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Abstract

Pearl (2011) posed the question of whether confinement of clinical trial analyses involving
post-randomization variables to the principal stratum “framework” of Frangakis and Rubin (2002)
unduly restricts the scientific questions that can be asked. Frangakis and Rubin illustrated their
proposal through examples involving compliance, mediation, and surrogacy. Here the utility of the
principal stratum framework, and the potential outcomes formulation from which it derives, are
considered for these topics in the specific setting of the Women’s Health Initiative randomized,
placebo controlled trials of postmenopausal hormone therapy. It is argued that the essential issues
related to study reliability and causal interpretation involve the avoidance of context-specific
biases that are typically not closely related to whether or not treatment effects have a
representation in terms of potential outcomes contrasts. Also, while the questions posed within
principal strata may be of interest, some key questions in the hormone therapy setting would not
be addressed if restricted to contrasts within principal strata.
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1. INTRODUCTION 

The editors have invited my comments on Pearl (2011), which questions whether 
requiring a principal stratification (PS) formulation for analyses having a causal 
intention unduly restricts the scientific questions that can be addressed, relative to 
post-randomization variables in clinical trials.  The PS framework, proposed by 
Frankagis and Rubin (2002), aims to permit causal inference on such topics as 
adherence adjustment, treatment mediation, and surrogate outcomes, by using a 
potential outcomes formulation. As elaborated below, I share Pearl’s concern, and 
I would like to again (Dawid,2000) raise the more basic question of whether it is 
reasonable to reserve causal terminology for estimation procedures where the 
‘estimand’ can be expressed in terms of treatment contrasts between potential 
outcomes.  In raising this question, I have no interest in engendering ‘merciless 
philosophical discussion’ (Cox, 2000), nor in trying to dissuade the use of 
potential outcomes formulations for those who find such to be helpful.  Rather, I 
simply wish to express my view that whether or not an estimating function has a 
representation in terms of potential outcomes contrasts seems rather peripheral to 
the crucial issue of whether a study provides a fair comparison among treatment 
groups, and to the reliability and interpretation of study findings more generally  
To elaborate, I will consider the context of the Women’s Health Initiative (WHI) 
clinical trials of postmenopausal hormone therapy (HT).  

The WHI randomized, placebo-controlled trial of conjugated equine 
estrogens (E-alone, Premarin) enrolled 10,739 women who were post-
hysterectomy, and the corresponding randomized, placebo-controlled trial of this 
same estrogenic formulation plus 2.5 mg/day medroxyprogesterone acetate (E+P, 
Prempro) enrolled 16,608 women with uterus.  All women were postmenopausal 
and in the age range 50-79 when enrolled during 1993-1998, at 40 U.S. clinical 
centers.  When the HT trials were initiated, these preparations were being used by 
about 8 million (E-alone) and 6 million (E+P) women in the U.S. alone, mostly 
for vasomotor symptom control, and/or for presumed chronic disease risk 
reduction benefits.  The E+P trial was stopped early (Writing Group, 2002) when 
health risks were judged to exceed health benefits over a treatment period that 
averaged 5.6 years.  Health risks included an early elevation in coronary heart 
disease (CHD) incidence, the primary trial outcome targeted for risk reduction, 
and more sustained elevations in stroke, venous thromboembolism, and breast 
cancer.  The E-alone trial was also stopped early (Anderson et al, 2004) following 
an average 7.1-year treatment period, substantially because of a stroke elevation 
of similar magnitude to that observed for E+P, though overall health risks and 
benefits were rather balanced. 

