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Positivity, or the experimental treatment assignment assumption, requires that there be both exposed and
unexposed participants at every combination of the values of the observed confounders in the population under
study. Positivity is essential for inference but is often overlooked in practice by epidemiologists. This issue of the
Journal includes 2 articles featuring discussions related to positivity. Here the authors define positivity, distinguish
between deterministic and random positivity, and discuss the 2 relevant papers in this issue. In addition, the
commentators illustrate positivity in simple 2 3 2 tables, as well as detail some ways in which epidemiologists
may examine their data for nonpositivity and deal with violations of positivity in practice.
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Positivity (1, 2), or the experimental treatment assign-
ment assumption (3), is a necessary assumption for causal
inference in observational data, along with consistency (4),
exchangeability (i.e., no unmeasured confounding and no
selection bias), no measurement error, no interference, and
correct model specification. Positivity requires that there be
both exposed and unexposed participants at every combina-
tion of the values of the observed confounder(s) in the pop-
ulation under study. Formally, for a discrete-valued
exposure X and an arbitrary confounder vector Z, if
f ðZÞ 6¼ 0 then PrðX ¼ xj ZÞ > 0 for all x 2 X, where f(�)
is the probability density function. The prior definition ex-
tends to time-varying exposures and confounders (2). Posi-
tivity is present by design in randomized controlled trials, in
which every trial participant has a known probability of each
treatment under study (often one-half).

In observational data, violations of positivity may be de-
terministic or random. A deterministic violation is one in
which participants at 1 or more levels of the confounders
cannot receive at least 1 level of the exposure. For example,
because men lack a uterus, they cannot receive a hysterec-
tomy in a study of the effects of hysterectomy on mortality.
For other examples of deterministic nonpositivity, see Cole
and Hernán (2). In contrast, random violations of positivity
occur when, at 1 or more levels of the confounders, no one
happens to be observed at 1 or more levels of the exposure.
Random nonpositivity may be further classified by whether

or not the nonpositivity is ‘‘surrounded’’ by regions of pos-
itivity. For example, consider that older age is associated
with aspirin use and myocardial infarction; it is plausible
that a small observational study of daily aspirin intake for
prevention of myocardial infarction might show the expo-
sure pattern depicted in Table 1, section A. By chance, no
one aged 31–35 years was exposed. Also by chance, no one
aged 41–45 years was exposed. Both are examples of ran-
dom nonpositivity, but an investigator might be more com-
fortable interpolating to ages 41–45 years than extrapolating
to ages 31–35 years.

The issue of positivity is clearly important when attempt-
ing to make inferences from observational data. However,
the assumption is rarely assessed in biomedical research (3).
In this issue of the Journal, 2 articles related to birth out-
comes feature relevant discussions (5, 6). In the former,
Cheng et al. (5) examine the association between fetal po-
sition and perinatal outcomes. They observe that an analysis
which matches on the propensity score excludes persons
who do not match and thus avoids extrapolation, albeit at
the cost of redefining the estimand to be the effect in persons
who match rather than the total study population (5). In the
latter, Messer et al. (6) examine the independent effects of
socioeconomic status and race on preterm delivery in 2
North Carolina counties. Messer et al. find that in these data
there were (almost) no poor, all-white census tracts and
(almost) no rich, all-black census tracts. A naive multilevel
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logistic regression model gave no hint of this lack of posi-
tivity and provided estimates which smoothed over these
empty cells (6). The authors of both papers are to be com-
mended for examining this often-ignored assumption in
their analyses.

Cheng et al. note that for some levels of the confounders,
the exposure ‘‘is empirically deterministic. . .so it makes
little sense to determine the effect of [exposure] within those
groups’’ (5, p. 656). We agree with the authors that if expo-
sure is determined for some levels of the confounders, in-
ference may be ill-advised because of nonpositivity.
However, as they describe, for some levels of the con-
founders the probability of the outcome (not the exposure)
becomes a certainty (see Figures 1 and 2 in Cheng et al. (5)).
Admirably, the authors present the risk ratio as a function of

the propensity score, showing effect measure modification
graphically in their Appendix Figure. While important,
a lack of variability in the outcome is not a concern of
positivity.

