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Abstract. Increasing amounts of data, together with more

computing power and better machine learning algorithms to

analyse the data, are causing changes in almost every aspect

of our lives. This trend is expected to continue as more data

keep becoming available, computing power keeps improv-

ing and machine learning algorithms keep improving as well.

Flood risk and impact assessments are also being influenced

by this trend, particularly in areas such as the development

of mitigation measures, emergency response preparation and

flood recovery planning. Machine learning methods have the

potential to improve accuracy as well as reduce calculating

time and model development cost. It is expected that in the

future more applications will become feasible and many pro-

cess models and traditional observation methods will be re-

placed by machine learning. Examples of this include the use

of machine learning on remote sensing data to estimate ex-

posure and on social media data to improve flood response.

Some improvements may require new data collection efforts,

such as for the modelling of flood damages or defence fail-

ures. In other components, machine learning may not always

be suitable or should be applied complementary to process

models, for example in hydrodynamic applications. Overall,

machine learning is likely to drastically improve future flood

risk and impact assessments, but issues such as applicability,

bias and ethics must be considered carefully to avoid misuse.

This paper presents some of the current developments on the

application of machine learning in this field and highlights

some key needs and challenges.

1 Introduction

Exponentially increasing computing power and data, as well

as rapidly improving machine learning algorithms to anal-

yse these data, have been changing many aspects of our lives

(Manyika et al., 2011). These trends are expected to con-

tinue and will undoubtedly keep affecting many scientific,

commercial and social sectors (Manyika et al., 2011). Flood

risk and impact assessments are no exception to this trend.

Flooding yearly affects more people than any other natural

hazard type (Jonkman, 2005), and the impact and frequency

of flooding events is expected to increase in the future due

to urban development and climate change (Kundzewicz et

al., 2014). It is therefore an opportunity for researchers and
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Table 1. Overview of different types of flood risk and impact as-

sessments.

Predictive Descriptive

Exposure Urban growth mod-

elling

Identification of current

built-up area

Hazard Flood modelling Mapping current and past

floods

Impact Forecasting impact

(e.g. damage)

Assessing flood impacts

(e.g. damage) after they

have occurred

flood managers to tap into the potential of machine learning,

taking advantage of their strengths while being cognizant of

their limitations. It is also important to anticipate improve-

ments in the capabilities of machine learning methods, so as

to plan for forthcoming changes in flood modelling.

When assessing the interaction between floods and soci-

ety, three different components can be recognized: exposure,

hazard and impact (Kron, 2002). Exposure refers to the char-

acteristics of the people and assets that can be affected by

flooding. Hazards are the physical characteristics of a flood

such as the extent, water depth, duration and flow velocity.

Impacts are the effects the hazard has on the exposure. To

assess these three components, we make the distinction be-

tween flood risk, as the probabilistic analysis of the potential

(predictive) impacts of floods, and flood impact assessment,

as the post-event assessment of (descriptive) impact from an

actual flood event. Table 1 provides examples of predictive

and descriptive assessments in relation to the hazard, expo-

sure and impact components. The scope of this paper is lim-

ited to the predictive and descriptive assessments shown in

Table 1 and does not include potential uses of machine learn-

ing in risk awareness or communication strategies.

Flood risk and impact assessments have many differ-

ent applications. A useful paradigm through which look at

these different applications is the “disaster management cy-

cle” (Khan et al., 2008; National Research Council, 2006)

(Fig. 1). This cycle delineates the phases between events, i.e.

the immediate response to an event, the long-term recovery,

the mitigation to prevent future events and the preparation

prior to a new forecasted event.

In the response phase, the focus is typically on descrip-

tive hazard, exposure and impact assessments (e.g. Klemas,

2015), sometimes complemented with predictive models if

the event descriptive information is not available yet (e.g. a

predictive model estimating the number of people affected

can be fed by a descriptive hazard model of the flood ex-

tent). The challenge in this phase is mostly data reliability.

In the recovery phase, descriptive assessments are often used

for payouts (e.g. indemnity insurance), and one of the main

challenges is ensuring these payouts are timely and reliable.

In the mitigation phase, probabilistic predictive models are

Figure 1. Disaster management cycle, a common paradigm tool.

used (e.g. Wagenaar et al., 2019), typically for the design of

risk-reduction interventions ranging from protective infras-

tructure to insurance products. The challenge in this phase

is model reliability and uncertainties about future develop-

ments (e.g. uncertainty in future exposure). In the preparation

phase, predictive models are used for emergency planning

(e.g. Coughlan de Perez et al., 2016), where the challenge is

the reliability, availability and communication of data. Ma-

chine learning is capable of generating more reliable and

faster models that can help solve some of the current chal-

lenges in the disaster management cycle but could also pro-

vide new opportunities (GFDRR, 2018).

