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Abstract: We give suggestions for the presentation of research results from frequentist, information-theoretic, and 

Bayesian analysis paradigms, followed by several general suggestions. The information-theoretic and Bayesian 
methods offer alternative approaches to data analysis and inference compared to traditionally used methods. 

Guidance is lacking on the presentation of results under these alternative procedures and on nontesting aspects 
of classical frequentist methods of statistical analysis. Null hypothesis testing has come under intense criticism. We 

recommend less reporting of the results of statistical tests of null hypotheses in cases where the null is surely false 

anyway, or where the null hypothesis is of little interest to science or management. 
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guidelines. 

For many years, researchers have relied heavily 
on testing null hypotheses in the analysis of fish- 

eries and wildlife research data. For example, an 

average of 42 P-values testing the statistical signif- 
icance of null hypotheses was reported for arti- 

cles in The Journal of Wildlife Management during 
1994-1998 (Anderson et al. 2000). This analysis 

paradigm has been challenged (Cherry 1998, 

Johnson 1999), and alternative approaches have 

been offered (Burnham and Anderson 2001). 

The simplest alternative is to employ a variety of 

classical frequentist methods (e.g., analysis of 

variance or covariance, or regression) that focus 

on the estimation of effect size and measures of 

its precision, rather than on statistical tests, P-val- 

ues and arbitrary, dichotomous statements about 

statistical significance or lack thereof. Estimated 

effect sizes (e.g., the difference between the esti- 

mated treatment and control means) are the 

results useful in future meta-analysis (Hedges 
and Olkin 1985), while P-values are almost useless 

in these important syntheses. A second alterna- 

tive is relatively new and based on criteria that 

estimate Kullback-Leibler information loss (Kull- 

back and Leibler 1951). These information-theo- 

retic approaches allow a ranking of various re- 
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search hypotheses (represented by models) and 

several quantities can be computed to estimate a 

formal strength of evidence for alternative 

hypotheses. Finally, methods based on Bayes' 
theorem have become useful in applied sciences 

due mostly to advances in computer technology 

(Gelman et al. 1995). 

Over the years, standard methods for present- 

ing results from statistical hypothesis tests have 

evolved. The Wildlife Society (1995a,b), for 

example, addressed Type II errors, statistical 

power, and related issues. However, articles by 

Cherry (1998),Johnson (1999), and Anderson et 

al. (2000) provide reason to reflect on how re- 

search results are best presented. Anderson et al. 

(2000) estimated that 47% of the P-values report- 
ed recently in The Journal of Wildlife Management 
were naked (i.e., only the P-value is presented 
with a statement about its significance or lack of 

significance, without estimated effect size or even 

the sign of the difference being provided). 

Reporting of such results provides no informa- 

tion and is thus without meaning. Perhaps more 

importantly, there are thousands of null hypothe- 
ses tested and reported each year in biological 

journals that are clearly false on simple a priori 

grounds (Johnson 1999). These are called "silly 
nulls" and account for over 90% of the null 

hypotheses tested in Ecology and The Journal of 

Wildlife Management (Anderson et al. 2000). We 

seem to be failing by addressing so many trivial 
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issues in theoretical and applied ecology. Articles 

that employ silly nulls and statistical tests of 

hypotheses known to be false severely retard 

progress in our understanding of ecological sys- 
tems and the effects of management programs 

(O'Connor 2000). The misuse and overuse of 

P-values is astonishing. Further, there is little 

analogous guidance for authors to present results 

of data analysis under the newer information-the- 

oretic or Bayesian methods. 

We suggest how to present results of data analy- 
sis under each of these 3 statistical paradigms: 
classical frequentist, information-theoretic, and 

Bayesian. We make no recommendation on the 

choice of analysis; instead, we focus on sugges- 
tions for the presentation of results of the data 

analysis. We assume authors are familiar with the 

analysis paradigm they have used; thus, we will 

not provide introductory material here. 

Frequentist Methods 

Frequentist methods, dating back at least a cen- 

tury, are much more than merely test statistics 

and P-values. P-values resulting from statistical 

tests of null hypotheses are usually of far less 

value than estimates of effect size. Authors fre- 

quently report the results of null hypothesis tests 

(test statistics, degrees of freedom, P-values) 

when-in less space-they could often report 
more complete, informative material conveyed 

by estimates of effect size and their standard 

errors or confidence intervals (e.g., the effect of 

the neck collars on winter survival probability was 

-0.036, SE = 0.012). 
The prevalence of testing null hypotheses that 

are uninteresting (or even silly) is quite high. 
For example, Anderson et al. (2000) found an 

average of 6,188 P-values per year (1993-1997) in 

Ecology and 5,263 per year (1994-1998) in The 

Journal of Wildlife Management and suggested that 

these large frequencies represented a misuse and 

overuse of null hypothesis testing methods. 

