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Involutes of fronts in the Euclidean plane

T. Fukunaga and M. Takahashi

November 19, 2013

Abstract

The notions of involutes (also known as evolvents) and evolutes were studied by C.
Huygens. For a regular plane curve, an involute of it is the trajectory described by the
end of stretched string unwinding from a point of the curve. Even if a regular curve, the
involute of the curve have singularities. By using a moving frame of the front and the
curvature of the Legendre immersion in the unit tangent bundle, we define an involute
of the front in the Euclidean plane and discuss properties of them. We also consider
about relationship between evolutes and involutes of fronts without inflection points. As
a result, we observe that the evolutes and the involutes of fronts without inflection points
are corresponding to the differential and the integral in classical calculus.

1 Introduction

The notions of involutes (also known as evolvents) and evolutes were studied by C. Huygens
in his work [14] and studied in classical analysis, differential geometry and singularity theory
of planar curves (cf. [6, 7, 11, 12, 13, 19]). For a regular plane curve, an involute of it is
the trajectory described by the end of stretched string unwinding from a point of the curve.
Alternatively, another way to construct the involute of a curve is to replace the taut string by a
line segment that is tangent to the curve on one end, while the other end traces out the involute.
The length of the line segment is changed by an amount equal to the arc length traversed by
the tangent point as it moves along the curve. As a remarkable property of a regular curve
without inflection points, the involute of the regular curve at a point has a 3/2 cusp at the
point.

On the other hand, the evolute of a regular plane curve is also classical object (cf. [6, 11, 12]).
The evolute of a regular curve without inflection points is given by not only the locus of all
its centres of curvature, but also an envelope of the normal lines of the regular curve. It
is well-known that the relationship between involutes and evolutes of regular plane curves.
The evolute of an involute is the original curve, less portions of zero or undefined curvature.
The properties of evolutes discussed by using distance squared functions and the theories of
Lagrangian, Legendrian singularity (cf. [2, 3, 4, 9, 17, 18, 20, 22]).

In this paper, we define involutes of curves with singular points which are called fronts.
In section 2, we recall the definitions for the involute and the evolute of regular plane curves.
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Moreover, for a Legendre curve (a Legendre immersion) in the unit tangent bundle, we give a
moving frame of the frontal (the front) and the curvature of the Legendre curve (the Legendre
immersion) (cf. [8]). By using them, we define an involute of the front. We also recall the
definition of the evolute of the front without inflection points (cf. [9]). We discuss on properties
of involutes without inflection points, for example, the involute of the front without inflection
points is also a front without inflection points. In section 3, we analyse singular points of
the involute of the front without inflection points. Moreover, we give a relationship between
singular points of the involute of the front and vertices. In section 4, we consider a relationship
between evolutes and involutes of fronts without inflection points by using the curvature of
Legendre immersions. Since the involute of the front without inflection points is also a front
without inflection points, we can repeat the involute of the front. We give a formula of the n-th
involute of the front. We introduce a special parametrisation for Legendre immersions without
inflection points in section 5. By using the parametrisation, the evolute and the involute of the
front without inflection points are corresponding to the differential and the integral in classical
calculus. We give not only the relationship among the contact of Legendre immersions, evolutes
and involutes, but also the same sharp of the front and the n-th evolute (respectively, the n-th
involute) of the front under the same parametrisation.

We shall assume throughout the whole paper that all maps and manifolds are C∞, unless
the contrary is explicitly stated.

Acknowledgement. We would like to thank Professor Goo Ishikawa for valuable comments
and helpful discussions. The second author was supported by a Grant-in-Aid for Young Scien-
tists (B) No. 23740041.

2 Basic notations and definitions

We recall the definitions of the involute and the evolute of a regular curve (cf. [6, 11, 12]).
Let I be an interval or R. Suppose that γ : I → R2 is a regular plane curve, that is, γ̇(t) =
(dγ/dt)(t) ̸= 0 for all t ∈ I. If s is the arc-length parameter of γ, then |γ′(s)| =

√
γ′(s) · γ′(s) =

1, where γ′(s) = (dγ/ds)(s) and · is the inner product on R2. We denote t(s) by the unit tangent
vector t(s) = γ′(s) = (dγ/ds)(s) and n(s) by the unit normal vector n(s) = J(t(s)) of γ(s),
where J is the anticlockwise rotation by π/2. Then we have the Frenet formula as follows:(

t′(s)
n′(s)

)
=

(
0 κ(s)

−κ(s) 0

)(
t(s)
n(s)

)
,

where
κ(s) = t′(s) · n(s) = det (γ′(s), γ′′(s))

is the curvature of γ.

Even if t is not the arc-length parameter, we have the unit tangent vector t(t) = γ̇(t)/|γ̇(t)|,
the unit normal vector n(t) = J(t(t)) and the Frenet formula(

ṫ(t)
ṅ(t)

)
=

(
0 |γ̇(t)|κ(t)

−|γ̇(t)|κ(t) 0

)(
t(t)
n(t)

)
,

where the curvature is given by

κ(t) =
ṫ(t) · n(t)
|γ̇(t)|

=
det (γ̇(t), γ̈(t))

|γ̇(t)|3
.
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Note that the curvature κ(t) is independent on the choice of a parametrisation.

In this paper, we consider involutes and evolutes of plane curves. For t0 ∈ I, the involute
Inv(γ, t0) : I → R2 of a regular plane curve γ : I → R2 at t0 is given by

Inv(γ, t0)(t) = γ(t)−
(∫ t

t0

|γ̇(u)|du
)
t(t).

The evolute Ev(γ) : I → R2 of a regular plane curve γ : I → R2 is given by

Ev(γ)(t) = γ(t) +
1

κ(t)
n(t),

away from inflection points, that is, κ(t) ̸= 0.

Note that if s is the arc-length parameter of γ, then the involute of γ at s0 is given by

Inv(γ, s0)(s) = γ(s)− (s− s0)t(s)

and the evolute of γ is given by

Ev(γ)(s) = γ(s) +
1

κ(s)
n(s).

We give examples of an involute and an evolute of a regular curve, for more examples see in
[6, 11, 12] etc.

Example 2.1 Let γ : [−π, π)→ R2 be a circle γ(t) = (r cos t, r sin t) with radius r > 0. Then
the involute of the circle at t0 is

Inv(γ, t0)(t) = (r cos t+ (t− t0)r sin t, r sin t− (t− t0)r cos t),

and pictured the involute of the circle with r = 1 at t0 = 0 as Figure 1.