The E+P trial results were a shock to practicing gynecologists and their 
patients, who had come to expect major benefits for CHD risk reduction, based on 
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observational studies and intermediate outcome clinical trials.  Shortly after the 
2002 trial report about 70% of E+P users in the U.S. stopped these medications, 
as did about 40% of E-alone users, with corresponding changes worldwide that 
were accompanied by regulatory warnings and revised professional society 
position statements.  The follow-up of trial women after their abrupt cessation of 
treatment revealed, for example, that the 2 to 3-fold breast cancer risk elevation, 
after about 5 years of E+P use, appeared to return to basal levels within a couple 
of years following cessation (Chlebowski et al, 2009). Under this scenario, the 
major change in clinical practice mentioned above can be projected to have led to 
about 15,000 fewer women being diagnosed with breast cancer in the U.S. each 
year since about 2004, a feature that is evident in national breast cancer incidence 
rate trends for postmenopausal women (e.g., Ravdin et al, 2007). 

How does one answer scientific questions concerning the effect of E-alone 
or E+P on the risk of specific clinical outcomes, such as CHD, stroke, venous 
thromboembolism, breast cancer, colorectal cancer, fractures, dementia, or 
concerning overall health benefits versus risks; and how do available statistical 
formulations and procedures support the development of reliable and interpretable 
answers? 

2. DATA ANALYSIS METHODS 

2.1 ITT Analysis in Randomized Controlled Trials 

Consider a clinical outcome Y, such as a possibly censored time to CHD 
diagnosis, and a randomization indicator Z (1-active, 0-placebo).  Randomization 
of the treatment assignment has a most important role in studies of the effects of Z 
on Y.  Randomization ensures the statistical independence between Z and all pre-
randomization disease risk factors, whether or not such factors are even 
recognized as such.  In short, randomization ensures a fair comparison between 
randomized groups, as is crucial to an argument of causation.  There are well-
established statistical methods (e.g., hazard ratio-based tests and estimators) for 
comparing randomization groups in terms of pertinent features of the 
corresponding distribution of Y. 

These methods have nearly always been developed by modeling 
observable quantities (Z, Y), though it seems likely that any such method could be 
shown to arise also from a formulation in terms of the conceptual potential 
outcomes Y(0) and Y(1) that would obtain if the study subject were assigned Z=0 
or Z=1 respectively.  Even for the intention-to-treat ( ITT) analysis in a 
randomized trial setting, however, some care may be needed to avoid ‘goats’ 
(Dawid, 2000) wherein an estimation procedure depends importantly on non-
identifiable parameters that characterize the association between Y(0) and Y(1). 
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The use of semiparametric or nonparametric models for (Y(0), Y(1)) (e.g., 
Robins, 1999) can presumably avoid this problem for the basic trial comparison. 
Hence, whether one uses a ‘classical’ or a potential outcomes formulation for the 
ITT analysis seems primarily a matter of taste, and one that doesn’t seem to be 
germane to the reliability and interpretation of trial results. 

A causal interpretation of the ITT analysis does require non-differential 
ascertainment of the outcome (Y) between the randomized groups.  This 
important requirement motivates various types of blindedness (or masking) that 
may be a part of a clinical trial protocol (e.g., blinding of study subjects, 
investigators, and outcomes adjudicators).  To avoid bias, it may be crucial that 
study activities that may lead to the identification of an outcome (e.g., procuring 
of self-report of hospitalizations or health events from study participants) be 
identical for the treatment groups being compared.  See Psaty and Prentice (2010) 
for a recent example where an open-label decision process as to which outcome 
packets to send for blinded adjudication may have compromised the validity of 
trial comparisons.  Even if all forms of blindedness are in place, the treatment 
itself may affect the ability to diagnose disease, or the timing of disease diagnosis.  
For example, E+P tends to increase breast density, perhaps delaying malignant 
breast tumor diagnosis even under a protocol that includes regular mammographic 
screening and other efforts to ensure equal breast cancer ascertainment between 
randomized groups. 

The challenge in working toward an argument of causation increases 
substantially when one moves away from the randomized controlled trial and its 
ITT analysis, whether in the direction of an observational study that may involve 
confounding, or in the direction of randomized trial analyses that condition in 
some manner on post-randomization intermediate outcome data. 

