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Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations:

a chameleon for neuropathology and neuroimaging

Hereditary frontotemporal dementia associated with

mutations in the microtubule-associated protein tau gene

(MAPT) is a protean disorder. Three neuropathologic sub-

types can be recognized, based on the presence of inclu-

sions made of tau isoforms with three and four repeats,

predominantly three repeats and mostly four repeats. This

is relevant for establishing a correlation between struc-

tural magnetic resonance imaging and positron emission

tomography using tracers specific for aggregated tau. Lon-

gitudinal studies will be essential to determine the evolu-

tion of anatomical alterations from the asymptomatic

stage to the various phases of disease following the onset

of symptoms.

Keywords: FTDP-17 MAPT, tau aggregation, neurofibrillary tangle, Pick body, tau, [F18]-T807

Introduction

Inherited forms of frontotemporal dementia (FTD) have

been known for many years [1–4], but as the clinical and

pathological features are heterogeneous, the nomencla-

ture has been variable, with disorders being called familial

Pick disease, familial progressive subcortical gliosis, famil-

ial presenile dementia with tangles, autosomal-dominant

parkinsonism and dementia with pallido-ponto-nigral

degeneration. The major clinical manifestations include

behavioural disturbances, aphasia, cognitive impairment

and parkinsonism. Individuals from 13 families, with FTD

and genetic linkage to chromosome 17q21–22, were pre-

sented at a Consensus Conference at the University of

Michigan in 1996 [5]. It was agreed that the unifying

name should take into account the clinical features, as

well as the genetic linkage, rather than the neuropathol-

ogy, which was incomplete. Tau inclusions had been

described in affected individuals from only four of the 13

families. Thus, the concept of FTD and Parkinsonism

linked to Chromosome 17 (FTDP-17) was born. The dis-

order in one family had been named ‘multiple system

tauopathy with presenile dementia’ (MSTD) [6]. As a

result, the term ‘tauopathy’ was also introduced, and it is

often used to refer to disorders in which tau protein depo-

sition is the predominant feature.

In June 1998, mutations in the microtubule-associated

protein tau gene (MAPT) were reported in affected indi-
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viduals from nine of the 13 families [7–9]. They all suf-

fered from a dementia syndrome, whereas some also had

parkinsonism. The central neuropathologic feature was

the presence of filamentous hyperphosphorylated tau

protein in neurons or in both neurons and glia. The

remaining four families had mutations in the Granulin

gene (GRN), which is 1.54 megabase pairs centromeric to

MAPT [10,11]. Thus, FTDP-17 has been divided into

FTDP-17 MAPT and FTDP-17 GRN [12].

FTD associated with MAPT mutations is a disorder that

affects multiple domains including behaviour, language,

memory and motor function. It often begins with psychiat-

ric symptoms and can mimic Pick disease, primary pro-

gressive aphasia, Alzheimer disease (AD), progressive

supranuclear palsy (PSP) or corticobasal degeneration

(CBD). Neuropathology and neuroimaging reveal diverse

pictures, consistent with variability of the clinical pheno-

type. It is important for clinicians, neuropathologists and

imaging researchers to be aware that MAPT mutations can

cause such a protean disorder. Their discovery established

that tau dysfunction alone can cause neurodegeneration of

multiple neuronal systems and dementia.

Epidemiology

To date, 53 pathogenic MAPT mutations have been

reported in approximately 150 families [13] from Asia,

Australia, Europe, and both North and South America.

Molecular genetic analyses have demonstrated that some

families share a common founder [14].

FTDP-17 MAPT affects men and women equally. The

average age at symptom onset is 49 years, with a range

from the early 20s to late 70s, similar to sporadic

frontotemporal lobar degeneration (FTLD). The average

life expectancy after symptom onset is 8.5 years, with a

range from 1.5 to 26 years [15–17].

Disease phenotypes in patients with the same MAPT

mutation may vary significantly within and between

families, as well as between individuals with different

mutations [16,18,19]. Thus, genetic modifiers and/or

environmental factors may underlie the phenotypic vari-

ability in clinical presentation.

Genetics and molecular pathology

FTDP-17 MAPT is inherited in an autosomal-dominant

manner. The MAPT gene, located on chromosome 17q21,

encodes the tau protein, which was discovered in 1975

[20]. A decade later, the intraneuronal inclusions of AD

and Pick disease were found to be immunoreactive for

hyperphosphorylated tau [21–23]. The neurofibrillary

tangles (NFTs) of AD are composed of paired helical and

straight filaments. Their molecular characterization

established that they are made of tau protein [24–26].