Example 2.2 Let γ : [0, 2π)→ R2 be an ellipse γ(t) = (a cos t, b sin t) with a, b > 0 and a ̸= b.
Then the evolute of the ellipse is

Ev(γ)(t) =

(
a2 − b2

a
cos3 t,−a2 − b2

b
sin3 t

)
,

and pictured the evolute of the ellipse with a = 3/2, b = 1 as Figure 2.
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Figure 1. The involute of the circle at 0. Figure 2. The evolute of the ellipse.
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The following properties are well-known in the classical differential geometry of curves:

Proposition 2.3 Let γ : I → R2 be a regular curve and t0 ∈ I.

(1) If t is a regular point of Inv(γ, t0), then Ev(Inv(γ, t0))(t) = γ(t).

(2) If t and t0 are regular points of Ev(γ) and not inflection points of γ, then Inv(Ev(γ), t0)(t) =
γ(t) + (1/κ(t0))n(t).

Even if γ is a regular curve, the point t0 is a singular point of the involute Inv(γ, t0) and also
the evolute Ev(γ) may have singularities, see Figures 1 and 2. For a singular point of Inv(γ, t0)
(respectively, Ev(γ)), Ev(Inv(γ, t0))(t) (respectively, Inv(Ev(γ), t0)(t)) can not be defined.

In general, if γ is not a regular curve, then we can not define the involute and the evolute
of the curve as above. In [9], however, we defined the evolute of the front without inflection
points in the Euclidean plane, see Definition 2.10. In the present paper, we define an involute
of the front in the Euclidean plane, see Definition 2.11. These are generalisations of evolutes
and involutes of regular plane curves. In order to define an evolute and an involute of the front,
we review on Legendre curves in the unit tangent bundle, the Frenet formula and the curvature
of the Legendre curve ([8]).

We say that (γ, ν) : I → R2 × S1 is a Legendre curve if (γ, ν)∗θ = 0, where θ is a canonical
contact 1-form on the unit tangent bundle T1R2 = R2 × S1 (cf. [2, 3, 4]). This condition is
equivalent to γ̇(t) · ν(t) = 0 for all t ∈ I. Moreover, if (γ, ν) is an immersion, we call (γ, ν) a
Legendre immersion. We say that γ : I → R2 is a frontal (respectively, a front or a wave front)
if there exists a smooth mapping ν : I → S1 such that (γ, ν) is a Legendre curve (respectively,
a Legendre immersion).

Let (γ, ν) : I → R2 × S1 be a Legendre curve. Then we have the Frenet formula of the
frontal γ as follows. We put on µ(t) = J(ν(t)). We call the pair {ν(t),µ(t)} a moving frame
of the frontal γ(t) in R2 and the Frenet formula of the frontal (or, the Legendre curve) which
is given by (

ν̇(t)
µ̇(t)

)
=

(
0 ℓ(t)
−ℓ(t) 0

)(
ν(t)
µ(t)

)
,

where ℓ(t) = ν̇(t) · µ(t). Moreover, there exists a smooth function β(t) such that

γ̇(t) = β(t)µ(t).

The pair (ℓ, β) is an important invariant of Legendre curves (or, frontals). We call the pair
(ℓ(t), β(t)) the curvature of the Legendre curve (with respect to the parameter t).

Definition 2.4 Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre curves. We say that (γ, ν)
and (γ̃, ν̃) are congruent as Legendre curves if there exists a congruence C on R2 such that
γ̃(t) = C(γ(t)) = A(γ(t)) + b and ν̃(t) = A(ν(t)) for all t ∈ I, where C is given by the rotation
A and the translation b on R2.

We have the existence and the uniqueness for Legendre curves in the unit tangent bundle
like as regular plane curves, see in [8].

Theorem 2.5 (The Existence Theorem) Let (ℓ, β) : I → R2 be a smooth mapping. There
exists a Legendre curve (γ, ν) : I → R2 × S1 whose associated curvature of the Legendre curve
is (ℓ, β).
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Theorem 2.6 (The Uniqueness Theorem) Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be Legendre

curves whose curvatures of Legendre curves (ℓ, β) and (ℓ̃, β̃) coincide. Then (γ, ν) and (γ̃, ν̃)
are congruent as Legendre curves.

In fact, the Legendre curve whose associated curvature of the Legendre curve is (ℓ, β), is given
by the form

γ(t) =

(
−
∫

β(t) sin

(∫
ℓ(t)dt

)
dt,

∫
β(t) cos

(∫
ℓ(t)dt

)
dt

)
,

ν(t) =

(
cos

∫
ℓ(t)dt, sin

∫
ℓ(t)dt

)
.

We also have the following Lemma:

Lemma 2.7 ([8]) Let (γ, ν) and (γ̃, ν̃) : I → R2 × S1 be congruent as Legendre curves. Then

(γ, ν) and (γ̃, ν̃) have the same curvatures of Legendre curves (ℓ, β) and (ℓ̃, β̃) respectively.

We give examples of Legendre curves.

Example 2.8 One of the typical example of a front (and hence a frontal) is a regular plane
curve. Let γ : I → R2 be a regular plane curve. In this case, we may take ν : I → S1 by
ν(t) = n(t). Then it is easy to check that (γ, ν) : I → R2 × S1 is a Legendre immersion
(a Legendre curve). By a direct calculation, the relationship between the curvature of the
Legendre curve (ℓ(t), β(t)) and the curvature κ(t) is given by ℓ(t) = |β(t)|κ(t).

Example 2.9 Let n,m and k be natural numbers with m = n + k. Let (γ, ν) : I → R2 × S1

be

γ(t) =

(
1

n
tn,

1

m
tm
)
, ν(t) =

1√
t2k + 1

(
−tk, 1

)
.

It is easy to see that (γ, ν) is a Legendre curve, and a Legendre immersion when k = 1. We
call γ is of type (n,m). For example, the frontal of type (2, 3) has the 3/2 cusp (A2 singularity)
at t = 0, of type (3, 4) has the 4/3 cusp (E6 singularity) at t = 0, see Figure 3. By definition,
we have µ(t) = (1/

√
t2k + 1)(−1,−tk) and

ℓ(t) =
ktk−1

t2k + 1
, β(t) = −tn−1

√
t2k + 1.