A simple example, presented in Table 2, highlights the
distinction between nonpositivity and the challenge de-
scribed by Cheng et al. (5). In section A of Table 2, we show
data in which the crude risk difference for an exposure X and
an outcome Y is confounded by Z, and there are participants
at both levels of X within both strata of Z: there is positivity.
In section B of Table 2, we show a situation similar to that
described by Cheng et al., in which there are participants at
both levels of the exposure X within both strata of Z (again,
positivity) but participants at only 1 level of the outcome Y
within 1 stratum of Z (i.e., a zero column when Z¼ 0). Thus,
stratum-specific risk differences by Z in Table 2, section B,
show a risk difference of 0.00 for Z ¼ 0 and 0.05 for Z ¼ 1;
the effect of X on Y is nonuniform by strata of Z. However,
both quantities are estimable. Lastly, in section C of Table 2,
we show an example of nonpositivity. Here, there are par-
ticipants at both levels of Y within all strata of Z, but when
Z¼ 0 there are no persons with X¼ 1. The risk difference in
section C is inestimable in the Z ¼ 0 stratum because esti-
mation requires division by 0. Therefore, the concern ex-
pressed in section B of the table is orthogonal (in a fashion)
to the issue of positivity.

How concerned should the practicing epidemiologist be
with positivity in epidemiologic analysis? It seems clear that
deterministic violations of positivity are of serious concern;

Table 1. Hypothetical Data for Exposure to Daily Aspirin Use by

Age in A) 5-Year Age Categories and B) 10-Year Age Categories,

Showing 2 Types of Random Nonpositivity

Exposure Status Age Group, years

A) 31–35 36–40 41–45 46–50 51–55 56–60

Exposed 0 2 0 3 5 7

Unexposed 9 7 9 6 4 2

B) 31–40 41–50 51–60

Exposed 2 3 12

Unexposed 16 15 6

Table 2. Examples of Data Illustrating A) Positivity With a Uniform Risk Difference, B) Positivity With a Risk

Difference Across Confounder Strata, and C) Nonpositivitya

Panel Stratum-Specific Data Total Data

A)

Z 0 1 All Z

Y 1 0 1 0 1 0

X
1 20 180 160 640 180 820

0 40 760 30 170 70 930

RD (Wald 95% CI) 0.05 (0.01, 0.09) 0.05 (–0.01, 0.11) 0.11 (0.08, 0.14)

B)

Z 0 1 All Z

Y 1 0 1 0 1 0

X
1 0 200 160 640 160 840

0 0 800 30 170 30 970

RD (Wald 95% CI) 0.00 (–0.01, 0.01)b 0.05 (–0.01, 0.11) 0.13 (0.10, 0.16)

C)

Z 0 1 All Z

Y 1 0 1 0 1 0

X
1 0 0 160 640 160 640

0 60 940 30 170 90 1110

RD (Wald 95% CI) NA (NA) 0.05 (–0.01, 0.11) 0.125 (0.09, 0.16)

Abbreviations: CI, confidence interval; NA, not applicable; RD, risk difference.
a In all 3 sections of the table,X is the exposure,Y is the outcome, and Z is a confounder. AsymptoticWald 95%CIs

were calculated with SAS 9.2 (SAS Institute Inc., Cary, North Carolina).
b 0.5 was added to both 0 cells to calculate 95% confidence intervals for a valid point estimate of 0.00.
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as in the case of assessing the effect of hysterectomy in men,
they can lead to nonsensical statements of effect. Practicing
epidemiologists should strive to avoid such deterministic
violations of positivity, primarily through careful statement
of the question at hand.

