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Abstract

Nowadays, there are plenty of works introducing convolutional neural networks (CNNs)

to the steganalysis and exceeding conventional steganalysis algorithms. These works have

shown the improving potential of deep learning in information hiding domain. There are

also several works based on deep learning to do image steganography, but these works still

have problems in capacity, invisibility and security. In this paper, we propose a novel CNN

architecture named as ISGAN to conceal a secret gray image into a color cover image on

the sender side and exactly extract the secret image out on the receiver side. There are three

contributions in our work: (i) we improve the invisibility by hiding the secret image only

in the Y channel of the cover image; (ii) We introduce the generative adversarial networks

to strengthen the security by minimizing the divergence between the empirical probabil-

ity distributions of stego images and natural images. (iii) In order to associate with the

human visual system better, we construct a mixed loss function which is more appropri-

ate for steganography to generate more realistic stego images and reveal out more better

secret images. Experiment results show that ISGAN can achieve start-of-art performances

on LFW, PASCAL-VOC12 and ImageNet datasets.

Keywords Image steganography · Generative adversarial networks ·

Convolutional neural network

1 Introduction

Image steganography is the main content of information hiding. The sender conceal a secret

message into a cover image, then get the container image called stego, and finish the secret

message’s transmission on the public channel by transferring the stego image. Then the

receiver part of the transmission can reveal the secret message out. Steganalysis is an attack
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to the steganography algorithm. The listener on the public channel intercept the image and

analyze whether the image contains secret information. Since their proposed, steganography

and steganalysis promote each other’s progress.

Image steganography can be used into the transmission of secret information, water-

mark, copyright certification and many other applications. In general, we can measure a

steganography algorithm by capacity, invisibility and security. The capacity is measured by

bits-per-pixel (bpp) which means the average number of bits concealed into each pixel of

the cover image. With the capacity becomes larger, the security and the invisibility become

worse. The invisibility is measured by the similarity of the stego image and its correspond-

ing cover image. The invisibility becomes better as the similarity going higher. The security

is measured by whether the stego image can be recognized out from natural images by

steganalysis algorithms. Correspondingly, there are two focused challenges constraining

the steganography performance. The amount of hidden message alters the quality of stego

images. The more message in it, the easier the stego image can be checked out. Another

keypoint is the cover image itself. Concealing message into noisy, rich semantic region of

the cover image yields less detectable perturbations than hiding into smooth region.

Nowadays, traditional steganography algorithms, such as S-UNIWARD [14], J-

UNIWARD [14], conceal the secret information into cover images’ spatial domain or

transform domains by hand-crafted embedding algorithms successfully and get excellent

invisibility and security. With the rise of deep learning in recent years, deep learning has

become the hottest research method in computer vision and has been introduced into infor-

mation hiding domain. Volkhonskiy et al. [25] proposed a steganography enhancement

algorithm based on GAN, they concealed secret message into generated images with con-

ventional algorithms and enhanced the security. But their generated images are warping

in semantic, which will be drawn attention easily. Tang et al. [24] proposed an automatic

steganographic distortion learning framework, their generator can find pixels which are

suitable for embedding and conceal message into them, their discriminator is trained as a

steganalyzer. With the adversarial training, the model can finish the steganography process.

But this kind of method has low capacity and is less secure than conventional algorithms.

Baluja [2] proposed a convolutional neural network based on the structure of encoder-

decoder. The encoder network can conceal a secret image into a same size cover image

successfully and the decoder network can reveal out the secret image completely. This

method is different from other deep learning based models and conventional steganography

algorithms, it has large capacity and strong invisibility. But stego images generated by this

model is distorted in color and its security is bad. Inspired by Baluja’s work, we proposed

an invisible steganography via generative adversarial network named ISGAN. Our model

can conceal a gray secret image into a color cover image with the same size, and our model

has large capacity, strong invisibility and high security. Comparing with previous works, the

main contributions of our work are as below:

1. In order to suppress the distortion of stego images, we select a new steganography

position. We only embed and extract secret information in the Y channel of the cover

image. The color information is all in Cr and Cb channels of the cover image and can

be saved completely into stego images, so the invisibility is strengthened.

