
Inviz: Low-power Personalized Gesture Recognition

using Wearable Textile Capacitive Sensor Arrays

Gurashish Singh, Alexander Nelson, Ryan Robucci, Chintan Patel, Nilanjan Banerjee

Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County

{singhg1, alnel1, robucci, cpatel2, nilanb}@umbc.edu

Abstract—Home automation and environmental control is a
key ingredient of smart homes. While systems for home automa-
tion and control exist, there are few systems that interact with in-
dividuals suffering from paralysis, paresis, weakness and limited
range of motion that are common sequels resulting from severe
injuries such as stroke, brain injury, spinal cord injury and many
chronic (guillian barre syndrome) and degenerative (amyotrophic
lateral sclerosis) conditions. To address this problem, we present
the design, implementation, and evaluation of Inviz, a low-cost
gesture recognition system for paralysis patients that uses flexible
textile-based capacitive sensor arrays for movement detection.
The design of Inviz presents two novel research contributions.
First, the system uses flexible textile-based capacitive arrays as
proximity sensors that are minimally obtrusive and can be built
into clothing for gesture and movement detection in patients with
limited body motion. The proximity sensing obviates the need
for touch-based gesture recognition that can cause skin abrasion
in paralysis patients, and the array of capacitive sensors help
provide better spatial resolution and noise cancellation. Second,
Inviz uses a low-power hierarchical signal processing algorithm
that breaks down computation into multiple low and high power
tiers. The tiered approach provides maximal vigilance at minimal
energy consumption. We have designed and implemented a fully
functional prototype of Inviz and we evaluate it in the context of
an end-to-end home automation system and show that it achieves
high accuracy while maintaining low latency and low energy
consumption.

I. INTRODUCTION

An estimated 1.5 million individuals in the United States
are hospitalized each year because of strokes, brain injuries
and spinal cord injuries [1], [2], [3]. Severe impairment such
as paralysis, paresis, weakness and limited range of motion
are common sequels resulting from these injuries requiring
extensive rehabilitation. Changes in healthcare reimbursement
over the past decade have resulted in shorter lengths of stay at
hospitals and limitations on the amount of therapy that patients
can receive post acute care. These changes present medical
rehabilitation practitioners with a challenge to do more for
patients with less time and resources. It is imperative that
practitioners implement assistive technologies efficiently and
effectively to help patients maximize independence as early in
the rehabilitation process as possible and provide methods to
augment and supplement direct care that can be utilized over
time to support recovery. This is particularly true for patient
conditions where physical recovery can be a slow process over
many years [4], [5].

Gesture recognition-based environmental control systems
are capable of allowing patients with mobility impairments
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Fig. 1. The figure shows a prototype Inviz system worn by a patient with
a spinal cord injury. The top figure demonstrates the capacitive sensor array
sewn into the denim fabric using conductive wires. The data from the sensors is
analyzed using our custom-designed wireless module which uses capacitance
measurement ICs, an MSP430 micro-controller, and Bluetooth Low Energy
(BLE) wireless module.

greater control over their environment. Several techniques such
as the use of inertial sensors, vision systems, and other forms
of tracking can be used to capture body gestures [6], [7],
[8], [9], [10]. Gesture recognition systems for individuals with
mobility impairments, however, present a set of fundamental
challenges that typical gesture recognition systems often fail
to address. First, sensors for gesture recognition are intrusive,
bulky, or expensive [11]. Eye tracking systems necessitate
the use of mounted cameras while evoked-potential or touch-
based systems use electrodes that can cause skin irritation
and abrasion, conditions that can have a deleterious effect
if unnoticed due to diminished sensation in the extremities.
Second, existing systems are often not suitable for mobility
impairments as they assume certain motions which a person
may not be able to complete. There is a need, therefore, of
systems that require minimal set-up and maintenance, and
cause minimal fatigue and intrusiveness.

In order to address the above challenges, we have designed,
implemented, and evaluated Inviz which uses wearable sensors
built from textile-based capacitive-sensor arrays (CSA). These
CSAs work on the principle of change in capacitance when



there is movement in the proximity of the fabric capacitor
plates. These plates can be sewn into clothing fabrics. Figure 1
illustrates a prototype Inviz system built using the capacitive
plates and conductive threads sewn into the denim fabric.
We have designed a low-power hierarchical signal processing
algorithm that converts signals from a CSA to reliable gestures.
Our prototype then uses these gestures to control appliances in
the home. In Inviz, we support two broad categories of gestures
(1) Swipes: moving the hand from one plate to another; and (2)
Hovers: protruding the hand over a textile sensor plate and then
retracting the hand from the plate. Through conversations with
patients suffering from partial paralysis (e.g., C-6 spinal cord
injuries), and their physical therapists, we have determined that
swipes and hovers are gestures that are comfortable to perform.