In the adult human brain, six tau isoforms are gener-

ated from MAPT, the tau gene, through alternative mRNA

splicing (Figure 1) [27]. Alternative splicing of exon 10

gives rise to three isoforms with three microtubule-

binding repeats (3R) each and three isoforms with four

microtubule-binding repeats (4R) each. The repeats are

31 or 32 amino acids in length and are located towards

the carboxy-terminus. In addition, the presence of inserts

of 29 or 58 amino acids or no insert in the amino-

terminus gives rise to 1 N, 2 N or 0 N forms of each 3R

and 4R tau. Full-length tau assembles through the repeats

that form the core of paired helical and straight filaments.

In developing human brain, 3R tau predominates, while

in adult brain, the concentrations of 3R and 4R tau are

approximately equivalent. A normal ratio of wild-type

3R to 4R tau appears to be essential for preventing

neurodegeneration and dementia in the human brain in

mid-life.

Between 1994 and 1997, familial forms of FTD were

linked to chromosome 17q21–22, a region that contains

MAPT [28–30]. In parallel, neuropathological and bio-

chemical studies showed abundant tau deposits in

neurons and glia [31–34]. They highlighted the presence

of a tauopathy affecting grey and white matter in the

absence of amyloid beta deposition, and directed several

laboratories towards the search for mutations in MAPT. In

1998, the first mutations were reported in exons 9, 10 and

13, as well as in the splice site of intron 10 [7–9]. The vast

majority of known mutations occurring in the coding

region are in the repeats, with the mutant tau proteins

Figure 1. Schematic representation of the six tau isoforms

generated by alternative mRNA splicing of exons 2, 3 and 10.
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having a reduced ability to interact with microtubules

[35–37].

Exonic mutations are missense, silent or deletion. All

but two (R5H and R5L in exon 1) occur in exons 9–13.

Most intronic mutations are clustered in the 5′-splice site

of the intron following exon 10. These intronic mutations

and some exonic mutations located in exon 10 affect the

alternative mRNA splicing of exon 10, causing a relative

increase of 4R tau [8,9,38,39]. They destabilize a stem-

loop structure at the exon 10 5′-splice site intron junction

or disrupt cis-acting elements in exon 10. Existence of a

stem-loop structure was hypothesized [8,9] at the time of

the discovery of mutations in MAPT, in view of the self-

complementarity of this region, with subsequent work

supporting this hypothesis [40–42]. The determination of

the solution structure of an oligonucleotide correspond-

ing to the exon/intron junction refined the stem-loop

model, with the identification of an adenosine bulge

between the sixth and seventh base pairs [43]. Mutations

S305I, S305N, S305S, +3, +4, +11, +12, +13, +14 and

+16 destabilize the stem-loop, resulting in increased U1

snRNP binding, and enhanced exon 10 inclusion. Muta-

tions in exon 10, located outside the stem-loop, can also

increase exon 10 splicing, because of the strengthening of

exon splicing enhancers or the weakening of exon splicing

silencers [39,44].

Thus, the primary effect of the coding region muta-

tions may be equivalent to a partial loss of function. The

net effect of mutations, whose primary effect is at the

RNA level, is the overproduction of wild-type 4R tau,

which interacts more strongly with microtubules than

3R tau [45]. Some mutations, such as P301L, P301S

and P301T in exon 10, affect only 20–25% of tau mol-

ecules, with 75–80% being wild-type, arguing against a

simple loss of function mechanism as an important

disease determinant.

It is therefore possible that a partial loss of function of

tau is necessary for setting in motion the gain of toxic

function mechanism that will lead to neurodegeneration.

For MAPT mutations with a primary effect at the RNA

level, the overproduction of 4R tau may result in an excess

of tau over available binding sites on microtubules,

leading to the cytoplasmic accumulation of unbound 4R

tau. This would probably require the existence of different

binding sites on microtubules for 3R and 4R tau. Valida-

tion of this hypothesis will require structural information

at the atomic level. An imbalance in isoform ratios could

also affect tau aggregation directly. Studies in vitro have

shown that filament assembly is decreased in reactions

containing 3R and 4R tau when compared with those

containing only 4R tau [46].