Let (γ, ν) : I → R2×S1 be a Legendre curve with the curvature of the Legendre immersion
(ℓ, β). We say that t0 ∈ I is an inflection point of the frontal (or, an inflection point of a
Legendre curve (γ, ν)) if ℓ(t0) = 0. Note that if t0 is a regular point of γ, the definition of the
inflection point coincides with the usual inflection point for regular curves. If a Legendre curve
(γ, ν) does not have inflection points, then (γ, ν) is a Legendre immersion. In this paper, we
consider a Legendre immersion without inflection points.

In [9], we have defined the evolute of the front without inflection points in the Euclidean
plane by using parallel curves of the front. Here, we recall an alternative definition of the
evolute of the front as follows, see Theorem 3.3 in [9].

Hereafter we assume that (γ, ν) : I → R2 × S1 is a Legendre immersion without inflection
points. We denote the curvature of the Legendre immersion by (ℓ, β).
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Definition 2.10 The evolute Ev(γ) : I → R2 of the front γ without inflection points is given
by

Ev(γ)(t) = γ(t)− β(t)

ℓ(t)
ν(t).

The definition of the evolute Ev(γ) of the front is a generalisation of the evolute Ev(γ) of a
regular curve γ. For properties of the evolute of the front see in [9].

We define the involute of the front as follows:

Definition 2.11 The involute Inv(γ, t0) : I → R2 of the front γ at t0 ∈ I is given by

Inv(γ, t0)(t) = γ(t)−
(∫ t

t0

β(u)du

)
µ(t).

For a regular plane curve γ : I → R2, we consider n(t) = ν(t) in Example 2.8. It follows that
t(t) = −µ(t) and |γ̇(t)| = −β(t). Therefore, we have the following result.

Proposition 2.12 For a regular curve γ : I → R2 and any t0 ∈ I, we have

Inv(γ, t0) = Inv(γ, t0).

Thus, the definition of the involute Inv(γ, t0) of the front is a generalisation of the involute
Inv(γ, t0) of a regular plane curve γ.

Remark 2.13 The evolute and the involute of the front are independent on the choice of a
parametrisation. Moreover, if the set of regular points of γ is dense, then Ev(γ) and Inv(γ, t0)
are uniquely determined by γ, namely, these are not depended on the choice of ν.

Proposition 2.14 Let (γ, ν) : I → R2×S1 be a Legendre immersion with the curvature of the
Legendre immersion (ℓ, β) and without inflection points.

(1) The evolute Ev(γ) is a front. More precisely, (Ev(γ)(t), J(ν(t))) is a Legendre immersion
with the curvature (

ℓ(t),
d

dt

(
β(t)

ℓ(t)

))
.

(2) The involute Inv(γ, t0) is a front for any t0 ∈ I. More precisely, (Inv(γ, t0)(t), J−1(ν(t)))
is a Legendre immersion with the curvature(

ℓ(t), ℓ(t)

∫ t

t0

β(u)du

)
.

Proof. (1) By using the Frenet formula of the front, we have

Ėv(γ)(t) = γ̇(t)− d

dt

(
β(t)

ℓ(t)

)
ν(t)− β(t)

ℓ(t)
ν̇(t)

= β(t)µ(t)− d

dt

(
β(t)

ℓ(t)

)
ν(t)− β(t)

ℓ(t)
ℓ(t)µ(t)

= − d

dt

(
β(t)

ℓ(t)

)
ν(t)

=
d

dt

(
β(t)

ℓ(t)

)
J(µ(t)).

6



Therefore, Ėv(γ)(t) · J(ν(t)) = 0. Since

d

dt
(J(ν(t))) = J(ν̇(t)) = J(ℓ(t)µ(t)) = ℓ(t)J(µ(t)) ̸= 0,

(Ev(γ)(t), J(ν(t))) is a Legendre immersion with the curvature (ℓ(t), (d/dt)(β(t)/ℓ(t))).

(2) We also have

İnv(γ, t0)(t) = γ̇(t)− d

dt

(∫ t

t0

β(u)du

)
µ(t)−

(∫ t

t0

β(u)du

)
µ̇(t)

= β(t)µ(t)− β(t)µ(t) +

(∫ t

t0

β(u)du

)
ℓ(t)ν(t)

= ℓ(t)

(∫ t

t0

β(u)du

)
ν(t)

= ℓ(t)

(∫ t

t0

β(u)du

)
J−1(µ(t)).

Therefore, İnv(γ, t0)(t) · J−1(ν(t)) = 0. Since

d

dt
(J−1(ν(t))) = J−1(ν̇(t)) = J−1(ℓ(t)µ(t)) = ℓ(t)J−1(µ(t)) ̸= 0,

(Inv(γ, t0)(t), J−1(ν(t))) is a Legendre immersion with the curvature (ℓ(t), ℓ(t)
∫ t

t0
β(u)du). 2

We give an example of an involute of a front. Examples of evolutes of fronts see in [9].

Example 2.15 Let (γ, ν) : R→ R2 × S1 be of type (2, 3) in Example 2.9,

γ(t) =

(
1

2
t2,

1

3
t3
)
, ν(t) =

1√
t2 + 1

(−t, 1) .

We have µ(t) = (−1/
√
t2 + 1)(1, t), ℓ(t) = 1/(t2 +1) and β(t) = −t

√
t2 + 1. It follows that the

involute of the 3/2 cusp at t0 ∈ R is given by

Inv(γ, t0)(t) =

(
t2

6
− 1

3
+

1

3

(t20 + 1)
3
2

√
t2 + 1

, − t

3
+

1

3

(t20 + 1)
3
2

√
t2 + 1

t

)
.

Remark that the involute of the 3/2 cusp at t0 = 0 is diffeomorphic to the 4/3 cusp at 0, see
Figure 3 and Corollary 3.3 below.
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-1.0 -0.5 0.5 1.0

-1.0
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The 3/2 cusp The involute of the 3/2 cusp at 0.
Figure 3.
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3 Properties of involutes of fronts

Let (γ, ν) : I → R2×S1 be a Legendre immersion with the curvature of the Legendre immersion
(ℓ, β) and without inflection points. We give properties of the involute of the front.

Proposition 3.1 For any points t0, t1 ∈ I, Inv(γ, t1) is a parallel curve of Inv(γ, t0).

Proof. By the definition of involutes, we have

Inv(γ, t1)(t) = γ(t)−
(∫ t

t1

β(u)du

)
µ(t)

= γ(t)−
(∫ t

t0

β(u)du

)
µ(t)−

(∫ t0

t1

β(u)du

)
µ(t)

= Inv(γ, t0)(t) +
(∫ t1

t0

β(u)du

)
J−1(ν(t)).