2.2 Observational Study Analyses 

The observational setting is quite central to population science research, since it is 
not practical to test many approaches to chronic disease prevention in randomized 
trials with clinical disease outcomes.  Observational studies need to implement 
bias avoidance procedures to the greatest extent possible, to support an argument 
of causation.  Of course, equal outcome ascertainment according to the primary 
‘exposure’ (Z) under study is as important, say, in a prospective cohort study as in 
the randomized trial, and may be difficult to achieve unless there is a explicit 
outcome ascertainment protocol and a context for its enforcement.  If, in addition, 
Z is difficult to measure, such as daily grams of fat consumption, or minutes per 
day of moderate physical activity, the reliability of exposure-disease associations 
may be compromised.  These important nutritional and physical activity 
epidemiology research areas may require the acquisition of objective exposure 

3

Prentice: Invited Commentary on Pearl and Principal Stratification



data, and related careful statistical modeling (e.g., Neuhouser et al, 2008), for 
reliable inference. 

Then there is the classical problem of confounding:  Important 
confounding factors may or may not be measured, or even recognized as such.  
Furthermore, there may be important confounders that are poorly measured (e.g., 
once again dietary or physical activity factors), and measured confounding factors 
need to be properly modeled and included in data analysis for bias avoidance. 

One can attempt to avoid confounding biases through modeling and 
analysis of Y given (Z, X) for some set of disease risk factors X, or by stratifying 
study subjects on propensity scores (Rosenbaum and Rubin, 1983) that estimate 
exposure probabilities Z given X.  The former targets association parameters 
conditionally on X, while the latter typically targets marginal association 
parameters.  A recent commentary by Vansteelandt and Keiding (2012) describes 
the close connections between a marginal structural modeling approach with 
potential outcomes, and classical disease rate standardization in epidemiology. 

The important issue for study interpretation is whether one can argue that 
comparisons of outcomes Y across categories of Z have been rendered ‘fair’ by 
virtue of controlling for X.  Unfortunately, one is not in a position to judge 
whether this objective has been achieved in a particular application, though it 
certainly helps if there is a substantial knowledge base concerning disease risk 
factors and/or concerning the characteristics related to the exposure Z.  Whether 
or not one formulates questions about the association between Y and Z on these 
observable variables, or on the potential outcomes (Y(0), Y(1)), does not seem 
central to the reliability and interpretation of the associations that emerge.  Rather, 
crucial statistical issues, for a study to be persuasive as to Z causing Y, are the 
extent to which confounding has been controlled, the quality of the 
exposure/treatment data Z, and the extent to which outcome ascertainment is 
independent of (Z, X). Additional arguments concerning biological plausibility 
and the temporality of exposure and disease may also be needed. 

Settings in which both randomized trial and prospective cohort data are 
available for a given treatment/exposure provide an opportunity to compare 
findings, and to compare associated biases.  The WHI includes a prospective 
cohort study among 93,676 women drawn from the same catchment populations 
as the clinical trial, with much commonality in outcome and other data 
ascertainment, including a personal interview to ascertain hormone therapy 
histories at baseline followed by annual updates.  We undertook a series of 
analyses of the individual-level data from the WHI HT trials and from this 
Observational Study (OS) cohort, toward understanding the apparently major 
differences between the HT trial and OS findings (e.g., Prentice et al, 2009a).  For 
CHD, after controlling for a set of standard risk factors, and allowing the hazard 
ratio to vary as a function of duration of HT use, there was in fact reasonable 
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agreement between the two data sources.  Observational studies had collectively 
missed a rather dramatic increase in CHD incidence in the early months of HT use 
(especially for E+P), perhaps because of an undue focus on proportional hazards 
models, in conjunction with the typical inclusion of many women who were 
already some years into an episode of HT use at cohort enrollment.  For breast 
cancer, the hazard ratio increased strongly with duration of use for E+P, but also 
was comparatively higher among women who started HT at or soon after the 
menopause.  Trial and cohort analyses agreed well for both E+P and E-alone after 
taking account of these timing issues, along with conventional potential 
confounding factors and data on mammographic screening during cohort follow-
up.  For some other outcomes, however, including stroke, colorectal cancer, hip 
fracture, and total mortality, important differences between HT trial and OS 
cohort study results remained following these analytic maneuvers.  These 
differences may reflect the need for confounding control efforts that are more 
comprehensive than is typical in epidemiologic practice, for these outcomes. 