Contributions: The design, implementation, and evalua-
tion of Inviz present the following research contributions:

(1) Textile-based Wearable Capacitive Sensor Arrays
for Proximity Movement Detection: We present textile-based
CSAs as a novel and versatile sensing modality for remote
movement and gesture recognition. The capacitive plates are
built out of conductive textile and can be integrated as-needed
into clothing or otherwise worn as a wearable garment, or
integrated into the environment (e.g. furniture, wheelchair, car
seats), so it is unobtrusive to the user. The CSA measures
movement in the proximity of the capacitor plates, hence they
render irrelevant any concerns of skin abrasion caused by
touch-based sensors. Additionally, the integrity of the fabric
plates is preserved by avoiding wear from continual touch.
An array of plates reduce noise due to stray capacitance and
electrical interference and can be reliably used for capturing
attributes such as speed and direction of motion; and are
sensitive enough to capture subtle body movements.

(2) Hierarchical Low-Power Signal Processing for Ges-
ture Recognition: We present a hierarchical gesture recog-
nition algorithm that distributes the processing into several
tiers. These tiers include generating observations from the
analog differences between plates, feature extraction from the
generated observations, and using these features in a machine
learning algorithm to determine the gesture with high accu-
racy. The computation involved is distributed among on-chip
calculation using low-power hardware and general purpose
micro-controllers, where the high-power controller is woken
up only as-needed when interesting features are detected.
The hierarchical processing provides accurate and low-power
continuous gesture recognition.

(3) Prototype Development and Evaluation: We have
designed, implemented, and evaluated an Inviz prototype that
combines our CSA based system with a home automation
system for environmental control. We evaluate the system on
five subjects and demonstrate that the system can reliably
detect gestures while consuming minimal power.

II. RELATED WORK

Inviz builds on previous work on capacitive sensing, ges-
ture recognition systems and signal processing algorithms for
gesture recognition. Here we compare and contrast our work
with the most relevant literature.

Capacitive Sensing: Inviz builds on previous work on
capacitive sensing [12] applied to industrial, automotive, and

healthcare applications [13], [14]. For instance, capacitive
sensors have been used in positioning [15], [16]; humidity
sensing [17], [18]; tilt sensing [19], [20]; pressure sensing [21];
and MEMS-based sensing [21]. Capacitors have also been
applied as proximity sensors with applications to robotics,
industrial monitoring and healthcare applications [22], [23],
[24]. Products like Microchip’s GestIC [?] have been intro-
duced which allow for 3D gesture tracking using capacitive
sensing using a rigidly-defined array shape. Inviz extends the
use of capacitive sensing gesture recognition through two key
novel contributions. First, Inviz uses an array of textile-based
capacitive plates embedded into clothing to collect fine-grained
movement data for paralysis patients, an application where
capacitors have not been utilized, with unique challenges in
remote sensing using imprecisely fabricated sensor elements.
Typically precisely fabricated capacitor arrays (such as touch
screens) are used for complex movement measurements, while
previous work in textile capacitive sensors rely on touch
and pressure sensing paradigms which do not present as
many challenges as proximity detection. Second, Inviz uses
a low-power hierarchical signal processing algorithm allows
customization while dividing computation into low-power and
high-power computational tiers. The tiered design allows the
higher-power tier in the hierarchy to be switched off most of
the time, leading to large energy savings, while still allowing
us to invoke additional just-in-time computational resources. A
key goal of this effort is a complex customizable recognition
system with continuous monitoring capability.

Gesture Recognition Systems: The recent increase in
adoption of home-automation technologies has spawned the
development of new platforms for environmental control based
on gestures. Vision based gesture-recognition systems [25], for
instance, allow environmental control without physical contact
with a controlling device. Vision-based systems, however,
require blanket coverage of cameras that can be prohibitively
expensive. Home automation techniques have recently been
adapted to enable persons with limited mobility to have greater
autonomy in environmental control. These mobility-limited
targeted platforms include voice-activated systems [26], head-
tracking [27], EOG based eye-tracking and inertial sen-
sors [28]. Paramount to assistive technology in the home-
automation space is the ability to customize the application
to the specific needs and abilities of the user. The system
should also be able to function regardless of user orientation
or position within the home. Our CSA based approach allows
for subtle and arbitrary gestures within any reference frame as
Inviz is built into the patient’s environment—in clothes, sheets,
or wheelchairs.