2. From the aspect of mathematics, the difference between the empirical probability dis-

tributions of stego images and natural images can be measured by the divergence. So

we introduce the generative adversarial networks to increase the security throughout

minimizing the divergence. In addition, we introduce several architectures from classic
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computer vision tasks to fuse the cover image and the secret image together better and

get faster training speed.

3. In order to fit the human visual system (HVS) better, we introduce the structure simi-

larity index (SSIM) [27] and its variant to construct a mixed loss function. The mixed

loss function helps to generate more realistic stego images and reveal out better secret

images. This point is never considered by any previous deep-learning-based works in

information hiding domain.

The rest of the paper is organized as follows. Section 2 discusses related works, Section 3

introduces architecture details of ISGAN and the mixed loss function. Section 4 gives details

of different datasets, parameter settings, our experiment processes and results. Finally,

Section 5 concludes the paper with relevant discussion.

2 Related works

Steganalysis There have been plenty of works using deep learning to do image steganalysis

and got excellent performance. Qian et al. [17] proposed a CNN-based steganalysis model

GNCNN, the model introduced the hand-crafted KV filter to extract residual noise and

used the gaussian activation function to get more useful features. The performance of the

GNCNN is inferior to the state-of-the-art hand-crafted feature set spatial rich model (SRM)

[7] slightly. Based on GNCNN, Xu et al. [8] presented Batch Normalization [16] in to

prevent the network falling into the local minima. XuNet was equipped with Tanh, 1 × 1

convolution, global average pooling, and got comparable performance to SRM [7]. Ye et al.

[29] put forward YeNet which surpassed SRM and its several variants. YeNet used 30 hand-

crafted filters from SRM to prepropose images, applied well-designed activation function

named TLU and selection-channel module to strengthen features from rich texture region

where is more suitable for hiding information. Zeng et al. [31] proposed a JPEG steganalysis

model with less parameters than XuNet and got better performance than XuNet. These

works have applied deep learning to steganalysis successfully, but there is still space for

improvement.

Steganography Since its introduction, generative adversarial networks [10] have received

more and more attention, achieved the state-of-art performance on tasks such as image gen-

eration, style transfer, speech synthesis and so on. The earliest application of deep learning

to steganography was based on GAN. Volkhonskiy et al. [25] proposed a DCGAN-based

[18] model SGAN. SGAN consists of a generator network for generating cover images, a

discriminator network for discriminating generated images from real images and a stegan-

alyzer network for steganalysis. Hiding information in cover images generated by SGAN

is securer than in natural images. Shi et al. [22] proposed SSGAN based on WGAN [1],

their work was similar to SGAN and got better outcome. However, stego images gener-

ated by models similar to SGAN and SSGAN are warping in semantic and are more easily

to draw attention than natural images, although these models reduce the detection rate

of steganalysis algorithms. Tang et al. [24] proposed an automatic steganographic distor-

tion learning framework named as ASDL-GAN. The generator can translate a cover image

into an embedding change probability matrix and the discriminator incorporates the XuNet

architecture. In order to fit the optimal embedding simulator as well as propagate the gra-

dient in back propagation, they proposed a ternary embedding simulator (TES) activation
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function. ASDL-GAN can learn steganographic distortions automatically, but its perfor-

mance is inferior to S-UNIWARD. Yang et al. [28] improved ASDL-GAN and achieved

better performance than S-UNIWARD. They used Selection-Channel-Aware (SCA) [29]

in generator as well as the U-Net framework [20] which is introduced from the medical

images segmentation. However, ASDL-GAN still refers too many prior knowledge from

conventional steganography algorithms and its capacity is small. Hayes [11] proposed a

GAN-based model to hide a secret message into a cover image, and could reveal the secret

message by his decoder successfully, but the invisibility is weak.

Baluja [2] designed a CNN model to conceal a color secret image into a color cover

image yielding state-of-art performance. Atique et al. [19] proposed another encoder-

decoder based model to finish the same steganography task (their secret images are gray

images). This is a novel steganography method which gets rid of hand-crafted algorithms.