3. CLINICAL TRIALS AND POST-RANDOMIZATION VARIABLES 

3.1 Adherence Adjustment 

Suppose now that X is a post-randomization variate, or change from ‘baseline’ in 
some such variate, in a randomized controlled trial, and that one wishes to 
estimate aspects of the dependence of Y on Z, after controlling in some fashion 
for X.  In proposing their principal stratification approach, Frankagis and Rubin 
(2002) list motivational special cases in which X involves measurements to assess 
adherence to the assigned treatment Z, intermediate variables that may help to 
understand pathways by which Z affects Y, and surrogate outcomes where X may 
be able to replace Y the evaluation of the effects of Z on Y. 

The randomized treatment assignment provides an important advantage 
for these analyses as well, since it ensures a fair comparison between the 
distributions of (X, Y) between randomization groups, that is not confounded by 
pre-randomization factors.  Hence, distributions, such as that for Y given (X, Z) 
that can be derived from that for (X, Y) given Z can also be fairly compared.  
However, related parameter estimates may not address some questions of 
scientific interest, necessitating additional assumptions and analytic methods. 

For example, X may be a process that assesses treatment adherence (e.g., 
pill-taking) over time since randomization, while Y is a time-to-disease 
occurrence variate.  An evaluation of the dependence of Y on Z among study 
subjects meeting a certain adherence criterion is operationally straightforward 
(assuming non-differential ascertainment of (X, Y) between randomized groups), 
but lack of adherence may arise for quite different reasons between the treatment 
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groups.  Furthermore, there may be a desire to compare the effects of Z on Y in 
the trial cohort in a ‘counterfactual’ setting in which full adherence was somehow 
achieved. 

The HT trials provide a setting with rather complex adherence issues.  
Even though women in the community tended to use these preparations typically 
for just a few years, there was a desire to conduct a trial with a treatment period of 
sufficient duration for benefits and risks of a longer-term exposure to become 
apparent.  The trial protocol included a complex program of dosage modification, 
or temporary stoppage, for women who were experiencing certain side effects,, or 
permanent stoppage in the face of certain safety issues.  The blinded assignment 
was retained for both participant and provider to the extent practical.  When the 
trials got underway, it soon became evident (to an unblinded data and safety 
monitoring group) that there was a high incidence of vaginal bleeding with E+P 
(e.g., 30-40% in first year of use), and that this issue continued for some years for 
a fraction of participating women.  Similarly, there was a substantially elevated 
incidence of breast tenderness in the early years of use of either E-alone or E+P.  
On the other hand, there was the need to be attentive to sustained vaginal bleeding 
in the placebo group, as this may be suggestive of uterine cancer, resulting in the 
need to unblind the clinic  gynecologists for some small fraction of women.  
Other reasons for non-adherence related to intercurrent illnesses that interfered 
with continued research project participation, and transportation issues related to 
clinic visits where pills were dispensed, among others.  Pill-taking adherence was 
strongly time-dependent.  By the time the E+P trial was stopped about 40-45% of 
participating women had failed to satisfy an 80% pill-taking criterion over the 
preceding year at at least one point in time, in both the treatment and placebo 
groups. 