Machine learning algorithms can find patterns in data

and use these patterns to make predictions about new data

(Bishop, 2006). For example, when a machine learning algo-

rithm is provided with aerial images of either urban or rural

areas and corresponding labels (urban or rural), it can build

the capacity to classify new unlabelled aerial images as ei-

ther urban or rural. Features in the above example would be

different components of the aerial images (i.e. pixel tone and

locations), and the target variable would be the label (i.e. ur-

ban or rural). When a precise value is required as opposed to

a label, it is called a “regression task” (e.g. Bishop, 2006).

An example of this is in flood damage modelling, where fea-

tures such as water depth, flow velocity and building materi-

als can be used to predict a target variable such as monetary

economic damage based on historical records (e.g. Merz et

al., 2013; Wagenaar et al., 2017). Due to the use of labelled

training data (e.g. classified images or historic damage ex-

amples), regression and classification are called supervised

learning tasks. Machine learning method categories also in-

clude unsupervised learning and reinforcement learning (see

GFDRR, 2018). However, such methods are not discussed in

this paper because they are expected to have a smaller short-

term impact on the field of flood risk and impact assessments.

The simplest machine learning algorithms have been used

for a long time and are often known as basic statistical

techniques (e.g. linear regression: Legendre, 1805; Gauss,

1809). More sophisticated machine learning techniques that

emerged in the 1980s and 1990s (e.g. decision trees and
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neural networks) can find more complex non-linear patterns

(Breimann et al., 1984; Rumelhart et al., 1986). Recent ad-

vances in machine learning (e.g. convolutional neural net-

works) make computer vision and other advanced applica-

tions possible (Krizhevsky et al., 2012). The more advanced

techniques such as decision trees, neural networks and espe-

cially convolutional neural networks can find more complex

patterns. This is because they allow for more complex non-

linear functions to be fitted to the data. Such complex func-

tions require a large number of model coefficients to be set

during the training of the model. To set all these coefficients,

a lot of training examples are required. In some cases the

number of training examples can be reduced with transfer

learning techniques (Olivas et al., 2010). These techniques

make it possible to re-use knowledge gained from other prob-

lems to train a model on a smaller training data set.

From the beginning, machine learning has been used in

predictive flood hazard modelling (Solomatine and Ostfield,

2008) mostly as a faster and simpler alternative to process

models. A simple example of this is the prediction of river

discharge based on upstream rainfall data (e.g. Dibike and

Solomatine, 2001). This type of modelling has been practised

for a long time but has not displaced the traditional process

models. This is probably because the methods are not suffi-

ciently better than traditional methods to offset some disad-

vantages as discussed in the predictive-hazard section. In re-

cent years, more data have become available through remote

sensing, social media (e.g. Fohringer et al., 2015), citizen sci-

ence (e.g. Annis and Nardi, 2019) and other sources. This im-

pulse of new data combined with machine algorithms could

lead to changes in flood risk and impact assessment. Some

of these changes have already been highlighted by major in-

ternational organizations such as the World Bank (GFDRR,

2018).

This invited perspective paper starts with a perspective per

risk assessment component as defined in Table 1. These spe-

cific perspectives start with a description of the traditional ap-

proach for the assessments, followed by a literature review on

how machine learning techniques are currently being devel-

oped to improve the traditional approach, and then proceed to

speculate on potential future improvements. This is followed

by a “General perspectives” chapter, in which general trends

that come back in the different components are identified and

discussed. This includes common challenges (i.e. data limi-

tations, transferability, ethics and bias) and ends with some

speculation about the likelihood of future developments.

2 Perspective per component

2.1 Exposure assessment

2.1.1 Descriptive exposure assessments

Descriptive exposure assessments consist of detecting and

characterizing (spatial) features such as current buildings,

agriculture fields, roads and other infrastructure. Tradition-

ally this has been done by population censuses, building

counts and conventional mapping techniques that require

ground surveys. Remote sensing is currently changing this.

It has become common for aerial and satellite images to be

manually digitized and labelled to make building footprints

or map roads. This has been done by “crowds” of mappers

in “mapathons”, for example using the OpenStreetMap plat-

form. Machine learning is very likely going to drastically

change this. Research into automatically labelling remote

sensing data has already been going on for some time (e.g.