It can learn how to merge the cover image and the secret image together automatically. But

stego images generated by their models are distorted in color. As shown in Fig. 4, Atique’s

stego images are yellowing when compared with the corresponding cover images. And their

stego images are easily recognized by well trained CNN-based steganalyzer [2] because of

the large capacity. Inspired by works of Baluja and Atique, we improve each shortcoming

and get ISGAN.

3 Our approach

The complete architecture of our model is shown in Fig. 1. In this section, the new steganog-

raphy position is introduced firstly. Then we discuss about our design considerations on

the basic model and show specfic details of the encoder and the decoder. Thirdly, we

present why the generative adversarial networks can improve the security and details of the

discriminator. Finally, we explain the motivation to construct the mixed loss function.

3.1 New steganography position

Works of Baluja [2] and Atique [19] have implemented the entire hiding and revealing

procedure, while their stego images’ color is distorted as shown in Fig. 4. To against this

weakness, we select a new steganography position. As shown in Fig. 2, a color image in the

RGB color space can be divided into R, G and B channels, and each channel contains both

semantic information and color information. When converted to the YCrCb color space,

Fig. 1 The overall architecture. The encoder network conceals a gray secret image into the Y channel of a

same size cover image, then the Y channel output by the encoder net and the U/V channels constitute the stego

image. The decoder network reveals the secret image from the Y channel of the stego image. The steganalyzer

network tries to distinguish stego images from cover images thus improving the overall architecture’s security
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Fig. 2 Three images in the first column are original RGB color images. Three images in the right of the first

row are R channel, G channel and B channel of the original image respectively saved as gray images, three

channels all constitutes the luminance information and color information. Three images in the right of the

second row are Y channel, Cr channel and Cb channel respectively saved as gray images, and three images

in the right of the third row are also Y channel, Cr channel and Cb channel respectively from Wikipedia.

We can see that the Y channel constitutes only the luminance information and semantic information, and the

color information about chrominance and chroma are all in the Cr channel and the Cb channel

a color image can be divided into Y, Cr and Cb channels. The Y channel only contains

part of semantic information, luminance information and no color information, Cr and Cb

channels contain part of semantic information and all color information. To guarantee no

color distortion, we conceal the secret image only in the Y channel and all color information

are saved into the stego image. In addition, we select gray images as our secret images thus

decreasing the secret information by 2
3

.

When embedding, the color image is converted to the YCrCb color space, then the Y

channel and the gray secret image are concatenated together and then are input to the

encoder network. After hiding, the encoder’s output and the cover image’s CrCb channels

constitute the color stego image. When revealing, we get the revealed secret image through

decoding the Y channel of the stego image. Besides, the transformation between the RGB

color space and the YCrCb color space is just the weighted computation of three channels

and doesn’t affect the backpropagation. So we can finish this tranformation during the entire

hiding and revealing process. The encoder-decoder architecture can be trained end-to-end,

which is called as the basic model.

3.2 Basic model

Conventional or classic image stegnography are usually designed in a heuristic way. Gener-

ally, these algorithms decide whether to conceal information into a pixel of the cover image

and how to conceal 1 bit information into a pixel. So the key of the classic steganography

methods is well hand-crafted algorithms, but all of these algorithms need lots of expertise

and this is very difficult for us. The best solution is to mix the secret image with the cover



8564 Multimedia Tools and Applications (2019) 78:8559–8575

Fig. 3 The inception module with residual shortcut we use in our work

image very well without too much expertise. Deep learning, represented by convolutional

neural networks, is a good way to achieve this exactly. What we need to do is to design the

structure of the encoder and the decoder as described below.