Figure 2 shows the 53 mutations that are currently

known [6–9,14,16,33,34,38,39,47–132]. The most

common are N279K, P301L and intron 10+16.

Soluble and insoluble Tau

A central question revolves around the process by which

tau filaments form. In FTDP-17 MAPT, tau protein

isoforms have biochemical characteristics that differ from

those of the normal protein [133]. A mutation may result

in a structurally abnormal protein, an abnormal ratio of

3R to 4R tau, or both. Normally, tau is a soluble protein;

however, in FTDP-17 MAPT, it is found in both soluble and

insoluble forms. Tau accumulates in the cytoplasm and

becomes hyperphosphorylated, insoluble and assembles

into filaments. However, the order of events in relation

to hyperphosphorylation and filament formation is not

clearly understood.

Missense mutations in exons 1, 9, 11, 12 and 13 affect

all six tau isoforms. Missense and deletion mutations in

exon 10 affect the alternative mRNA splicing of exon 10,

altering isoform ratios in such a way that relatively more

4R than 3R tau is produced. A summary is given in

Table 1, row 1.

Hyperphosphorylation of Tau and

filament formation

Hyperphosphorylation of tau is believed to play a crucial

part in the pathogenesis of human tauopathies [133]. In

FTDP-17 MAPT, it is unlikely to be primary as none of the

known mutations influence phosphorylation directly.

Nevertheless, evidence has been adduced to suggest

that some MAPT mutations can lead to enhanced

phosphorylation [134], followed by filament formation.

Morphological evidence for the presence of the insoluble

form is provided by the finding that some tau deposits are

fluorescent using Thioflavin S, tau filaments are found in

neurons and glia and tau filaments can be visualized in

sarkosyl-insoluble tissue preparations.

Filament morphologies have been studied using fixed

tissues and preparations of dispersed filaments [135]. The

latter are particularly informative as they allow one to

correlate Western blot analysis with immunoelectron

microscopy. Tau filaments can be straight, ribbon-like or

26 B. Ghetti et al.
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paired helical. Table 1 summarizes the characteristics of

abnormal tau as demonstrated by Western blot analysis,

the type of tau filament and the nature of the intra-

cytoplasmic inclusions.

Distribution of Tau inclusions

The neuropathological phenotypes associated with

FTDP-17 MAPT vary substantially; however, the invari-

able hallmark is the presence of tau protein deposits in

neurons or in both neurons and glia. No cases with only

glial tau inclusions have been described. Tau deposits are

abundant in cerebral cortex and white matter; subcortical

and brain stem nuclei, as well as the spinal cord, are vari-

ably affected.

Inclusions are labelled by antibodies specific for the

amino-terminus, the repeat region and the carboxy-

terminus of tau. In addition, phosphorylation-dependent

antibodies are used. According to the numbering of

the longest human brain tau isoform, prominent

phosphorylation sites are serines 202, 214, 235, 262,

356, 396, 404 and 422, and threonines 181, 205, 212

and 231. An antibody recognizing phosphorylated

S262 and/or S356 labels NFTs, but not classical Pick

bodies [136]. Antibody AT8, which recognizes tau

phosphorylated at S202 and T205, labels tau deposits in

neurons and glia. Some tau deposits are also immunore-

active for ubiquitin. RD3 and RD4 are anti-tau antibodies

that recognize 3R and 4R tau, respectively.

Inclusions may resemble those of AD with filaments

made of all six brain tau isoforms (see Table 1). This is the

case of mutations V337M (Exon 12) and R406W (Exon

13), as illustrated in Figure 3. The images highlight

neuronal involvement with tau immunopositivity revealed

by an antibody specific for phosphorylated tau (AT8,

Figure 3a,b), as well as by antibodies specific for 3R and 4R

tau (Figure 3c–f). Inclusions similar to Pick bodies are

often observed in association with mutations in exons 9,

11, 12 and 13. Straight filaments, with some twisted fila-

ments, are characteristic of Pick body-like structures that

are primarily composed of 3R tau, with a variable amount

of 4R tau (Figure 4, Table 1). The images highlight Pick

body-like inclusions immunopositive for phosphorylated

tau (Figure 4a,b) and 3R tau (Figure 4c,d). There is occa-

sional immunopositivity for 4R tau (Figure 4e,f). Muta-

tions in exons 9, 11, 12 and 13 lead to deposits of tau

Figure 2. Schematic representation of the exons and introns of the MAPT gene, where 53 mutations causing FTDP-17 have been found.