Heermann and Khazenie, 1992; Giacinto and Roli, 2001). It

is already being used to label build-up areas based on night-

time lights (Goldblatt et al., 2018) or satellite images (Gold-

blatt et al., 2016). Furthermore, algorithms are already being

used to automatically label buildings (Sermanet et al., 2014;

Alshehhi et al., 2017; GFDRR, 2018) and map roads (Gao et

al., 2019) using aerial/satellite imagery. This will reduce the

need for manual detection and will probably provide global

availability of such building footprints and road information

in the near future.

Part of an exposure assessment is the observation of as-

set features relevant to risk analysis, for example building

materials, building occupancy (e.g. residential or industrial),

building height, ground floor elevation, poverty rates in the

population etc. This information is typically not available but

could be very valuable as input for impact models (e.g. Merz

et al., 2013; Wagenaar et al., 2017; Schröter et al., 2014) or,

for example, to account for poverty in cost–benefit analyses

(e.g. Kind et al., 2016). Similarly, ground floor elevation in-

formation could radically improve urban pluvial flood dam-

age modelling as damage from small-scale floods is very sen-

sitive to such variables.

Some work has already been carried out on detecting

poverty (Watmough et al., 2019) and building heights (Saadi

and Bensaibi, 2014) by satellite imagery. Another source of

this building feature information could be 360◦ street view

images combined with computer vision techniques. Such im-

ages are available in, for example, the open-source street

view data platform Mapillary (Neuhold et al., 2017). Such

techniques are already starting to impact earthquake risk as-

sessments, such as in Guatemala, where 360◦ imagery was

fed into Mapillary algorithms in order to automatically de-

tect “soft story” buildings: those most likely to collapse in an

earthquake. This was done by having the machine learning

algorithm detect features that were indicators of large open-

ings on the ground floor of buildings (large doors, garage
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doors, shop windows etc.) (GFDRR, 2018). Computer vision

techniques from street level imagery are currently limited to

detecting such relatively simple features. However, based on

recent advances seen in other computer vision applications

(e.g. facial recognition), it is likely that in the future it will

be possible to detect more complex building features as well.

For computer vision models to detect complex information

like ground floor elevation or building materials, it would

be necessary to provide labelled examples to the algorithms.

Such labelled examples are in some cases already available

for some areas, e.g. ground floor elevation (Bouwer et al.,

2017) or building materials (Schröter et al., 2018).

2.1.2 Predictive exposure assessments

Predictive exposure mapping consists of estimates of future

exposure. This mostly includes modelling to predict urban

growth and other changes in land use. It is required for eval-

uating flood mitigation measures (e.g. Wagenaar et al., 2019)

because such measures typically need to function for a long

time and should therefore still perform as required after pre-

dicted land-use changes. Land-use changes affect the impact

of a flood because more damage may occur for the same

flood hazard and the flood hazard may become greater be-

cause of changes in impervious area and therefore rainfall

runoff (Triantakonstantis and Mountrakis, 2013; Mestav Sar-

ica et al., 2019). Predictive exposure assessments for flood

risk and impact assessments are currently often not carried

out spatially, but rather GDP growth projections are applied

to estimate future total exposure values (e.g. van der Most et

al., 2014; Wagenaar et al., 2019). This is enough for some

studies, but if large changes are expected a land-use change

or urban growth model is required.

Urban growth has been modelled with simple ma-

chine learning models in the past (e.g. logistic regression)

(Samardzic-Petrovic et al., 2017). The use of cellular au-

tomata (CA) models has become more common recently

(Naghibi et al., 2016). These models assign cells as either

urban or non-urban based on specific transition rules. De-

termining the optimum transition rules is a critical issue for

CA modelling (Aarthi and Gnanappazham, 2019). This is

sometimes difficult because of human bias, heterogeneity

and non-linear relations between driving factors and urban

expansion (Naghibi et al., 2016; Xu et al., 2019). To over-

come these limitations, machine learning algorithms such

as artificial neural networks have been integrated with tra-

ditional CA to model urban growth (Aarthi and Gnanap-

pazham, 2019; Naghibi et al., 2016). They then use historical

land-use changes (e.g. Song et al., 2015) to learn the transi-

tion rules. Complex machine learning models have also been

directly applied to urban growth modelling without the CA

model structure (Pal and Ghosh, 2017). These improvements,

together with more data about past land-use changes and ad-

ditional computation power, are expected to provide better

future land-use maps and make high-resolution future land-

use maps globally available.