Johnson (1999) and Anderson et al. (2000) give 

examples of null hypotheses tested that were 

clearly of little biological interest, or were entire- 

ly unsupported before the study was initiated. 

We strongly recommend a substantial decrease in 

the reporting of results of null hypothesis tests 

when the null is trivial or uninteresting. 
Naked P-values (i.e., those reported without 

estimates of effect size, its sign, and a measure of 

precision) are especially to be avoided. Nonpara- 
metric tests (like their parametric counterparts) 
are based on estimates of effect size, although 

usually only the direction of the effect is reported 

(a nearly naked P-value). The problem with 

naked and nearly naked P-values is that their 

magnitude is often interpreted as indicative of 

effect size. It is misleading to interpret that small 

P-values indicate large effect sizes because small 

P-values can also result from low variability or large 

sample sizes. P-values are not a proper strength 
of evidence (Royall 1997, Sellke et al. 2001). 

We encourage authors to carefully consider 

whether the information they convey in the lan- 

guage of null hypothesis testing could be greatly 

improved by instead reporting estimates and 

measures of precision. Emphasizing estimation 

over hypothesis testing in the reporting of the 

results of data analysis helps protect against the 

pitfalls associated with the failure to distinguish 
between statistical significance and biological sig- 
nificance (Yoccoz 1991). 

We do not recommend reporting test statistics 

and P-values from observational studies, at least 

not without appropriate caveats (Sellke et al. 

2001). Such results are suggestive rather than 

conclusive given the observational nature of the 

data. In strict experiments, these quantities can 

be useful, but we still recommend a focus on the 

estimation of effect size rather than on P-values 

and their supposed statistical significance. 
The computer output of many canned statistical 

packages contains numerous test statistics and 

P-values, many of which are of little interest; report- 

ing these values may create an aura of scientific 

objectivity when both the objectivity and substance 

are often lacking. We encourage authors to resist 

the temptation to report dozens of P-values only 
because these appear on computer output. 

Do not claim to have proven the null hypothesis; 
this is a basic tenet of science. If a test yields a non- 

significant P-value, it may not be unreasonable to 

state that "the test failed to reject the null hypothe- 
sis" or that "the results seem consistent with the null 

hypothesis" and then discuss Type I and II errors. 

However, these classical issues are not necessary 
when discussing the estimated effect size (e.g, "The 

estimated effect of the treatment was small," and 

then give the estimate and a measure of precision). 
Do not report estimated test power after a sta- 

tistical test has been conducted and found to be 

nonsignificant, as such post hoc power is not 

meaningful (Goodman and Berlin 1994). A priori 

power and sample size considerations are impor- 
tant in planning an experimental design, but esti- 

mates of post hoc power should not be reported 

(Gerard et al. 1998, Hoenig and Heisey 2001). 

J. Wildl. Manage. 65(3):2001 
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Information-Theoretic Methods 

These methods date back only to the mid- 

1970s. They are based on theory published in the 

early 1950s and are just beginning to see use in 

theoretical and applied ecology. A synthesis of 

this general approach is given by Burnham and 

Anderson (1998). Much of classical frequentist 
statistics (except the null hypothesis testing 
methods) underlie and are part of the informa- 

tion-theoretic approach; however, the philosophy 
of the 2 paradigms is substantially different. 

As part of the Methods section of a paper, 
describe and justify the a priori hypotheses and 

models in the set and how these relate specifical- 

ly to the study objectives. Avoid routinely includ- 

ing a trivial null hypothesis or model in the 

model set; all models considered should have 

some reasonable level of interest and scientific 

support (Chamberlin's [1965] concept of "multi- 

ple working hypotheses"). The number of mod- 

els (R) should be small in most cases. If the study 
is only exploratory, then the number of models 

might be larger, but this situation can lead to 

inferential problems (e.g., inferred effects that are 

actually spurious; Anderson et al. 2001). Situa- 

tions with more models than samples (i.e., R > n) 
should be avoided, except in the earliest phases 
of an exploratory investigation. Models with 

many parameters (e.g., K- 30-200) often find lit- 

tle support, unless sample size or effect sizes are 

large or if the residual variance is quite small. 

A common mistake is the use of Akaike's Infor- 

mation Criterion (AIC) rather than the second- 

order criterion, AICc. Use AICC (a generally 

appropriate small-sample version of AIC) unless 

the number of observations is at least 40 times the 

number of explanatory variables (i.e., n/K > 40 

for the biggest K over all R models). If using 
count data, provide some detail on how goodness 
of fit was assessed and, if necessary, an estimate of 

the variance inflation factor (c) and its degrees of 

freedom. If evidence of overdispersion (Liang and 

McCullagh 1993) is found, the log-likelihood 
must be computed as loge (_r)/c and used in QAICc, 

a selection criterion based on quasi-likelihood the- 

ory (Anderson et al. 1994). When the appropriate 
criterion has been identified (AIC, AICC, or QAICC), 
it should be used for all the models in the set. 