Signal Processing for Gesture Recognition: There is a
large body of work on applying signal processing techniques
to gesture recognition. Learning techniques such as Hidden
Markov Models [29], decision trees [30], and Bayesian infer-
ence [31] have been applied to converting data from sensors
such as accelerometers to movement activities and gestures. In-
viz uses machine learning techniques such as nearest-neighbor,
Bayesian inferences, and decision trees in the highest tier of
its signal processing hierarchy. The innovation in the design
of Inviz is not in a particular signal processing algorithm
but in combining feature extraction algorithms and learning
techniques in a hierarchy of processing tiers such that energy
consumption of the system can be minimized and gestures



body
resistance

body
capacitive

coupling
to ground

body
inductance

measured
capacitance

capacitor
sensor

human body

capacitive
coupling to

ground plane

AC shield

textile
capacitive

array

C
b ground

plane

conductive
thread network

Fig. 2. The left figure shows the equivalent electrical circuit when a capacitive
plate is placed on the leg and the user performs gestures using his hand. The
body is capacitively coupled to the sensor ground using a sensor ground plane.
The right figure illustrates a longitudinal cross sectional view of the sensor.
The CSA is sewn into fabric. Data from the capacitive plates are collected
using a network of conductive threads sewn into the fabric. The sensor array
consists of two additional layers – an AC shield layer and a ground plane that
comprise of conductive textile plates sewn into fabric.

can be recognized accurately using an array of textile-based
capacitive plates.

III. SYSTEM GOALS

For long term adoption and continuous usage, the imple-
mentation of Inviz aspires to the following two goals:

Inviz must be minimally obtrusive and must require
minimal battery recharges. One of the primary deterrent
to continuous long-term use of existing environmental control
systems used by patients with paralysis is their bulkiness [11].
To address this challenge, one of our primary goals is to make
Inviz minimally obtrusive and possibly invisible to the patient.
To this end, we use textile-based plates that can be embedded
into items of daily use. Moreover, we design our signal
processing and wireless system to consume as little power as
possible, to minimize the number of battery recharges—a huge
and sometimes under-appreciated impediment to the adoption
of systems used by patients with limited mobility [11].

Inviz must avoid precise and touch-based gestures. Patients
with paralysis have reduced skin sensation. Hence, touch-
pads [32] that require the users to perform precise touch
gestures can cause skin abrasion. Moreover, precise gestures
are difficult to perform for paralysis patients, and capabilities
vary widely among patients. Our subject who suffers from type
C-6 spinal cord injury (in Figure 1), for instance, is unable
to perform precise touch or movement gestures. Hence, Inviz
allows imprecise swipe and hover gestures that do not require
physical contact. The proximity gesture recognition is enabled
by CSAs, described in detail below.

IV. CAPACITIVE SENSOR ARRAYS FOR GESTURE

RECOGNITION

As described in the previous section, minimal obtrusiveness
and avoiding precise touch-based gestures is key to adoption
of environmental control systems for patients with limited
mobility. While camera-based gesture recognition systems are
a plausible remedy, blanket coverage of an area with cameras
can be prohibitively expensive and would not be able to move
with the patient. Our solution addresses this problem through
the use of wearable textile-based capacitive plates built into
clothing fabric. In our system conductive textile plates are sewn
into fabric such as denim using conductive threads. Unlike
touch-based sensing, a popular sensing modality for capacitive

sensors, we focus on proximity sensing using an array of these
capacitive sensor plates.

Capacitive sensors work on the principle of change in
capacitance due to perturbation in the electric fields between
the plates of the capacitor, making them highly versatile.
Unlike accelerometers and gyroscopes that measure movement
of the body to which they are attached, capacitive sensors
can sense movement of remote bodies. Figure 2 illustrates
the principle using an example where an array of capacitive
plates is worn by a patient and gestures are performed by
moving the hand in the vicinity of the array without touch.
The body of the patient is capacitively coupled to the ground
of the sensor system. When the hand is moved close to the
capacitor plates, the capacitance Cb increases. Inversely, the
value of capacitance Cb can be used to localize the hand with
respect to the plates. The range of our capacitive plate of size
2 inch by 2 inch is close to 3 inches (7.6 cm). This range
sufficient to prevent accidental touch and skin abrasion and
can be adapted as the range is variable with plate size and
shape. The longitudinal cross-section of our designed sensor
is also illustrated in Figure 2. The top layer is a network of
capacitive sensor plates connected via conductive threads. An
AC shield plane minimizes parasitic capacitance and noise
coupling. The ground plane capacitively couples the human
body to the ground of the sensor and provides a common
reference for the capacitance measurements.

