

region 1 and between the phase speeds of the neutral modes and the corresponding sonic curves in regions 2 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Thus we see that at any given Mach number there is only a small band of phase speeds of the 
unstable modes. 

Figure 24 shows the maximum growth rates versus Mach number for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPT = 2.0. The general variation 

is similar for all of the models. The maximum growth rate is largest at Mach zero and decreases by a fac- 
tor of 5 to 10 as the Mach number increases from zero to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. and approaches a limiting value as the Mach 
number is further increased. At low Mach numbers the maximum growth rates for the Tanh model are the 
largest, followed in magnitude by those of the Sutherland and Lock models. At Mach numbers greater than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M. the Lock model has the largest growth rates of the fast supersonic modes while those of the Tanh and 
Sutherland models are roughly equal. The second group of unstable modes, the slow supersonic modcs, 
appear just below MI. The growth rate of the most unstable of these modes first increases over a small 
range of Mach numbers and then decreases, approaching a limiting value at larger values of the Mach 
number. At this value of PT the maximum growth rates of these slow supersonic modes are about equal. In 

all cases, the maximum growth rate approaches a limiting value in this range of.Mach numbers. 

Similar results for PT = 1.0 are shown in Figure 25. In region 1 the growth rates obtained from the 
Tanh model are significantly larger than those of the other models. The maximum growth rates of these 

later two models are virtually identical in this region. Because this value of pT corresponds to the saddle 
point value for the Tanh profile, we see that the maximum growth rate first decreases as the Mach number 
approaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM., levels off and then begins to increase with increasing Mach number. Since the saddle point 

values for the other two models are lower than one, their behavior is the same as in the previous case; the 
maximum growth rate decreases as the Mach number approaches M. and then levels off for higher Mach 

numbers. Finally as in the previous case, the second group of unstable modes, those which appear at M., 

have maximum growth rates which are approximately equal and have similar behavior. 

The maximum growth rates for PT = 0.5 are plotted versus the Mach number in Figure 26. Note the 

change in scale of the maximum growth rate as PT is decreased. It is important to realize that PT = 0.5 is 
less than the saddle point value for both the Tanh and Lock models but greater than that for the Sutherland 

model. Thus for the Tanh and Lock models the maximum growth rate decreases up to M., levels off and 
then increases with increasing Mach number. However, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the Sutherland model the behavior is different 

because this value of PT is larger than its saddle point value. Therefore, the variation with Mach number is 
the same as in the previous two cases. However, if the stationary gas were to be sufficiently cooled, we 
would expect that the maximum growth rate of the Sutherland model would behave in the same manner as 
the other two models at higher Mach numbers. Finally, as in the previous two cases, the second group of 

unstable modes have maximum growth rates which are approximately equal and have similar behavior in 

this range of Mach numbers. 

Further insight into how the choice of thermodynamic model effects the growth rate of the unstable 

modes is provided by the results shown in Figures 27 and 28. In these figures we show the variation of the 
growth rate of both the fast and slow unstable supersonic modes for PT = 2.0 and M = 2.5 (Figure 27) and 

M = 5.0 (Figure 28) with the frequency of the disturbance. The results at Mach 2.5 show that the slow 
unstable supersonic modes exist in a very narrow range of frequencies compared to that of the unstable fast 

supersonic modes. The shape of the -a; versus 61 curves for the slow modes is similar for all of the 

models. The widest range of frequencies of the unstable slow supersonic modes and the maximum growth 
rates are those of the Tanh model, followed by those of the Sutherland model and then the Lock model. 
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These results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare somewhat different for the unstable fast supersonic modes, for which the Lock model has 
the largest maximum growth rates and the widest range of unstable frequencies. In terms of the maximum 
growth rates and range of unstable frequencies the Sutherland model is the next largest, followed by the 
Tanh model, Similar results for Mach 5 are shown in Figure 28. Note the change in scales between these 
two figures. All of the features shown in the previous figure appear in this figure. The only exception is for 
the slow supersonic modes in which now the Lock model has a slightly larger growth rate than the Suther- 

land model. 

It is apparent from the results shown in Figure 27 that the curves of growth rate versus frequency for 

the fast supersonic modes have two local maxima at this value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPr and Mach number. As the Mach 

number increases the frequency of the maximum growth rate shifts towards higher frequencies. This is 
shown in the results of Figure 29, where we show the variation of the growth rate with frequency for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPT = 

2.0 and Mach numbers of 2.3, 2.4, and 2.5 for the Sutherland model. The maximum of the growth rate 
occurs at a value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo of about 0.05 at Mach 2.3. At Mach 2.4 a second maximum, at an o of about 0.11 

has appeared which is roughly equal to that at 0.04. Finally, at Mach 2.5, the maximum growth rate is at 
an o of 0.12. Thus, as the Mach number increases there is a discontinuous jump in the frequency of the 

maximum growth rate at some Mach number. 