Based on such a starting point, we introduce the inception module [23] in our encoder

network. The inception module has excellent performance on the ImageNet classification

task, which contains several convolution kernels with different kernel sizes as shown in

Fig. 3. Such a model structure can fuse feature maps with different receptive field sizes

Table 1 Architecture details of

the encoder network:

ConvBlock1 represents 3 × 3

Conv+BN+LeakyReLU,

ConvBlock2 represents 1 × 1

Conv+Tanh, InceptionBlock

represents the inception module

with residual shortcut as shown

in Fig. 3

Layers Process Output size

Input / 2 × 256 × 256

Layer 1 ConvBlock1 16 × 256 × 256

Layer 2 InceptionBlock 32 × 256 × 256

Layer 3 InceptionBlock 64 × 256 × 256

Layer 4 InceptionBlock 128 × 256 × 256

Layer 5 InceptionBlock 256 × 256 × 256

Layer 6 InceptionBlock 128 × 256 × 256

Layer 7 InceptionBlock 64 × 256 × 256

Layer 8 InceptionBlock 32 × 256 × 256

Layer 9 ConvBlock1 16 × 256 × 256

Output ConvBlock2 1 × 256 × 256
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Table 2 Architecture details of

the decoder network:

ConvBlock1 represents 3 × 3

Conv+BN+LeakyReLU,

ConvBlock2 represents 1 × 1

Conv+Sigmoid

Layers Process Output size

Input / 1 × 256 × 256

Layer 1 ConvBlock1 32 × 256 × 256

Layer 2 ConvBlock1 64 × 256 × 256

Layer 3 ConvBlock1 128 × 256 × 256

Layer 4 ConvBlock1 64 × 256 × 256

Layer 5 ConvBlock1 32 × 256 × 256

Output ConvBlock2 1 × 256 × 256

very well. As shown in both residual networks [13] and batch normalization [16], a model

with these modifications can achieve the performance with significantly fewer training steps

comparing to its original version. So we introduce both residual module and batch normal-

ization into the encoder network to speed up the training procedure. The detail structure of

the encoder is described in Table 1. When using MSE as the metric on LFW dataset, we use

our model to train for 30 epochs to get the performance Atique’s model can achieve while

training for 50 epochs.

On the other hand, we need a structure to reveal the secret image out automatically. So

we use a fully convolutional network as the decoder network. Feature maps output by each

convolutional layer have the same size. To speed up training, we add a batch normalization

layer after each convolutional layer other than the last layer. Details of the decoder network

are described in Table 2.

3.3 Our steganalyzer

Works of Baluja and Atique didn’t consider the security problem, while the security is

the keypoint in steganography. In our work, we want to take the steganalysis into account

automatically throughout training the basic model.

Denoting C as the set of all cover images c, the selection of cover images from C can

be described by a random variable c on C with probability distribution function (pdf) P .

Assuming the cover images are selected with pdf P and embedded with a secret image

which is chosen from its corresponding set, the set of all stego images is again a random

variable s on C with pdf Q. The statistical detectability can be measured by the Kullback-

Leibler divergence [3] shown in (1) or the Jensen-Shannon divergence shown in (2).

KL(P ||Q) =
∑

c∈C

P(c)log
P (c)

Q(c)
(1)

JS(P ||Q) =
1

2
KL

(

P ‖
P + Q

2

)

+
1

2
KL

(

Q‖
P + Q

2

)

(2)

The KL divergence or the JS divergence is a very fundamental quantity because it pro-

vides bounds on the best possible steganalyzer one can build [4]. So the keypoint for us

is how to decrease the divergence. The generative adversarial networks (GAN) are well-

designed in theory to achieve this exactly. The objective of the original GAN is to minimize

the JS divergence (2), a variant of the GAN is to minimize the KL divergence (1). The gener-

ator network G, which input is a noise z, tries to transform the input to a data sample which

is similar to the real sample. The discriminator network D, which input is the real data or
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the fake data generated by the generator network, determines the difference between the real

and fake samples. D and G play a two-player minmax game with the value function (3).

min
G

max
D

= Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (3)

Now we introduce the generative adversarial networks into our architecture. The basic

model can finish the entire hiding and revealing process, so we use the basic model as

the generator, and introduce a CNN-based steganalysis model as the discriminator and the

steganalyzer. So the value function in our work becomes (4), where D represents the stegan-

alyzer network, G represents the basic model, x, s and G(x, s) represent the cover image,

the secret image and the generated stego image respectively.