One of the novel contributions of Inviz is in the use of
an array of capacitive plates. An array of plates has several
advantages over a single large plate. First, taking differentials
between capacitor plates helps minimize noise due to stray
movements in the vicinity of the plates. Secondly, an array of
capacitor plates can help capture rich motion attributes such as
velocity, and can be used to distinguish gestures. For example,
Figure 3(a) graphs the analog difference between two capacitor
plates when a hand is moved from one plate to the other with
the subtraction of the two plates creating a peak, followed by
a zero crossing, followed by a valley. Features such as width
of the peak-valley pair can determine the speed of movement
of the hand, and their causal order can determine direction of
motion. Similarly, Figure 3(a) also graphs the analog difference
in capacitance between plates when the user has their hand
above a plate (termed a hover gesture). The width of the
peak in this case can be used to determine the time of the
hover. An array of capacitors can therefore be used to capture
movement features such as time, velocity, and position of the
hand with respect to the plate. Finally, an array of these sensors
provide different vantage points for the same movement and
can increase the reliability of gesture recognition. In Inviz,
data from the CSA is converted into a reliable gesture using
a hierarchical signal processing algorithm described below.
Figure 3(b) illustrates the fundamental challenges in processing
the raw capacitance data in the Inviz system. The figure shows
the same gesture performed by the same user at three different
times. As illustrated by the regions of interest i and ii, there
is high irregularity in the signal produced by the user trying
to produce the same gesture.

V. HIERARCHICAL SIGNAL PROCESSING

While the evaluation of Inviz focuses on two gesture
types, hovers and swipes, the goal of our hierarchical signal
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Fig. 3. (a) The figure plots the analog difference between capacitance measurements taken from two plates as the hand is swiped from one plate to the other
and the hand is hovered on top of a single plate. It also plots threshold detection signals when the values are above a high threshold and below a low threshold.
(b) The figure illustrates one of the fundamental challenges for Inviz. The figure shows the irregularity in the signals collected by our sensors when a subject
performs the same gesture at three different times. For instance, in iteration 3 observation signal y3 closely follows observation signal y1, making the two almost
indistinguishable. However, in iteration 2 that is not the case. Inviz mitigates this challenge using a hierarchical processing system that spans from sensor data
collection to a machine learning algorithm.

processing algorithm, described below, is to present a general
framework to determine gestures from an array of wearable
plates while consuming minimal energy. Our signal processing
architecture can be extended to support more complex gestures
such as sign language alphabets [33].

Figure 4(a) illustrates our end-to-end gesture recognition
system and Figure 4(b) illustrates how the data from the capac-
itor plates are transformed into gestures using our hierarchical
signal processing architecture. Our system can train on impre-
cise swipe and hover gestures performed by a user and can
be personalized to a specific user. Another key insight in our
design is to break down the computation to a set of low- and
high-power tiers. The low-power tier continuously processes
data while waking up the high-power tier only for feature
extraction and gesture classification. Such a hierarchical design
provides high diligence and system availability at minimal
energy consumption. Below we describe the different tiers in
our processing hierarchy, as illustrated in Figure 4(b).

Observation Calculation: The observations are innately
calculated at the lowest tier of the hierarchy. These observa-
tions are measurements from the capacitors taken as linear
combinations of capacitance values from the plate array. These
observations {y1, .., yk} each follow an observation model
∑i=n

i=1
Wi,k · ci where Wi,k ∈ {0, 1,−1}, ci represents the

equivalent capacitance between a plate and ground and n
is the number of sensor plates. Note that the measurements
cannot be made concurrently in our system, since only a
single data converter is used. Instead, the measurements are
taken in a periodic sequential pattern to create a round of
measurements, [y1, .., yk] . We control the linear combinations
that are computed in the analog domain through low-power
multiplexors. We employ, as demonstrated in this system, a
pattern of differential measurements whereby analog subtrac-
tions between plates is calculated. The particular ordering of
the measurements does not matter if the gestures are slow
compared to the sampling rate. Furthermore, since we employ

a machine learning approach in the higher-power tier in our
system, as long as the same ordering is used for both training
and testing, the measurement order is of minimal importance.
The use of differential measurements rejects transient envi-
ronmental noise including common noise among the plates.
These differential measurements also form a receptive field
most sensitive to motions in the proximity of the plates while
being more insensitive to motions at a distance as compared
to a single-ended measurement. Therefore, the differential
measurements can also cancel noise due to stray movements
far from the plates and can capture subtle movements close to
the plates.