Since J−1(ν(t)) is the unit normal of Inv(γ, t0)(t), Inv(γ, t1) is a parallel curve of Inv(γ, t0).
2

We analyse singular points of the involute of the front.

Proposition 3.2 Let t0 ∈ I.

(1) t1 is a singular point of Inv(γ, t0) if and only if
∫ t1
t0

β(s)ds = 0.

(2) Suppose that t1 is a singular point of Inv(γ, t0). Then Inv(γ, t0) is diffeomorphic to the
3/2 cusp at t1 if and only if β(t1) ̸= 0.

(3) Suppose that t1 is a singular point of Inv(γ, t0). Then Inv(γ, t0) is diffeomorphic to the
4/3 cusp at t1 if and only if β(t1) = 0 and β̇(t1) ̸= 0.

Proof. (1) By differentiate of the involute of the front, we have

İnv(γ, t0)(t) = ℓ(t)

(∫ t

t0

β(u)du

)
ν(t).

Since the assumption ℓ(t) ̸= 0 for all t ∈ I, we have the result.

(2) From the Frenet formula of the front, we have

Ïnv(γ, t0)(t) =
(
ℓ̇(t)

(∫ t

t0

β(u)du

)
+ ℓ(t)β(t)

)
ν(t) + ℓ(t)2

(∫ t

t0

β(u)du

)
µ(t).

By (1), we obtain

Ïnv(γ, t0)(t1) = ℓ(t1)β(t1)ν(t1).

Moreover, we have

...
Inv(γ, t0)(t1) =

(
2ℓ̇(t1)β(t1) + ℓ(t1)β̇(t1)

)
ν(t1) + 2ℓ(t1)

2β(t1)µ(t1).

Thus,

det
(
Ïnv(γ, t0)(t1),

...
Inv(γ, t0)(t1)

)
= 2ℓ(t1)

3β(t1)
2 ̸= 0
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if and only if β(t1) ̸= 0. Therefore, we obtain (2).

(3) By (2),

det
(
Ïnv(γ, t0)(t1),

...
Inv(γ, t0)(t1)

)
= 0

if and only if β(t1) = 0. Moreover,

d4

dt4
Inv(γ, t0)(t1) =

(
3ℓ̇(t1)β̇(t1) + ℓ(t1)β̈(t1)

)
ν(t1) + 3ℓ(t1)

2β̇(t1)µ(t1)

and

det

(
d3

dt3
Inv(γ, t0)(t1),

d4

dt4
Inv(γ, t0)(t1)

)
= 3ℓ(t1)

3β̇(t1)
2,

under the conditions
∫ t1
t0

β(u)du = 0 and β(t1) = 0. Hence, we have

det
(
Ïnv(γ, t0)(t1),

...
Inv(γ, t0)(t1)

)
= 0

and

det

(
d3

dt3
Inv(γ, t0)(t1),

d4

dt4
Inv(γ, t0)(t1)

)
̸= 0

if and only if β(t1) = 0 and β̇(t1) ̸= 0. It follows that Inv(γ, t0) is diffeomorphic to the 4/3
cusp at t1 (cf. [5, 15, 16]). Therefore, we obtain (3). 2

By Proposition 3.2, we have the following Corollary:

Corollary 3.3 Under the above notations, we have the following.

(1) Inv(γ, t0) is diffeomorphic to the 3/2 cusp at t0 if and only if t0 is a regular point of γ.

(2) Inv(γ, t0) is diffeomorphic to the 4/3 cusp at t0 if and only if γ is diffeomorphic to the
3/2 cusp at t0.

Proof. (1) The point t0 is a singular point of Inv(γ, t0). Since the point t0 is a regular point
of γ if and only if β(t0) ̸= 0. By Proposition 3.2 (2), we have the result.

(2) Under the assumption ℓ(t) ̸= 0, γ is diffeomorphic to the 3/2 cusp at t0 if and only if
β(t0) = 0 and β̇(t0) ̸= 0. By Proposition 3.2 (3), we have the result. 2

Remark 3.4 In this paper, we assume that the front does not have inflection points, though
we can define the involute of the front with inflection points. In this case, the involute of
the front is a frontal (cf. [10]). We can find other kinds of singularities of the involute, see
[1, 10, 21].

Lemma 3.5 If t1 ∈ I \ {t0} is a singular point of Inv(γ, t0), then there exists at least one
singular point of γ in the open interval (t0, t1) (respectively, (t1, t0)) when t0 < t1 (respectively,
t1 < t0).

Proof. We show the case for t0 < t1. By the mean value theorem for integration, there exists
a point ξ ∈ (t0, t1) such that ∫ t1

t0

β(u)du = β(ξ)(t1 − t0).

9



Since t1 is a singular point of Inv(γ, t0), we have
∫ t1
t0

β(u)du = 0. It follows that β(ξ) = 0, that
is, ξ is a singular point of γ. 2

Next we discuss a relationship between singular points of an involute of the front and
vertices. Let (γ, ν) be a Legendre immersion with the curvature of the Legendre immersion
(ℓ, β) and without inflection points. We say that a point t0 is a vertex of the front γ (or, vertex
of the Legendre immersion (γ, ν)) if (d/dt)(β/ℓ)(t0) = 0, equivalently (d/dt)Ev(t0) = 0. Note
that if t0 is a regular point of γ, the definition of the vertex coincides with the usual vertex for
regular curves (cf. [9]).

In this paper, we say that a Legendre immersion (γ, ν) : [a, b] → R2 × S1 is closed if
(γ(n)(a), ν(n)(a)) = (γ(n)(b), ν(n)(b)) for all n ∈ N ∪ {0}, where γ(n)(a), ν(n)(a), γ(n)(b) and
ν(n)(b) means one-sided differential. If (γ, ν) : [a, b]→ R2× S1 is a closed Legendre immersion,
then either a and b are regular points of γ or singular points of γ. When a and b are singular
points of γ, we treat these singular points as one singular point of γ.

Note that if (Inv(γ, t0), J−1(ν)) : [a, b] → R2 × S1 is a closed Legendre immersion, then
(γ, ν) is also closed. By Lemma 3.5 and Proposition 3.11 in [9], we have the following Lemma.

Lemma 3.6 Let (γ, ν) : [a, b] → R2 × S1 be a Legendre immersion without inflection points
and at most finite number of singular points of γ. Suppose that (Inv(γ, t0), J−1(ν)) is a closed
Legendre immersion and at most finite number of singular points of Inv(γ, t0). Then

♯Σ(Inv(γ, t0)) ≤ ♯Σ(γ) ≤ ♯V (γ, ν), (1)

where Σ(Inv(γ, t0)) (respectively, Σ(γ)) is the set of singular points of the involute Inv(γ, t0)
(respectively, γ) and V (γ, ν) is the set of vertices of (γ, ν).