2.2 Hazards assessment

2.2.1 Descriptive hazard assessments

Descriptive flood hazard assessment focuses primarily on the

response phase, i.e. estimating current inundation extents and

depths to assist both emergency responders and those af-

fected directly. This is traditionally achieved using optical

remote sensing data, local sensors or manually collected data

from observers on the ground. However, the rise of two major

data sources, synthetic aperture radar (SAR) and social me-

dia, provides a number of opportunities for machine learning

to improve upon current flood detection methods.

During a flood event, affected populations frequently pro-

duce “user-generated content” or “crowd-sourced” data from

social media posts or apps where citizens can report floods

(Mazoleni et al., 2017; Assumpção et al., 2018; Annis and

Nardi, 2019; UrbanRiskLab, 2019). This is especially the

case in urban areas, where internet and social media penetra-

tion are higher compared to rural areas. These data are often

“tagged” temporally and spatially and can be used by ma-

chine learning algorithms for applications such as nowcast-

ing by searching for certain keywords like “flood” (e.g. see

Tkachenko et al., 2017; Bischke et al., 2017; Lopez-Fuentes

et al., 2017). The method is currently used to map real-time

flood extents in several countries (Eilander et al., 2016). Po-

tential future machine learning and computer vision tech-

niques could be extended to estimate water depths and other

flood characteristics from posted photos.

Remotely sensed optical data are often used to identify

the extents of flooding, but optical sensors are not functional

during periods of cloud cover or at night. Furthermore, the

temporal resolution often prevents the observation of flash

floods. SAR data using the microwave wavelengths of the

electromagnetic spectrum can help overcome these problems

by providing additional imagery during the night or during

cloud cover. Adding night-time and cloud-cover images will

provide a higher total temporal resolution. Flood extents are

currently determined with statistical methods using thresh-

olds to subsequently identify flood extents, e.g. by using

Bayesian method on SAR amplitude time-series data (Lin et

al., 2019). Advanced machine learning classification meth-

ods are being developed to improve this process, but in order

to train them it is necessary to have manually labelled im-

ages as training data. Collection of this labelled flood extent

information is the main challenge for automatic detection

moving forward. Manual methods could harness the power

of the crowd, as people are connected through the inter-

net or with mapathons. These approaches could have game-

changing implications for the training of machine learning al-

gorithms. Already mapathons are often “trainathons”, where

mappers are not only manual digitizers but also labellers and
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trainers for automated machine learning methods for the fu-

ture.

2.2.2 Predictive hazard assessments

Predictive flood hazard assessments consist of predicting fu-

ture floods and their characteristics such as extents, inunda-

tion depths, durations, flow velocities, waves and water lev-

els in rivers or seas. These assessments are applied for short-

term forecasting in the preparation phase (preparing for im-

minent events) and long-term risk analyses for use in flood

risk management (mitigation phase).

In flood forecasting, traditional methods of predicting haz-

ard variables can involve a chain of hydrologic and hydraulic

models that describe the physical processes. Although such

models provide system understanding, they often have high

computational and data requirements. Therefore, the use of

process models may not always be feasible or necessary in

the preparation stage of a disaster. At that moment, accu-

rate and timely outputs become more important than system

understanding, and the use of “black-box” machine learn-

ing models (e.g. Campolo et al., 2003) is becoming more

widespread (Mosavi et al., 2018). The increased speed can

create a trade-off with the robustness of forecast models, as

changes to the hydraulic system (such as a new structure that

could be easily implemented into a hydraulic model) cannot

be directly introduced into a trained machine learning model.

In addition, machine learning models might not perform well

in predicting extremes far outside past observations, since

they have not been trained against such extremes.

A review of flood forecasting methods using machine

learning by Mosavi et al. (2018) highlights trends such as

component and ensemble models (collectively termed “hy-

brid models”; Corzo and Solomatine, 2014). Hybrid compo-

nent models assign machine learning a specific task in the

modelling process that is either highly complex or not well

understood. Examples of this include using machine learning

for error correctors (see, for example, studies by Abrahart

and See, 2007, and Google Research – Nevo et al., 2019)

or flows subject to human influence (Yaseen et al., 2019).

Hybrid ensemble methods often use machine learning mod-

els to supplement process models, providing robust predic-

tions and uncertainty ranges (Solomatine and Ostfeld, 2008).