Intronic mutations −15 and +4 occur together.
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Figure 3. Tau pathology in the hippocampus of a patient carrying the R406W mutation. Dentate gyrus (a, c, e) and pyramidal layers

(b, d, f) of the hippocampus are immunolabeled with anti-tau antibodies, showing tau-immunoreactive neuropil threads and neurofibrillary

tangles with antibodies AT8 (a, b), 3R tau (c, d) and 4R tau (e, f).
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Figure 4. Tau immunohistochemistry in the frontal cortex from a case with the G389R mutation. AT8 labelling demonstrates

tau-immunoreactive deposits or Pick bodies in neurons of layers II-VI (a, b). The tau deposits are positive for 3R (c, d) and 4R (e, f) tau.
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filaments predominantly in neurons, while mutations in

exons 1 and 10, as well as those in the introns following

exons 9 and 10, are associated with neuronal and glial

deposits. The glial pathology is in the form of coiled bodies

in oligodendroglia, tufted astrocytes and astrocytic

plaques, reminiscent of that of PSP and CBD. Cytoplasmic

tau deposits affect the perikarya and dendrites of nerve

cells. There is strong and diffuse cytoplasmic immuno-

positivity, but in Thioflavin S preparations, fluorescence is

barely detectable, unlike what is seen in NFTs and Pick

body-like inclusions.Twisted ribbon filaments characterize

the neuronal and glial inclusions and are composed of 4R

tau. Highlighted in Figure 5 are affected nerve cells and

glial cells using antibodies specific for phosphorylated tau

(Figure 5a,b) and 4R tau (Figure 5e,f). 3R tau staining was

not observed (Figure 5c,d). Mutations in exon 10 only

affect 4R tau; some of these mutations also affect exon 10

splicing, altering the ratio of 3R/4R tau. This is illustrated

in Figure 6, where the immunohistochemical characteris-

tics of neuronal and glial involvement in the hippocampus

are revealed by antibodies specific for phosphorylated (a),

3R (b) and 4R (c) tau.

The anatomical distribution of tau in the various

regions of the central nervous system has been reported

with different details in relation to individual mutations.

In Table 2, the brain regions involved in FTDP-17 MAPT

are presented according to the mutation and grey matter

regions involved.

The data related to anatomical distribution are mostly

obtained in intermediate and late stage of FTDP-17 MAPT.

The degree of atrophy varies, with brain weights ranging

from 654 to 1290 g. Little is known about the early

neuropathologic stages. In the intermediate stages, atro-

phy of the cerebral hemispheres is mild, even though the

characteristic histopathological changes in cerebral

cortex, subcortical nuclei and white matter are already

prominent. There may be mild atrophy of the caudate

nucleus and a reduction in the pigmentation of the

substantia nigra and the locus coeruleus. In advanced

stages, the degree of atrophy varies and may be present

throughout the frontal and temporal lobes, caudate

nucleus, putamen, globus pallidus, amygdala, hippo-

campus and hypothalamus. Most often, the superior,

middle and inferior frontal gyri, as well as the superior,

middle and inferior temporal gyri, bear the brunt of the

disease, with the anterior portion of the temporal lobe

being particularly vulnerable. Brain atrophy may involve

the frontal and temporal lobes asymmetrically and can be

so severe that the gyri have a ‘knife edge’ appearance. The

orbital, cingulate and parahippocampal gyri may also be

involved. Parietal and occipital lobes are less frequently

affected. The white matter of the centrum semiovale and

the temporal lobes are often substantially reduced, as is the

thickness of the corpus callosum. Midbrain and pons may

also be reduced in bulk with particular involvement of the

descending fibers of the fronto-pontine and temporo-

pontine pathways. In addition, there is a reduction in the

nigro-striatal projections. In some instances, mild atrophy

of the cerebellar cortex and discoloration and atrophy of

the dentate nucleus are present. The lateral ventricles and

the third ventricle are enlarged.