Proof. We show the first inequality. Suppose that s0, . . . , sn are singular points of Inv(γ, t0)
such that a < s0 < s1 < · · · < sn < b. By Lemma 3.5, there is at least one singular point of γ
in the open interval (si−1, si) for each i = 1, . . . , n. We show there is at least one singular point
of γ in (sn, b] ∪ [a, s0). Since (Inv(γ, t0), J−1(ν)) and (γ, ν) are closed Legendre immersions,

we have
∫ b

t0
β(u)du =

∫ a

t0
β(u)du, that is,

∫ b

a
β(u)du = 0. If β(t) > 0 (respectively, β(t) < 0)

on (sn, b] ∪ [a, s0), then
∫ t

t0
β(u)du is a monotone increase function (respectively, monotone

decrease function) on (sn, b] and [a, s0). Hence 0 =
∫ sn
t0

β(u)du <
∫ b

t0
β(u)du and

∫ a

t0
β(u)du <∫ s0

t0
β(u)du = 0 (respectively, 0 =

∫ sn
t0

β(u)du >
∫ b

t0
β(u)du and

∫ a

t0
β(u)du >

∫ s0
t0

β(u)du = 0).

This implies
∫ b

a
β(u)du =

∫ b

t0
β(u)du −

∫ a

t0
β(u)du > 0 (respectively,

∫ b

a
β(u)du =

∫ b

t0
β(u)du −∫ a

t0
β(u)du < 0). This contradicts the fact

∫ b

a
β(u)du = 0. Therefore, there exists a point

ξ ∈ (sn, b] ∪ [a, s0) such that β(ξ) = 0.

Next, we suppose that s0, . . . , sn are singular points of Inv(γ, t0) such that a = s0 < s1 <
· · · < sn = b. In this case, there are n singular points of the involute (note that we treat a and
b as the one singular point). By Lemma 3.5, there is at least one singular point of γ in the
interval (si−1, si) for each i = 1, . . . n. Hence the inequality holds.

The second inequality is a direct conclusion of the proof of Proposition 3.11 in [9], see also
Remark 3.7 below. 2

Remark 3.7 By definition, the set of vertices of (γ, ν) is the set of singular points of Ev(γ).
By Proposition 4.1, we can also prove the second inequality of (1) in Lemma 3.6 by the same
method of the first inequality.
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Remark 3.8 The inequality (1) in Lemma 3.6 also holds when ♯Σ(Inv(γ, t0)) is infinite. In
fact, if ♯Σ(Inv(γ, t0)) is infinite, then ♯Σ(γ) is infinite. Moreover, if ♯Σ(γ) is infinite, then
♯V (γ, ν) is infinite.

Remark 3.9 If (Inv(γ, t0), J−1(ν)) : [a, b] → R2 × S1 is a closed Legendre immersion, then

Inv(γ, t0)(a) = Inv(γ, t0)(b) and hence
∫ b

a
β(s)ds = 0. It follows that γ must have a singular

point. As a consequence, when γ is a regular curve, even if (γ, ν) is closed, (Inv(γ, t0), J−1(ν))
can not be a closed Legendre immersion.

We give the four vertices theorem of a front.

Proposition 3.10 Let (γ, ν) : I → R2×S1 be a Legendre immersion without inflection points.
Suppose that (Inv(γ, t0), J−1(ν)) is a closed Legendre immersion.

(1) If Inv(γ, t0) has at least four singular points, then (γ, ν) has at least four vertices.

(2) If Inv(γ, t0) has at least two singular points which degenerate more than 3/2 cusp, then
(γ, ν) has at least four vertices.

Proof. (1) This statement is obtained from the inequality in Lemma 3.6 directly.

(2) Suppose Inv(γ, t0) has at least two singular points t1 and t2 which degenerate more
than 3/2 cusp. By Proposition 3.2, we have∫ ti

t0

β(u)du = 0, β(ti) = 0

for i = 1, 2. Thus t1 and t2 are singular points of γ. Moreover, by Lemma 3.5, there exists at
least one singular point for each subset (t1, t2) and I \ [t1, t2]. Therefore, γ has at least four
singular points. As a consequence, (γ, ν) has at least four vertices by Lemma 3.6. 2

4 Relationship between evolutes and involutes of fronts

In this section, we discuss relationships between evolutes and involutes of fronts. Let (γ, ν) :
I → R2 × S1 be a Legendre immersion with the curvature (ℓ, β) and without inflection points.
We give a justification of Proposition 2.3 with singular points.

Proposition 4.1 For any t0 ∈ I, we have the following.

(1) Ev(Inv(γ, t0))(t) = γ(t).

(2) Inv(Ev(γ), t0)(t) = γ(t)− (β(t0)/ℓ(t0))ν(t).

Proof. (1) We denote the curvature of (Inv(γ, t0)(t), J−1(ν(t))) by (ℓ−1(t), β−1(t)). By the
definition of the evolute,

Ev(Inv(γ, t0))(t) = Inv(γ, t0)(t)−
β−1(t)

ℓ−1(t)
J−1(ν(t)).

By Proposition 2.14, we obtain

Inv(γ, t0)(t)−
β−1(t)

ℓ−1(t)
J−1(ν(t)) = γ(t)−

(∫ t

t0

β(u)du

)
µ(t) +

(
ℓ(t)

∫ t

t0
β(u)du

ℓ(t)

)
µ(t)

= γ(t).
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(2) We denote the curvature of (Ev(γ)(t), J(ν(t))) by (ℓ1(t), β1(t)). By the definition of the
involute,

Inv(Ev(γ), t0)(t) = Ev(γ)(t)−
(∫ t

t0

β1(u)du

)
J(µ(t)).

By Proposition 2.14, we obtain

Ev(γ)(t)−
(∫ t

t0

β1(u)du

)
J(µ(t)) = γ(t)− β(t)

ℓ(t)
ν(t) +

(∫ t

t0

d

du

(
β(u)

ℓ(u)

)
du

)
ν(t)

= γ(t)− β(t0)

ℓ(t0)
ν(t).

2

For a given Legendre immersion (γ, ν) : I → R2× S1, we consider an existence condition of
a Legendre immersion (γ̃, ν̃) : I → R2 × S1 such that Ev(γ̃)(t) = γ(t) or Inv(γ̃, t0)(t) = γ(t)
for some t0. By using Proposition 4.1, we have the following Corollary.