min
G

max
D

= Ex∼P(x)[logD(x)] + Ex∼P(x),s∼P(s)[log(1 − D(G(x, s)))] (4)

Xu et al. [8] studied the design of CNN structure specific for image steganalysis appli-

cations and proposed XuNet. XuNet embeds an absolute activation (ABS) in the first

convolutional layer to improve the statistical modeling, applies the TanH activation func-

tion in early stages of networks to prevent overfitting, and adds batch normalization (BN)

before each nonlinear activation layer. This well-designed CNN provides excellent detec-

tion performance in steganalysis. So we design our steganalyzer based on XuNet and adapt

it to fit our stego images. In addition, we use the spatial pyramid pooling (SPP) module to

replace the global average pooling layer. The spatial pyramid pooling (SPP) module [12]

and its variants, which play a huge role in models for objection detection and semantic seg-

mentation, break the limit of fully connected layers, so that images with arbitrary sizes can

be input into convolutional networks with fully connected layers. On the other hand, the

SPP module can extract more features from different receptive fields, thus improving the

performance. Our steganalyzer’s detail architecture is shown in Table 3.

3.4 Mixed loss function

In previous works, Baluja [2] used the mean square error (MSE) between the pixels of

original images and the pixels of reconstructed images as the metric (1). Where c and s are

the cover and secret images respectively, c′ and s′ are the stego and revealed secret images

respectively, and β is how to weight their reconstruction errors. In particular, we should

note that the error term ||c − c′|| doesn’t apply to the weights of the decoder network. On

Table 3 Architecture details of

the steganalyzer network:

ConvBlock1 represents 3 × 3

Conv+BN+LeakyReLU+AvgPool,

ConvBlock2 represents 1 × 1

Conv+BN and ConvBlock3

represents 1 × 1

Conv+BN+LeakyReLU

Layers Process Output size

Input / 3 × 256 × 256

Layer 1 ConvBlock1 8 × 128 × 128

Layer 2 ConvBlock1 16 × 64 × 64

Layer 3 ConvBlock2 32 × 32 × 32

Layer 4 ConvBlock2 64 × 16 × 16

Layer 5 ConvBlock3 128 × 8 × 8

Layer 6 SPPBlock 2688 × 1

Layer 7 FC 128 × 1

Layer 8 FC 2 × 1

SPPBlock contains a SPP

module and the FC represents a

fully connected layer
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the other hand, both the encoder network and the decoder network receive the error signal

β||s − s′|| for reconstructing the secret image.

L(c, c′, s, s′) = ‖c − c′‖ + β‖s − s′‖ (5)

However, the MSE just penalizes large error of two images’ corresponding pixels but

disregards the underlying structure in images. The human visual system (HVS) is more sen-

sitive to luminance and color variations in texture-less regions. Zhao et al. [32] analyzed the

importance of perceptually-motivated losses when the resulting image of image restoration

tasks is evaluated by a human observer. They compared the performance of several losses

and proposed a novel, differentiable error function. Inspired by their work, we introduce the

structure similarity index (SSIM) [27] and its variant, the multi-scale structure similarity

index (MS-SSIM) [26] into our metric.

The SSIM index separates the task of similarity measurement into three comparisons:

luminance, contrast and structure. The luminance, contrast and structure similarity of two

images are measured by (2), (3) and (4) respectively. Where µx and µy are pixel average

of image x and image y, θx and θy are pixel deviation of image x and image y, and θxy is

the standard variance of image x and y. In addition, C1, C2 and C3 are constants included

to avoid instability when denominators are close to zero. The total calculation method of

SSIM is shown in (5), where l > 0,m > 0, n > 0 are parameters used to adjust the relative

importance of three components. More detail introduction to SSIM can be found in [27].

The value range of the SSIM index is [0, 1]. The higher the index is, the more similar the

two images are. So we use 1−SSIM(x, y) in our loss function to measure the difference of

two images. And the MS-SSIM [26] is an enhanced variant of the SSIM index, so we also

introduce it into our loss function (We use MSSIM in functions to represent MS-SSIM).