Discuss or reference the use of other aspects of 

the information-theoretic approach, such as 

model averaging, a confidence set on models, 
and examination of the relative importance of 

variables. Define or reference the notation used 

(e.g., K, Ai, and wi). Ideally, the variance compo- 

nent due to model selection uncertainty should 

be included in estimates of precision (i.e., uncon- 

ditional vs. conditional standard errors) unless 

there is strong evidence favoring the best model, 

such as an Akaike weight (wi) > about 0.9. 

For well-designed, true experiments in which 

the number of effects or factors is small and fac- 

tors are orthogonal, use of the full model will 

often suffice (rather than considering more par- 
simonious models). If an objective is to assess the 

relative importance of variables, inference can be 

based on the sum of the Akaike weights for each 

variable, across models that include that variable, 

and these sums should be reported (Burnham 
and Anderson 1998:140-141). Avoid the implica- 
tion that variables not in the selected (estimated 

best) model are unimportant. 
The results should be easy to report if the 

Methods section outlines convincingly the science 

hypotheses and associated models of interest. 

Show a table of the value of the maximized log- 
likelihood function (log(_r)), the number of esti- 

mated parameters (K), the appropriate selection 

criterion (AIC, AICc, or QAICC), the simple differ- 

ences (Ai), and the Akaike weights (w%) for mod- 

els in the set (or at least the models with some rea- 

sonable level of support, such as where Ai < 10). 

Interpret and report the evidence for the various 

science hypotheses by ranking the models from 

best to worst, based on the differences (Ai), and 

on the Akaike weights (wi). Provide quantities of 

interest from the best model or others in the set 

(e.g., u2, coefficients of determination, estimates 

of model parameters and their standard errors). 

Those using the Bayesian Information Criterion 

(BIC; Schwarz 1978) for model selection should 

justify the existence of a true model in the set of 

candidate models (Methods section). 
Do not include test statistics and P-values when 

using the information-theoretic approach since 

this inappropriately mixes differing analysis para- 

digms. For example, do not use AICc to rank 

models in the set and then test if the best model 

is significantly better than the second best model 

(no such test is valid). Do not imply that the 

information-theoretic approaches are a test in 

any sense. Avoid the use of terms such as signifi- 
cant and not significant, or rejected and not 

rejected; instead view the results in a strength of 

evidence context (Royall 1997). 
If some analysis and modeling were done after 

the a priori effort (often called data dredging), 
then make sure this procedure is clearly ex- 

plained when such results are mentioned in the 

J. Wildl. Manage. 65(3):2001 
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Discussion section. Give estimates of the impor- 
tant parameters (e.g., effect size) and measures 

of precision (preferably a confidence interval). 

Bayesian Methods 

Although Bayesian methods date back over 2 

centuries, they are not familiar to most biologists. 

Bayesian analysis allows inference from a poste- 
rior distribution that incorporates information 

from the observed data, the model, and the prior 
distribution (Schmitt 1969, Ellison 1996, Barnett 

1999, Wade 2000). Bayesian methods often re- 

quire substantial computation and have been in- 

creasingly applied since computers have become 

widely available (Lee 1997). 
In reporting results, authors should consider 

readers' lack of familiarity with Bayesian sum- 

maries such as odds ratios, Bayes factors, and cred- 

ible intervals. The clarity of a presentation can be 

greatly enhanced by a simple explanation after the 

first references to such quantities: "A Bayes factor 

of 4.0 indicates that the ratio of probabilities for 

Model 1 and Model 2 is 4 times larger when com- 

puted using the posterior rather than the prior." 
Presentations of Bayesian analyses should report 

the sensitivity of conclusions to the choice of the 

prior distribution. This portrayal of sensitivity 
can be accomplished by including overlaid graphs 
of the posterior distributions for a variety of rea- 

sonable priors or by tabular presentations of 

credible intervals, posterior means, and medians. 

An analysis based on flat priors representing 
limited or vague prior knowledge should be in- 

cluded in the model set. When the data seem to 

contradict prevailing thought, the strength of the 

contradiction can be assessed by reporting analy- 
ses based on priors reflecting prevailing thought. 