Corollary 4.2 (1) If (γ̃(t), ν̃(t)) = (Inv(γ, t0)(t) + λJ−1(ν(t)), J−1(ν(t))) for any t0 ∈ I and
any λ ∈ R, then Ev(γ̃)(t) = γ(t).

(2) If (γ̃(t), ν̃(t)) = (Ev(γ)(t), J(ν(t))) and t0 is a singular point of γ, then Inv(γ̃, t0)(t) =
γ(t).

Proof. (1) Since γ̃(t) is a parallel curve of Inv(γ, t0)(t), we have Ev(γ̃)(t) = Ev(Inv(γ, t0))(t).
It follows from Proposition 4.1 that Ev(γ̃)(t) = γ(t).

(2) By Proposition 4.1 and β(t0) = 0, we have Inv(γ̃, t0)(t) = γ(t). 2

Conversely, we have the following result.

Proposition 4.3 Let (γ, ν) and (γ̃, ν̃) : I → R2×S1 be Legendre immersions with the curvature

of the Legendre immersions (ℓ, β) and (ℓ̃, β̃) respectively, and without inflection points.

(1) If (Ev(γ̃)(t), J(ν̃(t))) and (γ(t), ν(t)) are congruent as Legendre immersions, then for

any t0 ∈ I, (γ̃(t), ν̃(t)) and (Inv(γ, t0)(t) + (β̃(t0)/ℓ̃(t0))J
−1(ν(t)), J−1(ν(t))) are congruent as

Legendre immersions.

(2) Let t0 ∈ I. If (Inv(γ̃, t0)(t), J−1(ν̃(t))) and (γ(t), ν(t)) are congruent as Legendre im-
mersions, then (γ̃(t), ν̃(t)) and (Ev(γ)(t), J(ν(t))) are congruent as Legendre immersions, and
t0 is a singular point of γ.

Proof. (1) Suppose that (Ev(γ̃)(t), J(ν̃(t))) and (γ(t), ν(t)) are congruent as Legendre immer-
sions. By Lemma 2.7 and Proposition 2.14, we have simultaneous equations:

ℓ(t) = ℓ̃(t), β(t) =
d

dt

(
β̃(t)

ℓ̃(t)

)
.

Thus, we have ∫ t

t0

β(u)du =
β̃(t)

ℓ̃(t)
− β̃(t0)

ℓ̃(t0)
.
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Since ℓ̃(t) = ℓ(t), we have

β̃(t) = ℓ(t)

∫ t

t0

β(u)du+

(
β̃(t0)

ℓ̃(t0)

)
ℓ(t).

By Theorem 2.6, (γ̃(t), ν̃(t)) and (Inv(γ, t0)(t) + (β̃(t0)/ℓ̃(t0))J
−1(ν(t)), J−1(ν(t))) are congru-

ent as Legendre immersions.

(2) Suppose that (Inv(γ̃, t0)(t), J−1(ν̃(t))) and (γ(t), ν(t)) are congruent as Legendre im-
mersions. By Lemma 2.7 and Proposition 2.14, we have simultaneous equations:

ℓ(t) = ℓ̃(t), β(t) = ℓ̃(t)

∫ t

t0

β̃(u)du.

Thus, we have

β(t) = ℓ(t)

∫ t

t0

β̃(u)du.

It follows that β(t0) = 0, that is, t0 is a singular point of γ. Since ℓ(t) ̸= 0,∫ t

t0

β̃(u)du =
β(t)

ℓ(t)
.

Take derivative both sides, we have β̃(t) = (d/dt)(β(t)/ℓ(t)). Therefore, we have

ℓ̃(t) = ℓ(t), β̃(t) =
d

dt

(
β(t)

ℓ(t)

)
.

By Theorem 2.6, (γ̃(t), ν̃(t)) and (Ev(γ)(t), J(ν(t))) are congruent as Legendre immersions. 2

Let (γ, ν) : I → R2 × S1 be a Legendre immersion with the curvature (ℓ, β) and without
inflection points. By Proposition 2.14, (Ev(γ), J(ν)) : I → R2×S1 is also a Legendre immersion
without inflection points. Therefore, we can repeat the evolute of the front. In [9], we give the
form of the n-th evolute of the front, where n is a natural number. We denote Ev0(γ)(t) = γ(t)
and Ev1(γ)(t) = Ev(γ)(t) for convenience. We define Evn(γ)(t) = Ev(Evn−1(γ))(t) and

β0(t) = β(t), βn(t) =
d

dt

(
βn−1(t)

ℓ(t)

)
,

inductively.

Theorem 4.4 ([9]) (Evn(γ), Jn(ν)) : I → R2×S1 is a Legendre immersion with the curvature
(ℓ, βn), where the n-th evolute of the front is given by

Evn(γ)(t) = Evn−1(γ)(t)− βn−1(t)

ℓ(t)
Jn−1(ν(t))

and Jn is n-times of J .
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Moreover, by Proposition 2.14, (Inv(γ, t0), J−1(ν)) : I → R2×S1 is also a Legendre immersion
without inflection points for any t0 ∈ I. Therefore, we can repeat the involute of the front.
We denote Inv0(γ, t0)(t) = γ(t) and Inv1(γ, t0)(t) = Inv(γ, t0)(t) for convenience. We define
Invn(γ, t0)(t) = Inv(Invn−1(γ, t0), t0)(t) and

β−1(t) = ℓ(t)

(∫ t

t0

β(u)du

)
, β−n(t) = ℓ(t)

(∫ t

t0

β−n+1(u)du

)
inductively. We give the form of the n-th involute of the front.

Theorem 4.5 (Invn(γ, t0), J−n(ν)) : I → R2×S1 is a Legendre immersion with the curvature
(ℓ, β−n), where the n-th involute of the front γ at t0 is given by

Invn(γ, t0)(t) = Invn−1(γ, t0)(t) +
β−n(t)

ℓ(t)
J−n(ν(t))

and J−n is n-times of J−1.

Proof. We denote {νInvn−1(t),µInvn−1(t)} the moving frame of the (n − 1)-th involute and
(ℓInvn−1(t), βInvn−1(t)) the curvature of the (n−1)-th involute. By the definition of the involute,

Invn(γ, t0)(t) = Invn−1(γ, t0)(t)−
(∫ t

t0

βInvn−1(u)du

)
µInvn−1(t).