A principal stratification approach (see also Imbens and Rubin, 1997) to 
adherence-adjusted analyses would presumably aim to make a treatment 
comparison among women who would be adherent (e.g., ≥80% of pills taken for 
each year during the trial follow-up period), whether assigned to active treatment 
of placebo.  Since reasons for non-adherence were rather different between 
treatment groups, and 40-45% of women in either group would fail to satisfy a 
treatment group-specific adherence criterion, such a ‘complier group’ assessment 
would presumably involve less than half of the study target population.  
Nevertheless, if a ‘complier principal stratum’ was identifiable, the resulting 
comparison would clearly be of interest. However, it would not address some 
questions of public health interest concerning the full adherence benefits and risks 
of HT in the broader target population in which the WHI trials were conducted.  
The lack of identifiability of this principal stratum, along with the need to 
‘integrate out’ the missing outcomes for both the intermediate X and the main 
outcome Y, raises questions about the properties of any resulting inference, which 
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if sheep-like (Dawid, 2000) may entail sensitivity assumptions that imply an 
imprecise inference, or if goat-like may entail influential assumptions on the joint 
distribution for potential outcomes (X(0), Y(0), X(1), Y(1)) that may complicate 
interpretation. 

Instead, a modeling approach involving observable quantities has been 
employed in HT trial adherence-adjusted analyses to date.  These involve building 
a treatment group-specific adherence model for the probability of pill-taking 
adherence through each follow-up year, followed by time-dependent inverse 
adherence probability weighting in the Cox model partial likelihood score 
equation for hazard ratio parameter estimation (e.g., Chlebowski et al, 2009).  
This procedure was implemented by censoring the failure time response variable 
(Y) for a woman six months after she first becomes non-adherent according to the 
above pill-taking criterion. The six-month period was included in an attempt to 
avoid censoring the follow-up of women who adhered to study pills until a short 
time prior to diagnosis, during which time diagnosis-related procedures may have 
interfered with continued adherence.  This approach allows women to contribute 
to the data analysis if adherent during the early years of trial follow-up, a feature 
that presumably could be incorporated into a PS analysis, though perhaps at the 
expense of abrogating the favorable ‘cardinality’ feature mentioned by Pearl 
(2011), since the number of principal strata may need to become large in an 
attempt to fully use available data.  The inverse adherence probability analyses, 
using models for observable data only, include contributions from women who 
may not have been adherent if assigned to the other treatment group, and hence 
have a basic difference from PS ‘complier’ analyses.  The reliability and 
interpretation of these ‘classical’ adherence-adjusted analyses hence depends on 
an assumption of a valid adherence probability model over the trial follow-up 
period, a situation analogous to confounding control modeling efforts in 
observational settings.  The fact that the adherence probability model can depend 
on post-randomization data (e.g., vaginal bleeding, breast changes, or other 
symptoms experienced by women during hormone therapy trial follow-up) 
provides a framework for enhancing model completeness and validity. The 
inverse adherence probability weighting allows women having a certain symptom 
profile who remain adherent to ‘represent’ those having a similar profile who do 
not, thereby providing a  simple attempt to estimate treatment effect parameters in 
the entire target population if all participating women had been willing and able to 
meet adherence criteria.  This and a PS complier analysis each depends on 
assumptions that cannot be fully tested or justified, and the assumptions differ as 
befits their different aims.  The PS analysis may lead to sensitivity analysis and 
imprecise inferences, which could be viewed as desirable if it prevents over-
interpretation.  The inverse adherence probability weighting approach can be 
expected to lead to inferences that became more strongly justified as additional 
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variates are used to build adherence probability models.  The two approaches can 
be viewed as complementary since they address different aspects of adherence-
adjusted analyses. 

3.2 Interacting and Mediating Variables 

Although good clinical trial reporting practice would avoid undue data 
fragmentation into subset analyses, treatment effects can typically be expected to 
vary with some study subject characteristics, on any particular scale of treatment 
assessment.  Statistical models for ratios (e.g., hazard ratios or odds ratios) may 
have distinct advantages in frequently leading to  parsimonious models, compared 
to corresponding models for absolute risks.  Analyses to identify interacting 
factors in a clinical trial context are much facilitated by randomization.  For 
example, because of the orthogonality between Z and pre-treatment factors X, 
interaction analyses may be quite robust to classical measurement error in the 
ascertainment of X.  Also, if Y represents the incidence of a fairly rare disease, 
analyses of treatment effects within subsets may be able to be based on efficient 
case-only analyses in which X needs to be assessed only for individuals who turn 
out to develop the study disease. See Prentice et al, 2009b, for an HT trial 
example where X is a high-dimensional genotype. 