Neuroimaging

Computerized tomography (CT) and magnetic resonance

imaging (MRI) of patients with MAPT mutations

reveal atrophy of the frontal and/or temporal lobes with

occasional involvement of the parietal lobes, accom-

panied by enlargement of the lateral ventricles

[16,74,82,96,121,137,138]. In some individuals, the

cortical atrophy is asymmetrical, but the majority of

cases have relatively symmetric patterns of atrophy. MRI

T2*-weighted images may show accumulation of para-

magnetic substances (iron) in mesencephalic nuclei

[137]. Increased T2-weighted signal changes have been

reported [139]; they are often seen in white matter,

reflecting the prominent white matter pathology present

in many cases. It is not yet clear if these changes are

due to a loss of myelinated axons; additional radio-

pathological studies are needed.

A few studies on familial FTD have begun to compare

neuroimaging features resulting from mutations in differ-

ent genes. MAPT mutations are associated with a rela-

tively symmetric atrophy of the anterior temporal lobe,

accompanied by lesser atrophy of orbitofrontal and lateral

prefrontal cortices. Preliminary findings indicate that

MAPT mutations affecting the splicing of exon 10 are pre-

dominantly associated with medial temporal lobe involve-

ment, while mutations in the coding region are mainly

associated with lateral temporal lobe involvement. This is

important because it begins to differentiate patients with

MAPT mutations from those with GRN or C9ORF72

mutations. GRN mutations tend to be associated with

markedly asymmetric atrophy of the temporal, inferior

frontal and inferior parietal lobes [138,140,141]. In con-

trast, C9ORF72 mutations tend to be associated with
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Figure 5. Tau pathology in the hippocampus of a patient carrying the IVS10+16 mutation. Dentate gyrus (a, c, e) and pyramidal layers

(b, d, f) of the hippocampus are immunolabeled with anti-tau antibodies, showing tau-immunoreactive inclusions with antibodies AT8

(a, b) and 4R tau (e, f), but not 3R tau (c, d).
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symmetric atrophy predominantly involving dorsolateral,

medial and orbitofrontal lobes, with additional loss in

anterior temporal, parietal and occipital lobes, as well as in

the cerebellum [141].

An attempt to correlate structural brain imaging with

the biological aspects of hereditary tauopathies may not

be successful because of the different rates of atrophy and

the sequences of anatomical involvement, which are

highly variable even in cases with the same mutation.

Figure 7 shows structural MRIs from patients who are car-

riers of MAPT mutations, V337M, G389R, IVS10+3 and

P301L, which are respectively associated with inclusions

containing 3R and 4R tau, predominantly 3R tau, pre-

dominantly 4R tau, and 4R with some 3R tau. An impor-

tant confound in these comparisons is that these images

are from individuals at different stages of disease, and spe-

cific details about the initial location of atrophy are no

longer discernible.

Longitudinal MRI studies of brain atrophy suggest that

MAPT mutations are associated with an atrophy rate

intermediate between those of GRN and C9ORF72

[142,143].

Functional imaging studies, such as single photon

emission CT (SPECT) and [F-18] fluorodeoxyglucose posi-

tron emissions tomography (FDG-PET), typically demon-

strate substantial abnormalities. FDG-PET often shows

reduced frontal and/or temporal uptake, similar to

the patterns seen in sporadic FTD [144]. PET with

dopaminergic (e.g. [F-18]-fluoro-L-dopa (6FD) and

[C-11]-raclopride) tracers reveals uptake abnormalities

different from those of Parkinson disease (PD) [145]. In

the MSTD family, a study of multiple members carrying

mutation IVS10+3 showed that structural changes, pre-

dominantly seen bilaterally in the medial temporal

lobes, substantially overlapped with the hypometabolism

observed with FDG-PET [146].

Investigations have begun to determine whether

neuroimaging abnormalities are present in asympto-

matic MAPT mutation carriers, with initial evidence sug-

gesting that abnormalities of brain structure [147],

connectivity [148,149] and white matter tract integrity

[148] may be detectable prior to the development of

symptoms. Longitudinal changes in an asymptomatic

MSTD mutation carrier showed that whole brain volume

(WBV) changes were −0.47%/year in the first 2 years of

assessment and −1.83%/year in the following 5 years,

indicating an acceleration of the rate of brain atrophy

and suggesting the approaching threshold of a clinically

Figure 6. Tau pathology in the hippocampus of a patient carrying

the P301L mutation. The dentate gyrus of the hippocampus is

labeled with AT8 (a) and 4R tau (c), but not 3R tau (b).

MAPT mutations and FTD 33

NAN 2015; 41: 24–46© 2014 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd

on behalf of British Neuropathological Society



T
a

b
le

2
.