Since µInv(t) = J−1(µ(t)), we have µInvn−1(t) = J−n+1(µ(t)) = J−n+2(ν(t)) inductively. More-
over, βInv(t) = ℓ(t)

∫ t

t0
β(s)ds = β−1(t) by Proposition 2.14. Thus we have βInvn−1(t) = β−n+1(t)

inductively. It follows that

Invn(γ, t0)(t) = Invn−1(γ, t0)(t)−
(∫ t

t0

β−n+1(u)du

)
J−n+2(ν(t))

= Invn−1(γ, t0)(t)−
ℓ(t)

∫ t

t0
β−n+1(u)du

ℓ(t)
J−n+2(ν(t))

= Invn−1(γ, t0)(t)−
β−n(t)

ℓ(t)
J−n+2(ν(t))

= Invn−1(γ, t0)(t) +
β−n(t)

ℓ(t)
J−n(ν(t)).

Since

d

dt
Invn(γ, t0)(t) =

d

dt
Invn−1(γ, t0)(t)− β−n+1(t)J

−n+2(ν(t))− β−n(t)J
−n+2(µ(t))

= β−n+1(t)J
−n+2(ν(t))− β−n+1(t)J

−n+2(ν(t)) + β−n(t)J
−n(µ(t))

= β−n(t)J
−n(µ(t)),

d

dt
J−n(ν(t)) = J−n(ν̇(t)) = J−n(ℓ(t)µ(t)) = ℓ(t)J−n(µ(t)),

(Invn(γ, t0)(t), J−n(ν)(t)) is a Legendre immersion with the curvature (ℓ(t), β−n(t)). 2
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Remark 4.6 We can consider n-th involutes of the front at different initial points. The dif-
ference is given by a parallel curve of the involute by Proposition 3.1. In this paper, we only
consider the n-th involute of the front at the same initial point.

By Theorems 4.4 and 4.5, we have the following sequence of the Legendre immersions (the
evolutes and the involutes) without inflection points,

· · · Inv← (Inv2(γ, t0)(t), J−2(ν)(t))
Inv← (Inv(γ, t0)(t), J−1(ν)(t))

Inv←
(γ(t), ν(t))

Ev→ (Ev(γ)(t), J(ν)(t)) Ev→ (Ev2(γ)(t), J2(ν)(t))
Ev→ · · ·

and the corresponding sequence of the curvatures of the evolutes and the involutes,

· · · ← (ℓ(t), β−2(t))← (ℓ(t), β−1(t))← (ℓ(t), β(t))→ (ℓ(t), β1(t))→ (ℓ(t), β2(t))→ · · · . (2)

5 The arc-length parameter for ν

Let (γ, ν) : I → R2×S1 be a Legendre immersion with the curvature of the Legendre immersion
(ℓ, β) and without inflection points. If β(t) ̸= 0 for all t ∈ I, we can choose the arc-length
parameter s so that |γ′(s)| = 1. On the other hand, if ℓ(t) ̸= 0 for all t ∈ I, we can choose the
special parameter s so that |ν ′(s)| = 1. It follows that ν(s) and also µ(s) are the unit speed.
By the same method for the are-length parameter of regular plane curves, one can prove the
following:

Proposition 5.1 Let (γ, ν) : I → R2 × S1 be a Legendre immersion without inflection points,
and let t0 ∈ I. Then ν is parametrically equivalent to the unit speed curve

ν : I → S1; s 7→ ν(s) = ν ◦ t(s),

under a change of parameter t : I → I with t(0) = t0 and with t′(s) > 0.

We call the above parameter s in Proposition 5.1 the arc-length parameter for ν. If t is the
arc-length parameter for ν, then we have |ℓ(t)| = 1 for all t ∈ I. Note that we may assume
ℓ(t) = 1 for all t ∈ I, if necessary, a change of parameter t 7→ −t.

In this section, we suppose that ℓ(t) = 1 for all t ∈ I. Then the second components of the
curvatures of the evolutes and the involutes (2) are given by

· · · ←
∫ t

t0

(∫ t

t0

β(t)dt

)
dt←

∫ t

t0

β(t)dt← β(t)→ d

dt
β(t)→ d2

dt2
β(t)→ · · · . (3)

As a result, we observe that the evolutes and the involutes of fronts are corresponding to the
differential and the integral in classical calculus.

Next, we recall the notion of the contact between Legendre immersions (cf. [8]). Let

(γ, ν) : I → R2 × S1; t 7→ (γ(t), ν(t)) and (γ̃, ν̃) : Ĩ → R2 × S1;u 7→ (γ̃(u), ν̃(u)) be Legendre
immersions respectively and let k be a natural number. We say that (γ, ν) and (γ̃, ν̃) have at
least k-th order contact at t = t0, u = u0 if

(γ, ν)(t0) = (γ̃, ν̃)(u0),
d

dt
(γ, ν)(t0) =

d

du
(γ̃, ν̃)(u0), · · · ,

dk−1

dtk−1
(γ, ν)(t0) =

dk−1

duk−1
(γ̃, ν̃)(u0).
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In general, we may assume that (γ, ν) and (γ̃, ν̃) have at least first order contact at any
point t = t0, u = u0, up to congruence as Legendre immersions. We denote the curvatures of
the Legendre immersions (ℓ(t), β(t)) of (γ(t), ν(t)) and (ℓ̃(u), β̃(u)) of (γ̃(u), ν̃(u)), respectively.

Theorem 5.2 ([8, Theorem 3.1]) If (γ, ν) and (γ̃, ν̃) have at least (k + 1)-th order contact at
t = t0, u = u0 then

(ℓ, β)(t0) = (ℓ̃, β̃)(u0),
d

dt
(ℓ, β)(t0) =

d

du
(ℓ̃, β̃)(u0), · · · ,

dk−1

dtk−1
(ℓ, β)(t0) =

dk−1

duk−1
(ℓ̃, β̃)(u0). (4)

Conversely, if the condition (4) holds, then (γ, ν) and (γ̃, ν̃) have at least (k+1)-th order contact
at t = t0, u = u0, up to congruence as Legendre immersions.

As a corollary of Theorem 5.2, we have the relationship among the contact of Legendre immer-
sions, evolutes and involutes.

Corollary 5.3 Under the above notations, we have the following.

(1) If (γ, ν) and (γ̃, ν̃) have at least (k + 1)-th order contact at t = t0, u = u0, up to
congruence as Legendre immersions, then (Ev(γ), J(ν)) and (Ev(γ̃), J(ν̃)) have at least k-th
order contact at t = t0, u = u0, up to congruence as Legendre immersions.