The situation is quite different, however, when it comes to mediation 
analyses that aim to identify the principal biological pathways whereby Z may 
affect Y.  In this context X may, for example, involve short-term events that are 
influenced by treatment, or changes from baseline in blood-based biomarkers.  
Such intermediate variables may be strongly associated with Z, making it 
challenging to distinguish the role of X and Z in their association with Y.  This is 
especially the case if X is subject to even a modest amount of measurement error 
since analytic procedures that ignore measurement error will tend to underweight  
the role of X, given that the randomization assignment Z is known without error. 

A typical mediation analyses based on observable quantities would proceed 
by estimating a treatment effect in the absence of the potential mediator, and would 
examine the extent to which such effect is attenuated toward the null when X is 
added to the analytic model.  For example, certain hazard ratio parameters may 
characterize the effect of Z on a disease incidence time Y, and to assess mediation, 
one compares such parameters without and with the inclusion of X in the hazard 
ratio model.  A substantial effort of this type was mounted in the HT trials.  This 
included a cardiovascular disease biomarker study that measured blood biomarkers 
at baseline and 1-year post-randomization, for women who developed 
cardiovascular disease beyond 1 year following randomization and 1-to-1matched 
controls.  A substantial list of biomarkers was considered with a focus on markers 
of inflammation, coagulation/thrombosis, and lipids/lipoproteins.  For example, 
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many of these markers related strongly to the risk of CHD and stroke in the WHI 
study population and were affected by HT use, but none of those evaluated 
appeared to mediate the observed HT effects on these diseases (Kooperberg et al, 
2007; Rossouw et al, 2008).  For example, E+P and E-alone have apparently 
favorable effects on high-density (HDL) and low-density lipoprotein (LDL) 
cholesterol concentrations, and unfavorable effects on C-reactive protein (CRP), 
each of which is regarded as a risk factor for cardiovascular disease.  Additional 
efforts have looked more agnostically in a high-dimensional fashion at changes to 
the plasma proteome following HT use, with a focus on changes that also related to 
CHD or stroke risk.  Both E-alone and E+P were found to have a profound effect on 
plasma protein concentrations in multiple pathways relevant to observed clinical 
effects (Pitteri et al, 2010), and some of the affected proteins were found to be risk 
markers for CHD or stroke (Prentice et al, 2010), but to date, no important 
mediators on HT effects in these diseases have been identified. 

It seems that the crucial barrier to progress, in this continuing work, is that 
of biomarker process modeling and measurement error.  Observed biomarker 
values may be subject to non-trivial technical measurement error and, 
importantly, the biomarker functions that relate to cardiovascular disease risk may 
involve, say, average values over a period of some years.  Also, the underlying 
‘latent’ biomarker changes of interest may correlate very strongly with treatment 
assignment making it difficult to distinguish Z from the underlying biomarker 
changes, X, in relation to Y, especially on the basis of a limited set of 
measurements on the biomarker process (e.g., from blood specimens at baseline 
and 1-year only in the HT trials).  Hence, it may not be surprising that the 
measured biomarker change does not appear to mediate in this type of context 
(see Prentice and Zhao, 2011, for further discussion).  These biomarker 
measurement or modeling issues have not been carefully addressed in the 
statistical literature, and this lacking could substantially reduce the reliability and 
usefulness of mediation analyses efforts to date, in contexts such as the WHI HT 
trials. Of course, biased mediation analyses may prevent identification of the 
important biological pathways, perhaps leading to additional unnecessary research 
while deterring the development of related treatments that may have an improved 
health benefit versus risk profile. 