The change in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe overall maximum growth rate as a function of P T  at fixed Mach number is rather 
complex. This is due to the fact that for Mach numbers greater than M. there are now two unstable modes, 
one in region 2 and another in region 4. An increase in PT can result in a change in type of the most 
unstable mode. Some results bearing on this are shown in Figure 30. Here we have plotted the maximum 

growth rate as a function of for selected values of the Mach number for the three models. For example, 
at Mach 2 the most unstable mode for the Tanh model is a slow supersonic mode for values of PT up to 
1.25 while it is a subsonic mode for PT 2 1.50. For the Lock profile, again at Mach 2, the most unstable 
mode is a slow supersonic one up to PT = 0.75, a fast supersonic mode at PT = 1.0, and subsonic modes at 
values of PT greater than or equal to 1.25. Finally, the Sutherland model at the same Mach number has, as 
its most unstable mode, a slow supersonic one at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPT = 0.5, a fast supersonic at 0.75, and subsonic modes for 
PT greater than or equal to 1.0. This change in mode type is related to the increase in M. with increasing 

PT independently of the thermodynamic model. Thus as P T  is increased the extent of region 1 of thc 
c, - M diagram increases so that unstable modes at fixed M can undergo a change from supersonic to sub- 

sonic. 

The general trends of variation of the maximum growth rate with PT are similar for the Tanh and 

Lock models. At M = 1.5 the maximum growth rate is a monotonically decreasing function of PT over the 
range for which we have obtained results. At the other values of the Mach number there is first a decrease 
in the maximum growth rate with increasing PT and then a slight increase with a further increase in P T .  

The Sutherland model yields somewhat different results. Only at Mach 3 is the variation of the maximum 
growth rate similar to that obtained from the other two models; a slight decrease followed by a small 
increase as pT is increased from 0.5 to 2.0. At Mach 2 the Sutherland model gives a monotonically increas- 

ing maximum growth rate with increasing PT and at Mach 1.5 there is first a small increase followed by a 

slow decrease as PT is increased. 

i 

4. Conclusions. The characteristic features of the solutions to the stability problem for the compressi- 

ble mixing layer are qualitatively similar for all af the thermodynamic models used in this study. However, 
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there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare quantitative differences between the results obtained from the different models. These range from 
about 10% in the phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspeeds to, in the most extreme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, about 50% difference in the maximum growth 
rates. 

Despite these quantitative differences there is an underlying similarity in the qualitative behavior of 
the solutions to the stability problem. For all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree thermodynamic models the regularity condition yields a 
cubic in Mach number at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfixed PT and for a critical value, BT, there is a saddle point. The behavior of the 
solutions to the stability problem depends on whether PT is larger or smaller than &. If PT is larger than 
f i ~  the subsonic modes are transformed into fast supersonic modes at the Mach number at which their phase 

speed equals that of the sonic wave in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstationary stream. On the other hand, if PT is smaller than f i ~  
the subsonic modes are transformed into slow supersonic modes when their phase speed equals the sonic 
speed of the moving stream. If PT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i T ,  then the phase speeds of the subsonic neutral modes are constant. 
This mode splits into a pair of fast and slow supersonic modes at M* . For any value of PT there is a single 
band of unstable subsonic modes in regionl, but there are two bands of unstable supersonic modes, one in 
region 2 and one in region 4. For all of the thermodynamic models, the second band of unstable supersonic 
modes appears when the Mach number equals Me. These second modes are slow supersonic modes if 
PT > 131. and fast supersonic modes if PT e fir. Both the fast and slow unstable supersonic modes have a 
rather small variation in the phase speed about the mean value. 

We have found that, independent of the thermodynamic model, the maximum growth rates of the 
unstable modes decrease by a factor of 5 to 10 as the Mach number is increased from zero to Me. As the 
Mach number is increased beyond M e  the maximum growth rates of the fast supersonic modes approach a 

limiting value. On the other hand, the maximum growth rates of the slow supersonic modes modes first lev- 
els off for A4 > M e  and then begin to increase with a further increase in the Mach number. 

In view of the results presented here we conclude that all of the thermodynamic models yield qualita- 
tively similar results. In view of this, all previous work based on simplified thermodynamic models yields 
qualitatively correct results. Because of the analytical simplicity of the Tanh model and because it appears 

to be a reasonable approximation to the mean velocity and temperature profiles we suggest that it is appro- 
piate for use in nonparallel and nonlinear models of the stability of the compressible mixing layer. 
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Figure 30. Plot of maximum growth rates versus PT for Mach numbers (1 )  1.5, (2) 2.0, (3) 
3.0 for Subsonic ( o ) ,  Fast Supersonic ( O ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Slow Supersonic (0 )  Modes; (a) Tanh, (b) 
Lock, (c) Su therland. 
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