B
ra

in
a

re
a

s
a

ff
ec

te
d

in
F

T
D

P
-1

7
M

A
P

T
a

cc
o

rd
in

g
to

m
u

ta
ti

o
n

34 B. Ghetti et al.

NAN 2015; 41: 24–46© 2014 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd

on behalf of British Neuropathological Society



Figure 7. Coronal T1-weighted magnetic resonance imaging (MRI). Panel a is from a 65-year-old male with behavioural-variant

frontotemporal dementia associated with the V337M MAPT mutation. Symptoms evolved over 20 years. Note the moderate to marked

bilateral frontal and temporal cortical atrophy, with a severe anterior temporal lobe atrophy. Panel b is from a 25-year-old male with

frontotemporal dementia and primary progressive aphasia associated with the G389R MAPT mutation. Symptoms rapidly developed over 1

year. Note the mild bilateral frontal and temporal cortical atrophy, with more pronounced medial and inferolateral anterior temporal

atrophy. Panel c is from a 51-year-old male with behavioural-variant frontotemporal dementia associated with the IVS10+3 MAPT

mutation. Symptoms evolved over 3 years. Note the mild bilateral frontal and temporal cortical atrophy with more pronounced mesial

temporal atrophy. Panel d is from a 62-year-old female with severe behavioural-variant frontotemporal dementia associated with the P301L

MAPT mutation. Symptoms evolved over 6 years. Note the striking bilateral prefrontal and anterior temporal atrophy with white matter

changes.
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recognizable symptomatology [150]. In five symptomatic

MSTD patients, the average WBV changes were −2.47%/

year. Findings from the Genetic FTD Initiative suggest

that structural changes can occur 25 years prior to

symptom onset in the hippocampus, 15 years in the

amygdala, 10 years in the temporal lobe and 5 years in

insula and cingulate [151].

PET ligands to study tau pathology in vivo have been

developed [152–157]. A series of compounds was tested

for selectivity of binding to tau pathology in post-mortem

brain tissue from patients with AD pathology [158].

Binding was compared against immunohistochemistry,

and based on more than 25-fold greater binding to tissue

sections with high tau burden relative to amyloid-β,

[F-18]-T807 was selected; the first set of images and quan-

titative binding data of [F-18]-T807 to specific brain

regions in a small group of patients with AD and normal

controls was very encouraging [159].

A study at the Massachusetts General Hospital has

begun to analyse MAPT mutation carriers with [F-18]-

T807 PET. A 56-year-old man with the P301L mutation

has been followed from prodromal FTD to bvFTD associ-

ated with an extrapyramidal syndrome. A [F-18]-T807

PET scan obtained 3.5 years from the onset of the behav-

ioural symptoms (Figure 8) demonstrates robust signal in

a classic frontotemporal distribution characteristic of

inherited tauopathies and with remarkable similarity to

the map of pathology described in the MSTD family by

Spina and colleagues [108]. Sparing of the occipital

cortex contrasts with severe involvement of the anterior

and temporal regions of the telencephalon. Although

involvement of the basal ganglia is variable in sporadic

FTLD-tau, many MAPT cases have prominent pathology

there. These studies are promising for the further charac-

terization of patients with MAPT mutations.

Comparative analysis of post-mortem tau immuno-

histochemistry with in vivo [F-18]-T807 PET is essential

for understanding the sensitivity of the tracer and the

evolution of hyperphosphorylated tau protein deposition.

The post-mortem pattern of tau distribution, in the tem-

poral cortex and hippocampus of a 62-year-old patient

carrying the P301L MAPT mutation and symptomatic

for 10 years, is shown in Figure 9. This image is com-

pared with a PET scan obtained in vivo using the [F-18]-

T807 tracer from the 56-year-old patient carrying

the MAPT P301L mutation just described. Images

obtained from immunohistochemistry and PET imaging

reveal tau involvement in the middle temporal gyrus,

parahippocampus, entorhinal cortex and hippocampus

in both cases, as well as the sparing of the superior tem-

poral gyrus.

In vivo tau imaging coupled with neuropathological

investigation will improve our understanding of tau

spreading in the brain and bring forward knowledge of the

large number of disorders characterized by tau deposition

[160,161].