One could consider a PS approach to studying the extent to which, say, 
changes in HDL or LDL cholesterol or CRP help to explain observed E-alone or 
E+P effects on CHD or stroke.  Doing so would presumably involve strata 
defined by categories of change in some or all such variables under both the 
active treatment and under placebo.  For example, one could entertain a stratum 
formed by women whose measured HDL would increase by more than 10 mg/dl 
and measured CRP would increase by more than 50% if assigned to active HT, 
and for whom measured HDL would not change by as much as 10 mg/dl and 
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measured CRP would not change by as much as 20% if assigned to placebo.  
Clearly such strata would need to be rather narrowly defined if the within-stratum 
treatment effect is to be viewed as controlled for the potential biomarker changes, 
and some means of combining treatment contrast information across principal 
strata may be needed for an inference of useful precision.  Such a PS approach 
would not acknowledge the biomarker modeling and measurement issues 
discussed in the preceding paragraph.  It seems that the PS approach would 
require considerable further development before its utility for mediation analysis, 
in a context such as the HT trials, could be demonstrated. 

3.3 Surrogate Outcomes 

There has been a longstanding interest among clinical investigators in identifying 
an intermediate outcome variable X that becomes evident earlier or with greater 
frequency than does the ‘true’ outcome Y, for the purpose of evaluating the 
effects of a treatment Z, and that could substitute for Y for treatment effect 
evaluation.  Since treatments often have multiple effects, some intended and some 
not, a putative surrogate for a particular Y may be unlikely to serve as such for 
other clinical outcomes.  Also, mechanisms and pathways can vary substantially 
among treatments, even if they are in the same general class, so the applicability 
of an X, that may seem to satisfy surrogacy criteria in a given trial, to a future trial 
with a somewhat different treatment, or even the same treatment in a different 
population, needs to be carefully considered and justified. 

To provide concreteness to a discussion of surrogate outcomes and 
criteria, I proposed (Prentice, 1989) that the term ‘surrogate outcome’ for a 
specific outcome Y and treatment Z be reserved for outcomes X for which the 
null hypothesis of no effect of Z on X was equivalent to that of no effect of Z on 
Y.  I then translated this definition into mathematical conditions on the joint 
distribution of (X, Y) given Z, in the typical setting where Y is a time to response 
variates and X is a stochastic process recorded over trial follow-up.  In present 
notation, for X independent of Z to imply Y independent of Z, it is sufficient that 

(i) Y given (X, Z) be independent of Z. 
  

To see this, using f generically for distribution and E for expectation, one can 
write 

    f(Y|Z) = EX|Z {f(X,Y|Z} 
      = EX|Z {f(Y|X,Z) f(X|Z)}, 
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so f(X|Z) independent of Z and f(Y|X,Z) independent of Z, implies f(Y|Z) 
independent of Z.  Hence, if Y depends on Z then X must also depend on Z under 
(i).  This seems to be the intent of a property that Frangakis and Rubin (2002) 
label ‘causal necessity’.  However, they argue that (i) is insufficient for causal 
necessity, evidently because it doesn’t have an expression in general in terms of a 
potential outcome contrast.  They then label variables X satisfying (i) as 
‘statistical surrogates’, whereas those satisfying a corresponding criterion to (i) 
with X replaced by potential outcomes X(0) and X(1) are labeled as ‘principal 
surrogates’.  The randomized trial assignment provides (assuming non-differential 
outcome ascertainment) a causal basis for a test of null hypothesis concerning the 
effect of Z on X, so that if null hypotheses for Z on X and Z on Y coincide, one 
induces a causal basis for the null hypothesis concerning the effects of Z on Y.  
While one can debate whether the equivalence of null hypothesis is the desired 
surrogate outcome definition, it is not clear what alternative definition Frangakis 
and Rubin (2002) have in mind that leads to their principal surrogate criterion.   

