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Problem and Goals

• We are concerned with the multiscale modeling, control and simulation of self-organizing agents leaving an unknown area.

• In [1] we explore the possibility of sparsely controlling these systems with a bottom-up approach, where control on the crowd (followers) is obtained by means of very
few aware agents (leaders), hidden in the crowd and not recognized by followers.

• In [3] we compute optimality conditions for optimal controls when the interaction among agents is of mean-field type.

The microscopic model

We propose a microscopic model for a human crowd leaving an unknown environ-
ment under limited visibility. Due to their lack of information about the positions
of exits, agents need to explore the environment first.

Let Ω denote the area to be evacuated, xτ be the exit and Σ be its visibility zone
(i.e., followers can see the exit inside Σ). The microscopic dynamics described by
NF followers and NL leaders is: for i = 1, . . . ,NF and k = 1, . . . ,NL,







ẋi = vi,

v̇i = A(xi, vi) +
∑NF

j=1 H(xi, vi, xj, vj ; x, y) +
∑NL

ℓ=1 H(xi, vi, yℓ,wℓ; x, y),

ẏk = wk =
∑NF

j=1 K (yk, xj) +
∑NL

ℓ=1 K (yk, yℓ) + uk.

(1)

• A is a self-propulsion term of the form

A(x , v ) := (1− χΣ(x))Cz(z − v ) + χΣ(x)Cτ

(
xτ − x

|xτ − x |
− v

)

+ Cs(s
2 − |v |2)v

︸ ︷︷ ︸
:=S(x ,v )

,

where s ≥ 0 is a given characteristic cruise speed,z is a 2-dimensional random
vector with normal distribution N (0, σ2), and Cz , Cτ , Cs > 0.

• The interactions follower-follower and follower-leader are given by

H(x , v , y ,w ; x, y) := −C F
r Rγ,r(x , y ) + (1− χΣ(x))χBN (x ;x,y)(y )

Ca

N ∗
(w − v ) ,

for given positive constants C F
r ,Ca, r , and γ, and where

Rγ,r(x , y ) =

{

e−|y−x |γ y−x
|y−x | if y ∈ Br(x)\{x},

0 otherwise.

The function Rγ,r models a metrical repulsive force, while the second term
accounts for the topological alignment force, which vanishes inside Σ.

Followers do not distinguish between other followers and leaders!

• BN (x ; x, y) is the minimal ball centered at x encompassing at least N agents,
and N ∗ is the actual number of agents in BN (x ; x, y). Computing BN (x ; x, y)
requires the knowledge of the positions of all agents, given by x and y.

• The interactions leader-follower and leader-leader reduce to a mere (metrical)
repulsion, i.e., K (x , y ) = C L

r Rζ,r(x , y ), where C L
r , ζ > 0 are in general different

from C F
r and γ. Here the repulsion force is a velocity field, while for followers it

is an acceleration.

• uk is the control chosen in two ways: as the unit vector pointing towards the
exit (fixed strategy), or as a solution in the set of admissible controls Uadm of

min
u(·)∈Uadm

{t > 0 | xi(t) /∈ Ω, ∀i = 1, . . . ,NF}, subject to (1). (2)

The mesoscopic model

• Our interest in (1) lies in the case NL≪ NF, that is the population of followers
exceeds by far the one of leaders.

• When NF is so large, a microscopic description of both populations is no more
a viable option, thus we consider the evolution of the distribution of followers,
denoted by f (x , v ), together with the microscopic equations for the leaders
(whose number is still small), with distribution g(x , v ).

• Their evolution is described by the following system (studied in [3])
{
∂
∂tf + v · ∇xf = −∇v · (G [f , g] f ) +

1
2σ

2C 2
z (1− χΣ)

2∆v f ,

ẏk = wk =
∫

R2d K (yk, x)f (x , v )dxdv +
∑NL

ℓ=1 K (yk, yℓ) + uk,
(3)

where

G [f , g] (x , v ) = S(x , v ) +

∫

R2d

H(x , v , x̂ , v̂ ;π1f , π1g) (f (x̂ , v̂ ) + g(x̂ , v̂ )) d x̂d v̂ .

• To simulate the above coupled ODE-PDE system we first derive a Boltzmann-
type dynamics obtained by the binary interactions follower-follower and follower-
leader, then we recover the Fokker-Planck operator in (3) by means of a grazing

interaction limit, as in [8], and we use a Monte Carlo-based method, see [7].

Simulations of the microscopic model
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Figure: First row: no leaders. Second row: three leaders, fixed strategy. Third row: three leaders,
optimal strategy (2) (computed via compass search methods).

Simulation of the mesoscopic model
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Figure: First row: no leaders. Second row: three leaders, fixed strategy. Third row: three leaders,
optimal strategy (2) (computed via compass search methods).
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Figure: Occupancy of the exit’s visibility zone Σ, dotted lines, and percentage of evacuated mass,
star lines, as function of time. Left figure, histograms for the case without leaders, (percentage
of evacuated mass 41.2%). Central figure, histograms for leaders moving with a fixed strategy
(percentage of evacuated mass 71.3%). Right figure, histograms for leaders with an optimal
strategy (percentage of evacuated mass 85.2%). Optimal strategies avoid congestions at exits.
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