Such methods benefit from the speed and ability to deal with

non-linear multivariable problems of machine learning mod-

elling and the process understanding available in conven-

tional modelling. The review by Mosavi et al. (2018) does

not consider gridded/spatial forecasting techniques, but ad-

vanced machine learning techniques are starting to be de-

veloped for precipitation pattern nowcasting (Xingjian et

al., 2015) and flood extents prediction (Chang et al., 2018).

Another application of machine learning in the preparation

phase is in the real-time control of flood defences and sys-

tems (e.g. Lobbrecht and Solomatine, 2002; Castelletti et al.,

2010). For example, Lobbrecht and Solomatine (2002) used

machine learning methods to optimize control decisions in

the event of communication network breakdowns during ex-

treme storm events.

Another major application for machine learning in long-

term risk analysis is “surrogate” modelling (Ong et al.,

2003), in which the outputs from process models are used to

train computationally less-intensive machine learning mod-

els. This can be applied to speed up different types of pro-

cess models applied in predictive hazard modelling. For ex-

ample, in flood defence analysis and design, classical reli-

ability techniques such as the first-order reliability method

(FORM) and Monte Carlo simulations (Steenbergen et al.,

2004), or large-scale risk analyses that utilize them (Curran et

al., 2019), can be replicated using a relatively small amount

of evaluations as samples (Chojaczyk et al., 2015; Kingston

et al., 2011). However, surrogate models may be particularly

susceptible to extrapolation problems, where input data out-

side the range of the training data are introduced (Ghalkhani

et al., 2013).

In the mitigation phase a chain of hydrologic and hydraulic

models that describe the physical processes is typically ap-

plied (e.g. Wagenaar et al., 2019). In general, system under-

standing is required to assess proposed or potential future

changes. In such cases, data-driven approaches are typically

not applicable as there are no data about how the system be-

haves after the changes occur, and hence simulation models

are required that describe the physical system.

2.3 Flood impact assessment

2.3.1 Descriptive impact assessments

Descriptive impact assessments consist of making estimates

of the flood impact after or during an event. This is tradition-

ally done with manually collected data from observers on the

ground. However, such manual ground inspections are slow

and require people to enter the disaster area. Remote sens-

ing can be used to get a very quick first impression of the

damage to help with disaster response. Such techniques have

already been applied, for earthquake and wind damage (e.g.

Menderes et al., 2015). For flooding, this is often more dif-

ficult because damage inside buildings is difficult to obtain

either from aerial or space-based sensors. Only when build-

ings completely collapse or are removed by strong flows does

remote sensing become feasible. This is, for example, the

case with flash floods, tsunamis or some storm surges. If 360◦

street view images are collected after a flood, these could po-

tentially be used for damage assessment. Machine learning

techniques could then eventually be used to give a quick first

estimate of the damage.

The use of machine learning techniques for automatic de-

tection of damages from remote sensing information (aerial

or street view) requires labelled training data from manu-

ally collected data from observers on the ground. These data

are currently rare. An approach could be to start using re-
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mote sensing data to manually label the impact. A way to get

around this limitation is to detect changes pre- and post-flood

using high-resolution satellite images for urban areas where

many buildings are damaged. Pixels with changed informa-

tion will denote the damage that happened due to the floods.

Eventually these data can then be used as training data for

cases where only the post-flood images are available within a

short time interval after the flood event. This method would

however only be relevant to catastrophic floods because it

does not address the fact that most damage remains not ob-

servable from top view. On top of that, this approach intro-

duces significant new error: (1) error in the change detection

signal, (2) error in relating the change to damage and (3) error

in training a new model based on those damage labels. Im-

agery from different angles (e.g. from street view or drones)

might be more useful for change detection; however these

data would also be more difficult to acquire.

2.3.2 Predictive impact assessments

Predictive flood impact assessments include models that

translate hazard and exposure information into socio-

economic impacts of the flood. This can include informa-

tion such as monetary flood damage, casualties, buildings

damaged, crop damage, disease outbreak, building materials

needed, recovery time, health monitoring of key structures

and indirect damage (damages that occur in a different spa-

tial and/or temporal setting than the originating event).

Most predictive flood damage modelling relies on depth–

damage functions that describe a relationship between the

water depth and monetary flood damage (Merz et al., 2010).