Clinical features

The onset of FTDP-17 MAPT is typically insidious. Indi-

viduals with fully developed clinical syndromes usually

exhibit at least two of the three cardinal symptoms, which

are behavioural and personality disturbances, cognitive

impairment and/or motor dysfunction (most often in the

form of an extrapyramidal/parkinsonism plus syndrome).

Nevertheless, there is substantial heterogeneity. Moreover,

clinical variability is seen in individuals with the same

MAPT mutation, in different families or even within the

same family (for details about clinical presentation, see

Ghetti et al. [17]).

The behavioural and personality abnormalities include

disinhibition, apathy, loss of empathy, emotional flatness,

impulsive and/or compulsive behaviour, lack of regard for

personal hygiene, hyperorality including excessive use of

alcohol or other drugs, and in some cases verbal and/or

physical aggressiveness. The cognitive symptoms com-

monly observed in early stages of disease include inatten-

tion and executive dysfunction (e.g. difficulty initiating or

completing activities or tasks, disorganization, impaired

judgment and decision making) with relative preservation

of memory, orientation and visuospatial function, thus

fulfilling criteria for behavioral variant FTD (bvFTD) [162].

Family members may report memory loss in daily life, but

this is often a reflection of the effects of attentional or

executive dysfunction on encoding or retrieval. However,

some patients with FTDP-17 MAPT present with a pro-

found amnestic syndrome [33]. Similarly, the literature

contains statements about semantic dementia being a pos-

sible clinical phenotype of FTDP-17 MAPT, but all cases,

except one, also had a behavioural phenotype [163]. A

progressive loss of person-specific semantic memory with

prominent anomia and right temporal polar atrophy, as

well as other characteristics of semantic dementia, was

described in an individual with the V363I MAPT mutation

[119]. Thus, semantic memory in FTDP-17 deserves

further investigation.
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Figure 8. [F18]-T807 PET images from a 56-year-old individual with frontotemporal dementia and the P301L MAPT mutation. Coronal

(top row), sagittal (middle row) and axial (bottom row) views of prefrontal and anterior temporal atrophy with white matter signal change

on MRI (left column) and [F18]-T807 images (right column) showing elevated signal in frontal, anterior temporal and parietal cortex, as

well as in basal ganglia, consistent with expected tau inclusions. The PET reference region was the cerebellar grey matter.
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Progressive nonfluent aphasia may be seen initially

[118], but more commonly, an adynamic aphasia syn-

drome occurs in which the patient speaks very little due to

a loss of generative aspects of language. Later, progressive

deterioration of memory, orientation and visuospatial

function, as well as echolalia, palilalia, and verbal and

vocal perseverations, are encountered. Finally, progressive

dementia encompassing most cognitive domains develops,

and patients often become mute. Motor signs are domi-

nated by parkinsonism, which can be the presenting sign,

with some patients being misdiagnosed as having PD or

PSP. However, in some families, parkinsonism occurs late

or not at all. Parkinsonism associated with FTDP-17

MAPT is characterized by symmetrical bradykinesia,

postural instability and rigidity affecting axial and

appendicular musculature, absence of resting tremor, and

poor or no responsiveness to levodopa. Parkinsonism is an

early feature of the N279K mutation, and asymmetric

resting tremor and levodopa responsiveness have been

observed [14]. Other motor disturbances may include

dystonia, supranuclear gaze palsy, upper and lower motor

neuron dysfunction, myoclonus, postural and action

tremor, apraxia of eyelid opening and closing, dysphagia,

and dysarthria.

Although essentially no systematic work has been pub-

lished on genotype–phenotype correlations in FTDP-17

MAPT, anecdotal observations suggest that exonic muta-

tions that do not affect the splicing of exon 10 are usually

associated with a dementia-predominant phenotype. In

contrast, intronic and exonic mutations that affect exon

10 splicing and lead to an overproduction of four-repeat

tau tend to be associated with a parkinsonism plus-

predominant phenotype.

Conclusion

This review emphasizes the protean nature of FTD associ-

ated with MAPT mutations, as well as the need for corre-

lating longitudinal clinical and neuropsychological

studies with neuroimaging. Ideally, this research should

be carried out both before the onset of symptoms and

during the disease in individuals with mutations that dif-

ferentially affect tau isoforms. These studies, in conjunc-

tion with the neuropathological description of tau

inclusions, will provide a precise characterization of phe-

notypic variants and may clarify the anatomical and cel-

lular substrates of each phenotype, as well as the

evolution of tau aggregate propagation.
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