A characteristic response of a differential pair from a hand
swipe over the two capacitor plates is shown in Figure 3(a)
(i). In this case the hand passed successively over each plate.
Likewise, when the hand only passes over a single plate, the
characteristic differential response is shown in Figure 3(a)
(iii). These two characteristic responses are detected in our
system using a pair of threshold detectors capturing positive
and negative events illustrated as the low and high thresholds
in Figures 3(a) ((ii) and (iv)). The thresholds for the events are
established relative to a baseline capacitance for each obser-
vation channel which is continually recalculated while there is
only minimal changes in the capacitive data. The separation of
the thresholds from the baseline was determined in our system
using experimental data analysis using our prototype and pro-
grammed manually. Alternative designs and applications would
require this threshold to be manually adjusted. The threshold
detection is implemented in hardware using our ultra-low
power measurement IC which supported threshold-crossing
detection as well as an automatically adjusted baseline offset.
Typically this threshold-detection functionality is provided for
capacitance-based touch determination. We however exploit
this generated signal for robust proximity motion detection
using a challenging textile sensor. In addition to the irregularity
of the sensors, the motions (gestures) themselves are much
more irregular than a simple touch and cannot be defined
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Fig. 4. (a) The figure illustrates our end-to-end home automation system. It demonstrates the data flow from the user to the environment through our system. The
Inviz system encompasses two power tiers which includes low-power and high-power as represented in the figure. (b) The figure shows how data from modules
are processed to generate gestures using a hierarchical signal processing architecture. The insets show examples of how anomalies that represent spurious events
that are generated due to noise in the data are filtered, eliminating extraneous information that complicates classification.

as easily from capacitance signals. As shown in Figure 3(b),
we are sensing more complex signals generated due to the
conglomeration of hand, forearm, and wrist movements, as
opposed to single-point finger touch. We next describe the fea-
ture extraction algorithm which uses the binary outputs of the
digital threshold detectors to build higher-level features used
in the final stages of machine learning-based classification.

Event Message Generators: The threshold signals serve
two key purposes for event detection in the next level of our
processing hierarchy. First, the temporal binary threshold sig-
nals are themselves the only representation of the signal passed
to the event detectors. This simple compact representation of
the signal minimizes the memory requirements for capturing
the signal history and feeds into the simplicity of the real-
time high-level feature extraction algorithm. Additionally, the
binary signals serve a dual purpose as wake-up (interrupt)
signals for the higher-level processor which remains in a low-
power sleep mode until activity is detected. For each linear
observation signal yk, we define an upper and lower threshold,
TUk and TLk respectively, on opposite sides of the baseline.
We define two signals, the positive-peak binary signal BPk

and the negative-peak binary signal BNk as follows:

BPk[n] =

{

TRUE if yk[n] > TUk

FALSE otherwise
(1)

BNk[n] =

{

TRUE if yk[n] < TLk

FALSE otherwise
(2)

where n is the sample number. We note that the first occur-
rence of a TRUE value for any BPk or BNk, after a period of
inactivity, triggers the high-power processor to wake up. At the
event detectors, the binary threshold signals’ characteristics are
analyzed to extract event features to form an event message.
An event is signified as a period of a continuous TRUE value
for BPk or BNk. The three event features generated for each
event are (1) arrival time: defined as the delay from the first
threshold crossing on any observation signal, (2) duration:
length of time that a binary signal is TRUE; (3) event polarity:
a binary symbol indicating which of BPk or BNk is TRUE.
Additionally, a flag is set at the end of each event to signal
the higher-level stage to process the event message.

Algorithm 1 CaptureEventMessages (∆T = 1

Sampling rate
)

Event E1 = first event.
gesturetimeout = eventduration (E1)
for every ∆T seconds

IF gesturetimeout == 0
break

end IF
decrement gesturetimeout
IF Event Ei is collected from observation i.

gesturetimeout += eventduration(Ei)
end IF

end for
return TRUE

A critical challenge in online processing of multiple obser-
vation stages is to determine the amount of time that the high-
power processor should remain awake to gather all events. This
time determination is important since it is proportional to the
energy consumed by the high-power processor. In our system,
we maintain a counter called gesturetimeout that reflects this
time. When gesturetimeout reaches 0, the event messages are
propagated to an aggregation and filtering stage called Message
Bundle Generation in Figure 4(b). Algorithm 1 describes
how the value of gesturetimeout is updated. The key step in
Algorithm 1 is to determine the duration of an event in an
observation channel and increase gesturetimeout proportional
to this duration. The duration of an event, described above,
is indicative of two parameters: (1) the speed of performing
the gesture and (2) when another event might occur on a dif-
ferent observation channel. The intuition behind Algorithm 1,
therefore, is that the event message generator must wait for
events at least for that duration of time. Once the events are
determined, they are propagated to the aggregation and filtering
module that performs domain-specific filtering.

In our prototype, we have found several instances where
spurious events are generated due to noise in the data caused
by undesired user actions and sensor displacement. Figure 3(b)
(iii) illustrates four such spurious events that are an outcome
of improperly performing gestures and are filtered by the
aggregation and filtering stage, using the per-channel rules. (1)
An event with much larger duration than all previous durations



in the same channel erases all previous event messages from
the channel queue; (2) When two events with the same polarity
exist in the same channel, only the longer event is kept in the
channel queue; (3) In a channel, if two newer messages exist
with significantly higher arrival time and longer duration than
an earlier message, the earlier message is deleted (4) If two
event messages exist in a channel queue with a significant ratio
of their durations, the shorter message is deleted. The goal of
these filtering rules is to ensure that the spurious events do not
reach the machine learning-based gesture classifier. Some of
these rules are illustrated in Figure 4(b).