They are based either on historical flood damage records

(e.g. Thieken et al., 2008; Kreibich et al., 2010) or on ex-

pert estimates (e.g. Penning-Rowsell et al., 2005). In prac-

tice, many more variables than water depth have an influence

on the flood damage (Cammerer et al., 2013; Wagenaar et al.,

2016). Therefore, in the scientific literature there has been

a move towards multivariable flood damage models that use

many variables (e.g. flood duration, velocity, building materi-

als, socio-economic status of inhabitants etc.) instead of just

water depth (e.g. Merz et al., 2013; Spekkers et al., 2014;

Chinh et al., 2015; Kreibich et al., 2017; Wagenaar et al.,

2017; Carisi et al., 2018; Amadio et al., 2019). These mod-

els are based on data and machine learning. The problem lies

with insufficient data availability to train machine learning

models and with the fact that using the models requires a

lot of feature data about flood and building characteristics

plus socio-economic data about inhabitants (Wagenaar et al.,

2017). In the future we expect more data about features to be-

come available from computer vision applied to street view,

satellite or drone images (see descriptive exposure section).

This would improve the quality of such models, could make

it easier to apply them and make the development possible

for more areas.

Machine learning could also be applied to predict disease

outbreak after floods by combining remote sensing, meteoro-

logical and socio-economic data (e.g. Mayfield et al., 2018;

Carvajal et al., 2018; Modu et al., 2017; Yomwan et al., 2015;

Tiwari et al., 2013; Shively et al., 2015). In a flood event,

there is an increased risk of infectious diseases among sur-

vivors and displaced persons. For example, measles, diar-

rhea, acute respiratory infections and malaria can be respon-

sible for many deaths (Lignon, 2006). Predictive modelling

of such diseases is rarely carried out, and current approaches

mostly focus on simple regression models or process models

that simulate the spread of pollutants in the water. One major

challenge is that the degree to which such epidemics occur is

associated with the regional endemicity of specific diseases,

the nature and scope of the disaster, the level of public health

infrastructure in place both before and after the event, and

the level and efficacy of disaster response (Ivers and Ryan,

2006). Machine learning models could take such complex

processes better into account.

Machine learning can be used for structural health moni-

toring; this has applications in the preparation phase (Pyayt

et al., 2014; Jonkman et al., 2018) and in the long-term reli-

ability analysis required in the mitigation phase (Prendergast

et al., 2018; Klerk et al., 2019). In the preparation phase for

a flood, structural health monitoring is often done by manual

inspections of the infrastructure on the ground. For example,

in the Netherlands there is a large network of volunteers that

can be activated in the event of high river levels to inspect

the dikes. In the mitigation phase this is done by geotech-

nical process models fed by observations from the ground

(e.g. De Waal, 2016); this is for example applied to decide

on dike strengthening. Machine learning algorithms can help

detect damage patterns from sensor data and are currently be-

ing used for the monitoring of flood defence structures such

as dikes (Pyayt et al., 2011). Similar methods have also been

applied to bridges (Neves et al., 2017). The use of both ma-

chine learning algorithms and traditional techniques for dam-

age detection during floods is still very scarce (Prendergast et

al., 2018; Pyayt et al., 2011); however, integration of struc-

tural health monitoring with flood early-warning systems is

a very promising field of development for machine learning

techniques but would also require training data.

Indirect damages and business interruption are often taken

into account simply through a scaling factor of the direct

damage (e.g. Wagenaar et al., 2019). More complex mod-

els for quantifying such damages include input–output mod-

els and general equilibrium models (e.g. Koks et al., 2016).

To quantify indirect damages, such as business interruption

losses, estimating the time it will take for different assets to

be back in full or partial functionality is required. These post-

disaster restoration models have started to be formalized in

the last few years, primarily focused on earthquake disasters

(Kang et al., 2018; Burton et al., 2018). Due to a lack of gath-

ered empirical data on post-disaster recovery, the use of data-

intensive machine learning techniques has not yet made an
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impact on this discipline. However, the need to probabilisti-

cally quantify recovery will require the use of statistical mod-

els for calibration or assessments of recovery times, and that

might be possible in the near future with the use of new re-

mote sensing and crowd-sourcing technologies to obtain the

empirical feature data needed.

3 General perspectives

3.1 Data limitations

Many machine learning applications in flood risk and impact

modelling appear to be limited by a lack of data, especially

training data needed to build effective machine learning mod-

els. This is especially true since the field of flood risk anal-

ysis is concerned primarily with extreme events, which are

rare, and data-collection during such events is often logisti-

cally difficult. The increase in the amount of data around the

world does not necessarily imply that this problem will be

resolved in the future. Some data are simply not collected, or

there are measurement definition or quality issues. To fulfil

the potential of machine learning, new data collection efforts

will be required, along with data standardization protocols.