L(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(6)

C(x, y) =
2θxθy + C2

θ2
x + θ2

y + C2

(7)

S(x, y) =
θxy + C3

θxθy + C3
(8)

SSIM(x, y) = [L(x, y)]l · [C(x, y)]m · [S(x, y)]n (9)

Considering pixel value differences and structure differences simultaneously, we put

MSE, SSIM and MS-SSIM together. So, the metric for the basic steganography network in

our framework is as below:

L(c, c′) = α(1 − SSIM(c, c′))

+(1 − α)(1 − MSSIM(c, c′))

+βMSE(c, c′) (10)

L(s, s′) = α(1 − SSIM(s, s ′))

+(1 − α)(1 − MSSIM(s, s ′))

+βMSE(s, s ′) (11)

L(c, c′, s, s′) = L(c, c′) + γL(s, s′) (12)

Where α and β are hyperparameters to weigh influences of three metrics and γ is a hyper-

parameter to trade off the quality of stego images and revealed secret images. Experiment

results in Section 4 will compare the performance of different loss functions.
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4 Experiments and results

In this section, we’ll introduce our experiment details and results. Firstly, the datasets we

used are LFW [15], Pascal VOC 2012 [6] and ImageNet [5]. The Labeled Faces in the Wild

(LFW) contains more than 13000 face images belonging to 1680 people collected from the

web. 10k images were selected from LFW and constituted 5k cover-secret image pairs as

our training set, others of LFW were as our validation set. Pascal VOC 2012 is a dataset

designed for object detection and semantic segmentation, we selected 16k images randomly

to constitute 8k cover-secret image pairs as our training set and selected 5k images from the

remaining part as our validation set. To further verify our model’s performance on the big

dataset, we did similar experiments on a subset of the ImageNet. Limited by the computing

power, we only used the validation set of ImageNet as our training set which contains 50k

images, these images constituted 25k cover-secret image pairs randomly. Then we selected

30k images from the test set of ImageNet as our validation set.

We used SSIM [27], Peak Signal to Noise Ration (PSNR) as metrics to measure our

model’s performance. It is widely accepted that the PSNR doesn’t correlate well with the

human’s perception of image quality [30], so we just used it as a reference. In addition, we

designed a CNN-based steganalyzer specially to measure our model’s security.

All settings of our model on three datasets were the same. All parameters of our model

were initialized by the Xavier initialization [9] and the initial learning rate was set as 1e-4

and was descended during training after 20 epochs. The batch size was set as 4 limited by the

computing power, and we used Adam to optimize our basic model. After several attempts,

we set α, β and γ of the loss function as 0.5, 0.3 and 0.85 respectively, which can trade

off the quality of stego images and revealed secret images very well. Because our secret

message is an image, so we don’t need to reveal out the secret image completely. Certainly,

you can set γ higher if you want better revealed secret images. The size of all images we

used is 256 × 256, and the capacity of our model is 8bpp (it is equivalent to that we hide a

pixel (8 bits) in a pixel).

As shown in Table 4, we do several experiments with different loss functions on the LFW,

the result demonstrates that our proposed mixed loss function is superior to others. Table 5

describes final results of our model on three datasets, we can see that the invisibility of

our model get a little improvement, while our model’s performance is superior to Atique’s

work intuitively as shown in Figs. 4, 5 and 6. Stego images generated by our model are

complete similar to corresponding cover images in semantic and color, this is not reflected

by SSIM. On the training set, the average SSIM index between stego images generated by

Table 4 We use several loss functions to train our basic model on LFW for 50 epochs

Loss function Stego-cover

PSNR (db)

Revealed-secret

PSNR (db)