Once the messages are aggregated across observation chan-
nels, the cross-channel rules are applied to the aggregated
events to filter noise and generate features for the machine
learning algorithm. (1) If the total event duration of one
channel, as defined by the sum of event durations in messages
left in the queue at the time of gesture reporting, is much
shorter than the average total duration of the other channels
then the messages in the former channel are deleted; (2)
If the max total duration across all channels is small, the
gesture is ignored and the messages are purged; (3) Events
are labeled as P (positive) or N (negative) events depending
on if they are generated from a BP or BN signal respectively,
otherwise they are labeled as NAE (not an event). If a channel
has a complimentary pair of events positive-then-negative
or negative-then-positive, they are combined to one message
labeled PN or NP with a single duration calculated as the sum
of the pair of durations. In case of NAE, the duration and
arrival times are zero.

The resulting labeled events’ features are passed to a
gesture classifier. The features reported for each observation
channel are: Event Label (P, N, PN, NP, NAE), duration, and
arrival time with respect to the first event. The combination of
event signatures on different observation channels is unique for
a gesture, hence, the event features are important to distinguish
between gestures. The duration, for instance, is representative
of the speed of performing a gesture which is user-specific, and
can help the machine learning algorithm distinguish between
gestures among users. The arrival time for an event on an
observation channel encodes the velocity of the gesture—the
speed and direction of motion. Together these features help the
machine learning algorithm, described below, infer the gestures
accurately. The feature extraction and the machine learning
classifying algorithm run in real-time on the micro-controller.
We have experimentally verified that the above mentioned rule-
sets are mandatory for a tractable embedded classification.

Machine Learning Algorithm: The final level in the
hierarchy is a machine learning algorithm that takes as input
a filtered message bundle and classifies the gestures. The
machine learning algorithm is trained using gestures performed
by individual subject. We have experimented with several ma-
chine learning algorithms such as Nearest Neighbor Classifier,
Decision Tree Classifier, and Naive Bayesian Classifier. We
compare the accuracies and complexity trade-offs in §VII.
Once the algorithm determines a gesture, the Bluetooth low
energy (BLE) module is woken up and the gesture is trans-
mitted to a computer which controls a set of appliances using
a custom home automation system.

VI. PROTOTYPE IMPLEMENTATION

We have implemented a fully functional prototype of Inviz
(illustrated in Figure 1) as an end-to-end cyber-physical system
for home automation. Gestures recognized by the Inviz system
are transmitted to a personal computer over BLE, and the
PC device then controls appliances over Zwave connection
using a Micasaverde Vera gateway. The Inviz prototype con-
sists of a custom-designed PCB board with the capacitance
measurement circuit, observation calculation and threshold-
ing circuit (built into the capacitance measurement IC), an
MSP430 micro-controller, and a BLE wireless module. The
capacitive sensor plates were sewn into the denim fabric and
attached to the data collection module using 4-ply conduc-
tive threads with a linear resistance of 50 Ω/meter. In our
prototype implementation, we faced two challenges unique to
designing textile-based wearable plates. First, the conductive
threads are built by weaving silver-plated threads and non-
conductive threads. Unfortunately, this leads to fraying on the
ends of the thread and can cause microscopic shorts between
adjacent threads which are difficult to diagnose, especially
when vampire connectors were used to connect the thread to
the data collection board. The second challenge was soldering
onto the conductive threads which we mitigated using vampire
FCC connectors.

VII. SYSTEM EVALUATION

The goal of Inviz is to provide accurate real-time gesture
recognition for patients with limited mobility at minimal en-
ergy consumption. To this end, our evaluation of Inviz focuses
on the following key questions. (1) How accurately does Inviz
determine gestures across subjects? (2) What is the energy
consumption of Inviz compared to a system that does not use
the hierarchical signal processing architecture? (3) What are
the trade-offs between accuracy of gesture recognition and
training size and type of training data used? While answering
these key questions, we also present micro-benchmarks on
the energy consumption of different subsystems of Inviz and
latency associated with different components of the Inviz
prototype.