(2) (Inv(γ, t0), J−1(ν)) and (Inv(γ̃, u0), J
−1(ν̃)) have at least (k + 1)-th order contact at

t = t0, u = u0, up to congruence as Legendre immersions if and only if (γ, ν) and (γ̃, ν̃) have
at least k-th order contact at t = t0, u = u0, up to congruence as Legendre immersions.

Finally, we consider what is the same sharp of fronts and the n-th evolutes (respectively,
the n-th involutes) of the front under the same parametrisation. Namely, is there a Legendre
immersion (γ, ν) : I → R2×S1 such that (γ, ν) and (Evn(γ), Jn(ν)) : I → R2×S1 (respectively,
(Invn(γ, t0), J−n(ν)) : I → R2 × S1) are congruent?

Theorem 5.4 Under the above notations, we have the following.

(1) Legendre immersions (γ, ν) and (Evn(γ), Jn(ν)) are congruent as Legendre immersions
if and only if the curvature of the Legendre immersion (γ(t), ν(t)) is given by

ℓ(t) = 1, β(t) =
n−1∑
k=0

cke
λk
nt,

where ck is a constant, λn is a primitive n-th root of unity, λk
n = cos(2πk/n) + i sin(2πk/n) for

k = 0, . . . , n− 1 and i is the imaginary unit.

(2) Legendre immersions (γ, ν) and (Invn(γ), J−n(ν)) are congruent as Legendre immer-
sions if and only if (γ, ν) is given by

γ(t) = (a, b), ν(t) = (cos t, sin t),

up to congruence as Legendre immersions, where a, b ∈ R.

Proof. (1) By Lemma 2.7, ℓ(t) = 1 and the sequence of curvatures of the evolutes (3), we have

β(t) =
dn

dtn
β(t).
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The linear ordinary differential equation can be solved, and the general solution is given by

β(t) =
n−1∑
k=0

cke
λk
nt,

where ck is a constant, λn is a primitive n-th root of unity, λk
n = cos(2πk/n) + i sin(2πk/n) for

k = 0, . . . , n− 1 and i is the imaginary unit. By Theorem 2.6, the converse is holded.

(2) By Lemma 2.7, ℓ(t) = 1 and the sequence of curvatures of the involute (3), we have

β(t) =

∫ t

t0

· · ·
(∫ t

t0

β(t)dt

)
· · · dt,

n-times integrations for β(t). This is equivalent to the conditions

β(t) =
dn

dtn
β(t),

di

dti
β(t0) = 0 (0 ≤ i ≤ n− 1).

It follows from (1) that ck = 0 for k = 0, . . . , n− 1, namely, β(t) = 0 for all t ∈ I. By Theorem
2.5, we obtain

γ(t) = (a, b), ν(t) = (cos t, sin t),

up to congruence as Legendre immersions, where a, b ∈ R. By a direct calculation, we have the
converse. 2

We give examples for the cases n = 1, 2 and 3 in Theorem 5.4 (1).

Example 5.5 (1) The case of n = 1 in Theorem 5.4 (1). Since ℓ(t) = 1 and β(t) = β̇(t), we
have β(t) = cet, where c ∈ R. It follows that

γ(t) =
( c
2
et(cos t− sin t),

c

2
et(cos t+ sin t)

)
, ν(t) = (cos t, sin t) ,

up to congruent. We draw the front γ(t) for c = 1 in Figure 4 left.

(2) The case of n = 2 in Theorem 5.4 (1). Since ℓ(t) = 1 and β(t) = β̈(t), we have
β(t) = c1e

t + c2e
−t, where c1, c2 ∈ R. It follows that

γ(t) =
(c1
2
et(cos t− sin t) +

c2
2
e−t(cos t+ sin t),

c1
2
et(cos t+ sin t) +

c2
2
e−t(sin t− cos t)

)
,

ν(t) = (cos t, sin t) ,

up to congruent. We draw the front γ(t) for c1 = 1 and c2 = −1 in Figure 4 centre. In this
case, 0 is a singular point of γ.

(3) The case of n = 3 in Theorem 5.4 (1). Since ℓ(t) = 1 and β(t) =
...
β (t), we have

β(t) = c1e
t + c2e

−t/2 cos

√
3

2
t+ c3e

−t/2 sin

√
3

2
t

as a smooth general solution, where c1, c2, c3 ∈ R. By a direct calculation, we have

γ(t) = (γ1(t), γ2(t)), ν(t) = (cos t, sin t),
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where

γ1(t) =
c1
2
et (cos t− sin t)

−c2e−t/2

(
1

2(2 +
√
3)

(
−1

2
sin(

√
3

2
+ 1)t− (

√
3

2
+ 1) cos(

√
3

2
+ 1)t

)

− 1

2(2−
√
3)

(
−1

2
sin(

√
3

2
− 1)t− (

√
3

2
− 1) cos(

√
3

2
− 1)t

))

−c3e−t/2

(
− 1

2(2 +
√
3)

(
−1

2
cos(

√
3

2
+ 1)t+ (

√
3

2
+ 1) sin(

√
3

2
+ 1)t

)

+
1

2(2−
√
3)

(
−1

2
cos(

√
3

2
− 1)t+ (

√
3

2
− 1) sin(

√
3

2
− 1)t

))
,

γ2(t) =
c1
2
et (cos t+ sin t)

+c2e
−t/2

(
1

2(2 +
√
3)

(
−1

2
cos(

√
3

2
+ 1)t+ (

√
3

2
+ 1) sin(

√
3

2
+ 1)t

)

+
1

2(2−
√
3)

(
−1

2
cos(

√
3

2
− 1)t+ (

√
3

2
− 1) sin(

√
3

2
− 1)t

))

+c3e
−t/2

(
1

2(2 +
√
3)

(
−1

2
sin(

√
3

2
+ 1)t− (

√
3

2
+ 1) cos(

√
3

2
+ 1)t

)

+
1

2(2−
√
3)

(
−1

2
sin(

√
3

2
− 1)t− (

√
3

2
− 1) cos(

√
3

2
− 1)t

))
,

up to congruent. We draw the front γ(t) for c1 = 0, c2 = 0 and c3 = 1 in Figure 4 right.
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-100 -50 50 100
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(1) n = 1 and c = 1 (2) n = 2, c1 = 1 and c2 = −1 (3) n = 3, c1 = c2 = 0 and c3 = 1.
Figure 4.
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