This will necessitate collaboration between different organi-

zations and stakeholders, setting of data standards and a will-

ingness to share. This problem is common to impact data col-

lected (see Sect. 2.3.1 and 2.3.2), labelled flood extent data

(see Sect. 2.2.1), social media hazard data (see Sect. 2.2.1)

and first-floor elevation data (see Sect. 2.1.1).

3.2 Transferability of data

A critical assumption behind machine learning techniques

is that the data being used to train a model are representa-

tive of the situation the model needs to be applied in. For

example, a data set on damage to concrete buildings is not

fully applicable to modelling the damage to thatched huts. It

is therefore important to collect heterogenous data sets that

cover a large spectrum of potential situations (Wagenaar et

al., 2018). Data that are not fully applicable can still have

some value, for example through domain adaptation or trans-

fer learning (GFDRR, 2018), but applicable data are always

required as well. Wagenaar et al. (2020) showed that sample

selection bias correction, a form of domain adaptation, helps

to improve machine learning impact models in a transfer set-

ting. Furthermore, it is important to work on efficient ways

to communicate the applicability of data-driven models.

3.3 Ethics and bias

Significant attention is currently being given to questions of

the ethics and bias of machine learning systems across a va-

riety of domains, including facial recognition (Keyes, 2018),

automated weaponry (Suchman and Weber, 2016), criminal

justice (Eubanks, 2018) and search engines (Noble, 2018).

A number of technology companies and research institutions

have developed guidelines for evaluating machine learning

systems, but this work is still evolving. Despite similar poten-

tial for negative impacts of these tools in flood risk manage-

ment (Soden et al., 2019), the community has not given these

issues as much attention. Such concerns include the potential

for reinforcing existing social inequalities and the reduced

role of human judgement in modelling processes. These are

risks that need to be weighed seriously against the potential

benefits of machine learning and explored in greater detail

Biases in machine learning can occur because of data sets

that, for a number of reasons, do not fully represent the phe-

nomena which they are meant to describe (e.g. people are

accidentally excluded). For example, we often measure what

we have data for, rather than measuring what matters most, or

use training data sets that reinforce past problems. For exam-

ple, if certain settlements are not detected in exposure maps,

because they use different construction practices than the

settlements used in training data sets, they may not receive

emergency aid in the event of a flood. These problems can

be mitigated by ensuring modellers understand the context

of what they are attempting to model. Other ethical issues

raised by machine learning in the flood management con-

text include data ownership, transparency, consent and pri-

vacy. For example, some people may object to having their

home labelled “vulnerable” on a vulnerability map used by

first responders. Privacy concerns may be aggravated by ma-

chine learning and other big-data techniques. Ethics prob-

lems should be addressed by carefully weighing the benefits

of collecting certain data against the related privacy costs, in

collaboration with people who may be affected by the out-

comes of decisions based on machine learning tools.

An additional ethical concern regarding machine learn-

ing in flood risk assessment is misuse of models. In some

sectors great advances have been made with machine learn-

ing (e.g. facial recognition and self-driving cars). This suc-

cess for some tasks can lead to an awe-inspiring general atti-

tude towards the techniques (Ames, 2018; Narayanan, 2019).

This hype sometimes leads to unwarranted trust in the tech-

niques for tasks machine learning is not (yet) suitable for

(Narayanan, 2019). For example, many companies are cur-

rently using machine learning for hiring decisions despite

well-documented failings of these tools (Narayanan, 2019;

Raghavan et al., 2019). In order to avoid such misuse in flood

risk assessment, it is important that machine learning im-

plementations are transparent and supervised by independent

machine learning and flood risk assessment experts.

Importantly, flood risk assessments are highly data re-

liant, and the increased attention to questions of ethics and

bias in machine learning systems might serve as an op-

portunity to drive conversations in our field about the lim-

its of disaster data more broadly. Many of the sources of

bias or ethical concerns in machine learning systems orig-

inate in, or share common roots with, other kinds of data

used to understand disaster risks. This includes issues such
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Table 2. Future predictions.

Predictive Descriptive

Exposure Likely incremental changes, e.g. improved

cellular automata transition rules

Very likely significant changes, e.g. auto-

matic exposure detection including building

features

Hazard Diverse field; changes are more likely to be

complementary or specific components

of modelling

Likely changes in detection due to remote

sensing and social media algorithms.