Generally, Bayesian model-checking should be 

reported. Model-checks vary among applications, 
and there are a variety of approaches even for a 

given application (Carlin and Lewis 1996, Gelman 

and Meng 1996, Gelman et al. 1995). One par- 

ticularly simple and easily implemented check is 

a posterior predictive check (Rubin 1984). The 

credibility of the results will be enhanced by a 

brief description of model-checks performed, 

especially as these relate to questionable aspects 
of the model. A lengthy report of model-checks 

will usually not be appropriate, but the credibili- 

ty of the published paper will often be enhanced 

by reporting the results of model-checks. 

The implementation of sophisticated methods 
for fitting models, such as Markov Chain Monte 

Carlo (MCMC; Geyer 1992) should be reported 

in sufficient detail. In particular, MCMC requires 

diagnostics to indicate that the posterior distrib- 

ution has been adequately estimated. 

General Considerations Concerning the 
Presentation of Results 

The standard deviation (SD) is a descriptive sta- 

tistic, and the standard error (SE) is an inferen- 

tial statistic. Accordingly, the SD can be used to 

portray the variation observed in a sample: It = 

100, SD = 25 suggests a much more variable pop- 
ulation than does j = 100, SD = 5. The expected 

value (i.e., an average over a large number of 

replicate samples) of the SD2 equals U2 and 

depends very little on sample size (n). The SE is 

useful to assess the precision (repeatability) of an 

estimator. For example, in a comparison of 

males (m) and females (f), gm = 100, SE = 2 and 

[i= 120, SE = 1.5 would allow an inference that 

the population mean value g is greater among 
females than among males. Such an inference 

rests on some assumptions, such as random sam- 

pling of a defined population. Unlike the SD, 
the SE decreases with increasing sample size. 

When presenting results such as a ? b, always 
indicate if b is a SD or a SE or is t x SE (indicating 
a confidence limit), where t is from the t distrib- 

ution (e.g., 1.96 if the degrees of freedom are 

large). If a confidence interval is to be used, give 
the lower and upper limits as these are often 

asymmetric about the estimate. Authors should 

be clear concerning the distinction between pre- 
cision (measured by variances, standard errors, 
coefficients of variation, and confidence inter- 

vals) and bias (an average tendency to estimate 

values either smaller or larger than the parame- 
ter; see White et al. 1982:22-23). 

The Methods section should indicate the (1 - a) % 

confidence level used (e.g., 90, 95, or 99%). 
Information in tables should be arranged so that 

numbers to be compared are close to each other. 

Excellent advice on the visual display of quantita- 
tive information is given in Tufte (1983). Provide 

references for any statistical software and specific 

options used (e.g., equal or unequal variances in 

t-tests, procedure TTEST in SAS, or a particular 

Bayesian procedure in BUGS). The Methods sec- 
tion should always provide sufficient detail so 

that the reader can understand what was done. 

In regression, discriminant function analysis, 
and similar procedures, one should avoid the 

term independent variables because the variables 

are rarely independent among themselves or 

with the response variable. Better terms include 

J. Wildl. Manage. 65(3):2001 
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explanatory or predictor variables (see McCul- 

lagh and Nelder 1989:8). 

Avoid confusing low frequencies with small 

sample sizes. If one finds only 4 birds on 230 

plots, the proportion of plots with birds can be 

precisely estimated. Alternatively, if the birds are 

the object of study, the 230 plots are irrelevant, 

and the sample size (4) is very small. 

It is important to separate analysis of results 

based on questions and hypotheses formed 

before examining the data from results found 

after sequentially examining the results of data 

analyses. The first approach tends to be more 

confirmatory, while the second approach tends 

to be more exploratory. In particular, if the data 

analysis suggests a particular pattern leading to 

an interesting hypothesis then, at this midway 

point, few statistical tests or measures of precision 

remain valid (Lindsey 1999a,b; White 2000). That 

is, an inference concerning patterns or hypothe- 

ses as being an actual feature of the population 

or process of interest are not well supported 

(e.g., likely to be spurious). Conclusions reached 

after repeated examination of the results of prior 

analyses, while interesting, cannot be taken with 

the same degree of confidence as those from the 

more confirmatory analysis. However, these post 

hoc results often represent intriguing hypotheses 

to be readdressed with a new, independent set of 

data. Thus, as part of the Introduction, authors 

should note the degree to which the study was 

exploratory versus confirmatory. Provide infor- 

mation concerning any post hoc analyses in the 

Discussion section. 

Statistical approaches are increasingly impor- 

tant in many areas of applied science. The field 

of statistics is a science, with new discoveries lead- 

ing to changing paradigms. New methods some- 

times require new ways of effectively reporting 

results. We should be able to evolve as progress is 

made and changes are necessary. We encourage 

wildlife researchers and managers to capitalize 

on modern methods and to suggest how the 

results from such methods might be best pre- 

sented. We hope our suggestions will be viewed 

as constructive. 
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