Experimental Setup: We performed our experiments on
five adult subjects. While these subjects do not suffer from
paralysis, we believe that they act as a baseline for evaluating
the accuracy of our gesture recognition system. As future work
(described in §VIII), we plan to perform a usability study
with our prototype on patients suffering from paralysis. In
our experimental setup, the subject wore the capacitive sensor
on their thigh and performed swipe and hover gestures. Each
subject performed an average of 180 gestures. The subjects
performed between 9-12 gesture sets with each gesture set
consisting of 16 gestures. With four plates in our prototype
illustrated in Figure 1, the swipe gestures performed were the
following: all combinations of i → j, where i 6= j, and i and j
are the plates numbered from 0 through 3. Similarly the gesture
set included four hovers denoted by the plate numbers {0, 1,
2, 3}. Each subject was trained on how to perform the gestures
before the experiments were performed. For all our accuracy
results, we performed cross-validation. Below, we first present
results on micro-benchmarks using our prototype followed by
results on accuracy, energy consumption, and system trade-
offs.
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Fig. 5. (a) The figure compares the average accuracy of gesture recognition across our five subjects for three machine learning algorithms: Nearest Neighbor

Classifier, Decision Tree Classifier, and Naive Bayesian Classifier. The figure shows that the accuracies are comparable but the Nearest Neighbor classifier
performs the best. (b) Confusion matrix illustrating the accuracy over all subjects expressed as a percentage. We use the Nearest Neighbor Classifier in this
experiment. (c) The effect of training size on the accuracy of gesture recognition for the Nearest Neighbor Classifier for the five subjects. Each training set
consists of 16 distinct gestures.

TABLE I. THE TABLE PRESENTS MICRO-BENCHMARKS ON POWER

CONSUMPTION OF DIFFERENT COMPONENTS ON OUR CUSTOM DESIGNED

DATA COLLECTION MODULE.

Module Sleep power Active Power

micro-controller 2.2 µ A 505.0 µ A

cap./observation meas. IC 152.0 µA (low power) 1148.0 µA

BLE 0.5 µA 8.1 mA (idle), 20.7mA (tx)

TABLE II. THE LATENCY OF EACH COMPONENT IN INVIZ.

Module Latency

micro-controller wakeup 36 µs

micro-controller (ML algo) 286 ms

Bluetooth wakeup 450 µs

Micro-benchmarks: Table I and Table II presents the
power consumption and the latency of different Inviz subsys-
tems. The power consumption table motivates the need for
a hierarchical signal processing architecture. The Bluetooth
module consumes an order of magnitude more power than
the micro-controller when active which in turn consumes four
times more power than the capacitance/observation calculation
hardware. Hence, by keeping the micro-controller and the
Bluetooth module off until the event generation module gener-
ates interesting events can save a substantial amount of energy.
The hierarchical design, however, is useful only if the transition
cost associated with wakeup times of different modules is
low. As illustrated in Table II, the wakeup latency associated
with the Bluetooth and micro-controller wakeup is 450 µs
and 36 µs respectively, demonstrating that the overhead of
transition in the system is low. Additionally, it takes only 286
ms to execute the machine learning algorithm on the micro-
controller, illustrating the efficiency of our implementation.

System Accuracy: Our first set of experiments focuses
on evaluating the accuracy of Inviz in recognizing gestures.
Figure 5(a) graphs the accuracy of recognizing the gestures for
three machine learning algorithms (Nearest Neighbor Classi-
fier, Decision Tree Classifier, and Naive Bayesian Classifier)
across our five subjects. We chose these three classifiers since
they represent algorithms with a wide range of computational
needs. The Bayesian classifier and the decision tree classifier
require training that may not be feasible on a micro-controller.
However, once these classifiers are trained using them on
the micro-controller is computationally feasible. The Nearest
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Fig. 6. The figure shows the average power consumption of the Inviz system
as the frequency of performing gestures is changed. The bars are also broken
down into the energy consumption of different components of the system.

Neighbor classifier can be completely implemented on the
micro-controller. The result shows that the Nearest Neighbor
classifier performs the best with an average accuracy of 93%.
Hence, in our prototype system we use the Nearest Neighbor
classifier. Figure 5(b) is a confusion matrix that illustrates the
percentage of gestures classified and misclassified for all the
sixteen gestures. The experiment presents data collected from
all our subjects. The figure shows that the lowest accuracies are
for the swipe gestures performed when plate 1 was involved.
Swipe gestures, 1 → 0, 1 → 3, and 1 → 2, have accuracies
of 80%, 89%, and 94% respectively. In our experiments, our
prototype was strapped onto the right leg and the subjects
used their right hand to perform the gestures. Based on the
orientation of the sensor plates illustrated in Figure 1 swipes
over plate 1 from any other plate will cause the subject to
pass over other plates, causing the misclassifications. If the
orientation is changed this miss-classifications will occur on
gestures performed on other plates. However, even with this
interference with neighboring plates, our system is able to infer
the gestures with an average accuracy of close to 93%.