Random violations of positivity are more subtle and more
difficult to assess. Messer et al. (6) discovered nonpositivity
using a tabular approach in their analysis.When it is feasible,
such a tabular approach quickly reveals empty cells. Contin-
uous data can make such a tabular approach impractical,
however. One alternative is to examine continuous variables
for positivity by categories or quantiles (7) and proceed as
with categorical variables. Such an approach was undertaken
by Messer et al. (6), as well as by Cole and Hernán (2).
However, choices about how to categorize a continuous vari-
able can create or dispel randomviolations of positivity, with-
out changing the underlying data, as Messer et al. point out in
their discussion (6). In a population with large numbers of
exposed participants, we might feel confident that modeling
age in 10-year categories would result in exposed and unex-
posed persons in every category; but if we modeled age more
finely (in 5-year categories, for example), we are more likely
to find values of age at which positivity is violated. In truly
continuousdata, randomviolationsofpositivitybecomeacer-
tainty. In Table 1, for example, the observed nonpositivity
(section A of the table) is eliminated when our age categories
are coarsened to 31–40, 41–50, and 51–60 years (section B).
More complicated still is the situation in which positivity is
violated only in certain combinations of 2, 3, or even more
confounders. In such settings, tabular analysis may be intrac-
table even without continuous confounders.

Some have argued that positivity should be assessed only
after a final model has been decided upon, so that important
confounders are not ignored (3). We prefer to consider the
tradeoff between bias due to positivity violations and bias
due to confounding when deciding upon a final model (2).
For instance, one may wish to incur a small amount of
confounding bias to ensure against a large amount of bias
due to nonpositivity, or vice versa. This is illustrated in
Table 1. The categorization of age in Table 1, section A,
would finely control for age but exhibits nonpositivity. Con-
versely, the coarser categorization of age in Table 1, section
B, may result in increased residual confounding by age but
does not suffer from nonpositivity. Methodological ap-
proaches are needed in order to weigh the resultant biases
and make such decisions.

Once detected, the epidemiologist can deal with viola-
tions of positivity in several ways. The simplest solution is
restriction. While easy and effective, restriction has the ef-
fect of altering the target population for inference. This
method is the one implicitly favored by epidemiologists
using propensity scores, who match or ‘‘trim’’ their data
to avoid regions of propensity score nonoverlap. Another
approach, one that is most appropriate for random violations
of positivity that are surrounded by regions in which posi-
tivity holds, is to interpolate to areas of nonpositivity.

One possible approach to dealing with questions of pos-
itivity is as follows. We first ask whether there are covariates
V for which PrðX ¼ xj VÞ � 0. If not, there are no potential
problems with positivity. If so, then for variables V that are

not confounders, one should look to the literature on expo-
sure opportunity (8–10). For confounders Z 4 V that are
not time-varying, the best method for dealing with nonpo-
sitivity depends on the circumstances. If the nonpositivity is
both random and internal (e.g., positivity at ages 36–40 and
46–50 years but not at ages 41–45 years), cautious interpo-
lation or smoothing over the region of nonpositivity is rea-
sonable. In such cases, restriction may prove more difficult,
not least due to clearly defining the altered estimand. If the
nonpositivity is random and external (e.g., no positivity un-
der age 36 years), extrapolation is possible but often ill-
advised. In such cases, restricting inference to persons aged
36 years or more may be a prudent approach. If the non-
positivity is deterministic, however, restriction can be rec-
ommended as an appropriate approach in many cases.
Lastly, nonpositivity by a time-varying confounder poses
an analytic challenge. In such cases, g-estimation of a struc-
tural nested model (11) or g-computation (12) may be a way
forward, but more research is needed.

In conclusion, issues of positivity are as old as observa-
tional data analysis but have been formalized only relatively
recently. Hopefully, recent formalization will lead toward
better understanding of and accounting for positivity in ep-
idemiologic research.
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