Impact Potential for significant changes (i.e. multi-

variable data-driven methods)

Significant changes likely for some ele-

ments; others will probably remain the same

as (1) property values driving what areas get protected,

(2) privacy concerns (which may be aggravated by machine

learning and other big-data techniques), (3) how the lack

of gender/age/ethnicity-disaggregated data on disaster risk

masks differential vulnerabilities and (4) the importance of

public participation and the voice of residents of areas por-

trayed by models as “at risk”. Detailed analyses of specific

cases (e.g. Soden and Kauffman, 2019) are urgently needed

to make further progress in understanding the consequences

of the assessment methods we use to understand disasters.

3.4 Future predictions

In the following section we draw some general conclusions

about how machine learning will change flood risk and im-

pact assessments. Table 2 provides an overview of these pre-

dictions.

3.4.1 Very likely changes

A few of the trends seem inevitable, primarily in cases where

recent technological advances or data that recently became

available make next steps obvious. A good example of this is

the automatic detection of building footprints and roads from

high-resolution remote sensing imagery (see Sect. 2.1.1).

This is already possible and will, especially in data-poor

areas, drastically improve the quality of the first response

and risk calculation. Further advances in the use of machine

learning in descriptive hazard assessment through social me-

dia are also inevitable (see Sect. 2.2.1), given the amount of

data available to social media companies.

3.4.2 Likely and potential changes

This is the category that can be shaped the most by individual

innovators, and the majority of the advances discussed in this

paper fall under this category. In this case, the innovation still

experiences some kind of obstacle that prevents widespread

application. It is typically difficult to predict whether such

obstacles can be truly removed in the future and how long

that will take. Because the field of flood risk and impact

assessments is relatively small, the obstacles are often eco-

nomic feasibility, which is difficult to assess, combined with

conservative users. An example of this is the large-scale col-

lection of impact data which is required for both descriptive

and predictive impact modelling (see Sect. 2.3.1 and 2.3.3)

or the training data required for descriptive hazard assess-

ments (see Sect. 2.2.1). Sometimes the obstacle is also tech-

nical feasibility, for example whether it will really be possi-

ble to extract first-floor elevation levels from street view (see

Sect. 2.1.2). Innovations are also interdependent; for exam-

ple, when building feature information can be automatically

extracted from street view, impact models will become easier

to train and easier to run, and it will make more sense to start

collecting the required impact data.

3.4.3 Unlikely changes

For some processes, machine learning may not be the best so-

lution from a theoretical perspective. For example, the pro-

cesses of how water flows are very well known and can be

well approximated with existing equations. It, therefore, does

not always make sense to pick a machine learning approach.

Another situation in which machine learning is not applica-

ble is when a system is being modelled on which predictions

need to be made that cannot have been seen in the data or

when we know from an exploratory data analysis that we

have no data for it (GFDRR, 2018), for example how a sys-

tem may behave under never-seen discharges or after new

infrastructure has been built (e.g. new dam in the river). In

these cases, machine learning may play a role in some com-

ponents of the model, but process models will very likely re-

main crucial in simulating the never-before-seen conditions.

Especially for predictive hazard models (see Sect. 2.2.2),

there are many elements that are unlikely to change with the

advance of machine learning.

3.4.4 New practices in flood risk and impact

assessments

Most change to flood risk and impact assessments discussed

in this paper relate to better models. Such cheaper, faster and

more accurate models could possibly yield new practices in

Nat. Hazards Earth Syst. Sci., 20, 1149–1161, 2020 www.nat-hazards-earth-syst-sci.net/20/1149/2020/



D. Wagenaar et al.: Invited perspectives: How machine learning will change flood risk and impact assessment 1157

flood risk and impact assessments. Cheaper models would

make flood risk and impact assessments feasible to carry out

for a larger group of users and are therefore likely to make

emergency aid and investments in mitigation measures more

efficient. Faster methods may speed up emergency response

and recovery, especially when manually collected data from

observers on the ground are replaced by remote earth obser-

vation. More accurate models may lead to more early actions

being feasible (Coughlan de Perez et al., 2016), and hence

early actions can be carried out that could not be carried

out before, for example more targeted measures during the

preparation and response phase of a flood. Such new mea-

sures include providing emergency payouts even before the

event to the most vulnerable people (e.g. Reuters, 2019), pri-

oritization of emergency measures in buildings, targeted dis-

ease outbreak prevention (Coughlan de Perez et al., 2016),

early shipping of the right emergency goods (Coughlan de

Perez et al., 2016) and prioritization of early harvesting of

crops.
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