Energy Consumption: The next set of experiments ex-
plores the energy consumption of Inviz. Figure 6 compares
the energy consumption of Inviz with a system that does not
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use the hierarchical signal processing algorithm. The system
(termed Baseline) processes all the data on the micro-controller
and wakes up the Bluetooth module only when a gesture is
detected. The figure illustrates the average power consumption
of Inviz when gestures are performed at the rate of once every
10 seconds, 30 seconds, 1 minute, 2 minutes, 10 minutes ,
and 60 minutes (last two extrapolated from measurements).
The figure also shows the breakdown of the power consumed
by different components of Inviz, namely the observation and
threshold calculation hardware, the micro-controller, and the
Bluetooth module. We can draw three conclusions from the
figure. First, the absolute power consumption of Inviz is low
and is close to 525 µ A (1.7 mW ) when gestures are performed
once every 2 minutes, which is a very high gesture performing
frequency. On a 1000 mAh battery, the system would last
for 2000 hours (83 days) on a single charge. Second, the
system consumes 4X lower power than a system that does
not use the hierarchical architecture. Third, we find that the
two primary energy consumers in our system are the Bluetooth
module and the observation threshold calculation hardware. To
address this problem, as future work, we plan to implement
the observation and thresholding algorithms using low power
analog sub threshold circuits.

System Trade-offs: In our last set of experiments, we
evaluate the tradeoffs associated with Inviz. Specifically, we
study the accuracy of recognizing gestures in Inviz as the
training size increases. Figure 5(c) graphs the change in
accuracy of the Nearest Neighbor classifier as the training set
is increased for the five subjects in our study. One training
set comprises of 16 gestures in this experiment. From the
figure, we find that as the number of training sets increases
the average accuracy improves, however, the accuracy sat-
urates after five training sets. The figure demonstrates that
the amount of training required for our system is low. This
is a consequence of the intelligent event generation and fil-
tering that we perform on the sensor data that reduces the
complexity of the machine learning classifier. The next trade-
off that we study is the type of training used. We study two
cases: personalized training where the classifier is trained per
subject and aggregate training where a single training set that
is generated by randomly selecting five training sets across

Fig. 8. As future work, we are exploring different capacitor plate shapes
and placement. The left figure shows circular plates with a boundary plate
that can be used to determine whether the user’s is performing a gesture.
The right figure demonstrates a future prototype where we plan to design the
capacitive array using embroidered patches built using conductive threads.

subjects. Figure 7 compares the accuracy of gesture recognition
for the two training approaches. The figure shows that there is
high variance in the accuracy of subject 1 and subject 4 when
aggregate training is used. However, the variance is low and
accuracy is higher when personalized training is used. In our
subject pool, subjects 1 and 4 have shorter forearms and legs
compared to the other subjects. Hence, if the aggregate training
set did not include data sets from these subjects, the classifier
is unable to capture gesture attributes unique to these subjects.
This problem is addressed by using personalized per-subject
training—a fundamental design principle in Inviz.

VIII. FUTURE WORK

We are working on several future extensions to the design
and evaluation of Inviz. We have underlined some of the
avenues of future work that we are pursing.

Embroidering capacitive patches: We have tested Inviz on a
small set of textile capacitive patches. As future work, we are
working on automating the process of creating the network
of capacitive patches using embroidery. Figure 8 illustrates
an example network of capacitive patches generated using
embroidery machine. Our goal is to study the scalability
issues with processing a large number of patches for fine-
grained movement and gesture recognition. Moreover, we are
experimenting with different shapes and sizes of capacitive
patches. For example, Figure 8 illustrates a prototype that uses
circular patches instead of rectangular patches.

Miniaturization and self-sustainable sensing: One of our
future goals is to minimize the size of our data collection mod-
ule and further reduce the power signature of the system. To
this end, we are working on fabricating a custom IC that will
replace the micro-controller and the capacitance/observation
calculation modules. Further, with a custom design we con-
jecture that the power signature can be further reduces and it
is possible to power the system by harvesting indoor light.

Medical data collection: As future work, we plan to test
the efficacy of our system on real paralysis patients. We have
build a collaboration with the University of Maryland, Medical
School to help recruit subjects with varying degree of paralysis
to test our capacitive sensors for environment control.

IX. CONCLUSION

In this paper we present Inviz, a wearable capacitive sensor-
based gesture recognition system for environmental control
in individuals with limited mobility. Inviz uses textile-based



capacitive plates sewn into fabric such as denim as proximity
sensors. The Inviz system uses a novel hierarchical signal
processing algorithm where the computation is broken down
into several low power and high power tiers. The low power
tiers maintain high availability of the system at low power and
the higher power tiers are woken up only when required to
perform sophisticated signal processing. We have prototyped
a fully functional Inviz system and evaluated it in the context of
a home automation system, and show that it can infer gestures
with high accuracy and low energy consumption.
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