Stego-cover

SSIM

Revealed-secret

SSIM

MSE 27.97 26.30 0.8592 0.8391

SSIM 21.71 22.76 0.8877 0.8466

MSE+SSIM 27.12 26.71 0.8921 0.8805

MSE+MS-SSIM 23.92 25.97 0.8287 0.8832

MSE+SSIM+MS-SSIM 26.72 25.97 0.9305 0.9160

MSE + SSIM represents a mixed loss of MSE and SSIM, others are similar, and revealed represents

revealed secret images. The results show the mixed loss of MSE, SSIM and MS-SSIM is superior than others
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Fig. 4 Two examples on LFW. The results show that our stego images are almost same as cover images,

while Atique’s stego images are yellowing. By analyzing residuals between stego images and cover images,

we can see that our stego images are more similar to cover images than Atique’s results

our model and their corresponding cover images is more than 0.985, and the average SSIM

index between revealed images and their corresponding secret images is more than 0.97. In

practice, we can use several cover images to conceal one secret image and choose the best

stego image to transfer on the Internet.

Fig. 5 Two examples on Pascal VOC12. We can see that our stego images are almost same as cover images,

while Atique’s stego images are yellowing. By analyzing residuals between stego images and cover images,

we can even distinguish the outline of secret images from Atique’s residual images, while our residual images

are blurrier
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Fig. 6 Two examples on ImageNet. The results show that our stego images are almost same as cover images,

while Atique’s stego images are yellowing. Residual images between stego images and cover images show

that our stego images are more similar to cover images than Atique’s results

On the other hand, by analyzing the detail difference between cover images and stego

images, we can see that our residual images are darker than Atique’s, which means that

our stego images are more similar to cover images and ISGAN has stronger invisibility.

Additionally, from Atique’s residual images we can even distinguish secret images’ outline,

while our residual images are blurrier. So these residual images can also prove that our

ISGAN is securer.

When training ISGAN, we referred some tricks from previous works [21]. We flipped

labels when training our basic model, replaced the ReLU activation function by the

LeakyReLU function, optimized the generator by Adam, optimized the steganalyzer by

SGD and applied the L2 normalization to inhibit overfitting. These tricks helped us to speed

up training and get better results.

To prove the improvement of the security produced by generative adversarial networks,

we designed a new experiment. We used a well-trained basic model to generate 5000 stego

images on LFW. These 5000 stego images and their corresponding cover images constituted

a tiny dataset. We designed a new CNN-based model as a binary classifier to train on the

tiny dataset. After training, we used this model to recognize stego images out from another

tiny dataset which contains 2000 stego images generated by ISGAN and their corresponding

cover images. Similar experiments were done on the other two datasets. The results can be

seen from Table 6. ISGAN strengthens indeed the security of our basic model. And with the

training going, the security of ISGAN is improving slowly.

5 Discussion and conclusion

Figure 7 shows the difference between revealed images and their corresponding secret

images. It shows that this kind of model cannot reveal out secret images completely. This is
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Table 6 Accuracy of CNN-based steganalysis model on tiny-datasets generated by basic model and ISGAN

training for different epochs

Dataset Basic Model ISGAN (50) ISGAN (100) ISGAN (150)

LFW 0.8305 0.8059 0.7887 0.7825

Pascal-VOC12 0.7953 0.769 0.756 0.7438

ImageNet 0.7814 0.7655 0.7462 0.7360

Along with the training going, we can see that the security of ISGAN is improving slowly

accepted as the information in the secret image is very redundant. However, it is unsuitable

for tasks which need to reveal the secret information out completely.

As we described before, ISGAN can conceal a gray secret image into a color cover image

with the same size excellently and generate stego images which are almost the same as

cover images in semantic and color. By means of the adversarial training, the security is

improved. In addition, experiment results demonstrate that our mixed loss function based

on SSIM can achieve the state-of-art performance on the steganography task.

In addition, our steganography is done in the spatial domain and stego images must be

lossless, otherwise some parts of the secret image will be lost. There may be methods to

address this problem. It doesn’t matter if the stego image is sightly lossy since the secret

image is inherently redundant. Some noise can be added into the stego images to simulate

the image loss caused by the transmission during training. Then our decoder network should

be modified to fit both the revealing process and the image enhancement process together.

In our future work, we’ll try to deal with this problem and improve our model’s robustness.

Fig. 7 Secret images’ residual image on three datasets. There are differences between original secret images

and our revealed secret images, which means that ISGAN is a lossy steganography
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