Equivalence of the null hypotheses concerning effects on X and Y also 
requires an implication in the other direction, which may be more demanding.  
That is, a dependence of a short-term variable X on Z may exist, without a 
corresponding dependence of Y on Z.  Conditions beyond (i) that ensure that Y 
independent of Z implies X independent of Z (Prentice, 1989) are (ii) Y depends 
on X and (iii) any dependence of Y given (X, Z) on Z not average out over the 
distribution of X given Z.  Condition (ii) is described as ‘statistical 
generalizability’ by Frangakis and Rubin (2002). Conditions (i)-(iii) combine to 
constitute my proposed surrogate outcome definition. 

In a recent paper Li et al (2011) discuss the application of the PS 
framework to surrogacy issues.  They note that ‘assumption free analysis is 
impossible…because of the large ‘missing data’ problem implied by the 
unobserved potential outcomes’, and that additional assumptions are needed for a 
useful inference.  One such assumption, so-called monotonicity, which assumes 
that it is impossible for anyone to benefit more from the control than the active 
treatment, would typically undermine the need for and ethics of a randomized 
trial. 

The major challenge in applying the ‘equivalence of null hypotheses’ 
definition of surrogate outcomes in any particular trial context is that of justifying 
that condition (i) holds in the study context, even approximately.  For this 
stringent condition to be plausible, it may be necessary to require X to be high-
dimensional and to involve measurements over much of the trial follow-up period 
(Prentice, 2009).  An attempt to apply principal strata in that context would 
presumably require a large number of strata based on X(0) and X(1). 
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In the WHI HT trial, in spite of well-characterized cohorts with many 
biomarker substudies, there are presently no known credible surrogate outcomes 
for any of the major clinical outcomes. 

4. CONCLUSION 

In biomedical research settings, such as the WHI HT trials, investigators are often 
presenting arguments toward the causality of a treatment of exposure Z in relation 
to an outcome Y.  The persuasiveness of the argument depends on the ability of 
the study design, conduct, and analysis to avoid recognized sources of potential 
bias.  Such biases may involve differential outcome ascertainment as a function of 
Z; systematic or random biases in measuring Z itself; and the comprehensiveness 
or lack thereof of measurement and modeling of pre-randomization or post-
randomization measurements X, that may need to be controlled to address specific 
questions.  The question of whether or not estimating functions for treatment 
contrasts have a representation as contrasts between potential outcomes (Y(0), 
Y(1)) and (X(0), X(1)) seems peripheral to these crucial bias avoidance issues, 
and it seems unwise to label analytic procedures as causal or not based on whether 
such a representation is available.  In particular, the principal stratification 
framework seems to provide a too narrow context for data analytic procedures 
that aim to support causation arguments in clinical trials when post-randomization 
variables are involved. 

In response to Reader Reaction Pearl (2011) indicates that restriction to 
the PS framework unduly confines the questions that can be addressed in all PS 
papers that he has read, with the exception of Sjolander et al (2010) on hormone 
therapy.  This paper examines prognosis following a breast cancer diagnosis and 
defines principal strata according to the non-identifiable feature of whether or not 
the tumor was caused by hormone therapy.  They conclude, from their 
observational data sources, that women whose tumors are caused by HT have 
comparable better prognosis.  In contrast, data from the WHI E+P trial 
(Chlebowski et al, 2010), with its randomized HT assignment and carefully 
controlled clinical context, indicate that women using E+P not only have a higher 
incidence of invasive breast tumors, but such tumors are of higher stage of 
diagnosis.  Though the data are not extensive, breast cancer mortality is evidently 
also increased and survival since diagnosis reduced in the active treatment versus 
the placebo group.  While the basis for this observational versus clinical trial 
discrepancy needs to be investigated, it illustrates the major challenge in obtaining 
reliable information, and in establishing causation, for this type of treatment effect 
evaluation.  The use of certain types of data analysis methods alone is by no 
means sufficient to merit the ‘causal’ label. 
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