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Abstract. In this paper we study a generalization of the classical no-
tions of solid codes and comma-free codes: involution solid codes (θ-solid)
and involution join codes (θ-join). These notions are motivated by DNA
strand design where Watson-Crick complementarity can be formalized
as an antimorphic involution. We investigate closure properties of these
codes, as well as necessary conditions for θ-solid codes to be maximal.
We show how the concept of θ-join can be utilized such that codes that
are not themselves θ-comma free can be split into a union of subcodes
that are θ-comma free.

1 Introduction

When using single stranded DNA molecules in DNA nanotechnology and DNA
computing it is important to minimize the errors that are due to unwanted cross-
hybridization. Such errors occur if two different bits of information are encoded
as single stranded DNA molecules that are totally or partially complementary.
This complementarity induces unintentional hybridizations and such encodings
should be avoided (See Fig. 1).

Several attempts have been made to address this issue and many authors have
proposed various solutions. Such approaches to the design of DNA encodings
without undesirable bonds and secondary structures were summarized in [20]
and [24]. For more details we refer the reader to [1, 3, 4, 5, 6, 8, 23]. One approach
to this issue of “good encodings” is theoretical study of the algebraic and code-
theoretic properties of DNA encodings through formal language theory. In [11],
Kari et al. introduced such theoretical approach to the problem of designing
code words. Properties of languages that avoid certain undesirable bonds were
discussed in several follow-up papers [13, 18, 19, 21, 22].

This paper follows the approach introduced in [11] and investigate the formal
language and coding theoretic notions inspired and motivated by DNA encoded
information. In order to model the characteristics of the biologically encoded in-
formation, we replace the identity function by a composition of the complement
function with the mirror-image function (such a function is a correct mathemat-
ical model of the Watson-Crick complement of DNA strands) or, more generally,
by an arbitrary involution (a function θ with the property that θ2 equals identity)

O.H. Ibarra and Z. Dang (Eds.): DLT 2006, LNCS 4036, pp. 192–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Involution Solid and Join Codes 193

[20]. Moreover, as needed, we replace regular homomorphisms by antimorphic
functions, to allow for the property of reversal in complementary DNA strands.
These lead to natural, as well as theoretically elegant, generalizations of classi-
cal notions such as prefix codes, suffix codes, infix codes, bifix codes, intercodes,
comma-free codes, etc [13, 18, 19, 22]. These are but some examples of ways in
which classical notions and results in formal language theory and algebraic infor-
matics can be meaningfully generalized. This paper continues this line of research
by introducing and studying the notions of θ-solid and θ-join codes. If θ is the
identity function, the θ-solid codes and θ-join codes respectively become the well
known solid and join codes respectively.

Section 2 includes the definitions and we introduce the new concept of θ-solid
codes and include some properties of θ-overlap-free codes. Section 3 contains
the closure properties of θ-solid codes. Note that the results obtained for θ-solid
codes hold true for solid codes when θ is the identity function. We show that the
property of being a θ-solid code is decidable for regular languages and provide
results about maximal θ-solid codes. In Section 4 we generalize the concept
of join codes to θ-join codes and develop a method to extract a sequence of
subsets which are θ-comma-free from a set that is not θ-comma-free. Due to
space restrictions, some of the proofs are omitted.

2 Definitions

An alphabet Σ is a finite non-empty set of symbols. A word u over Σ is a finite
sequence of symbols in Σ. We denote by Σ∗ the set of all words over Σ, including
the empty word 1 and, by Σ+, the set of all non-empty words over Σ. For a word
w ∈ Σ∗, the length of w is the number of non empty symbols in w and is denoted
by |w|. Throughout the rest of the paper, we concentrate on sets X ⊆ Σ+ that
are codes such that every word in X+ can be written uniquely as a product of
words in X , or equivalently, X+ is a free semigroup generated by X . For the
background on codes we refer the reader to [2, 26]. For a language X ⊆ Σ∗, let

PPref(X) = {u ∈ Σ+ | ∃v ∈ Σ+, uv ∈ X }
PSuff(X) = {u ∈ Σ+ | ∃v ∈ Σ+, vu ∈ X }
PSub(X) = {u ∈ Σ+ | ∃v1 , v2 ∈ Σ∗, v1 v2 �= 1 , v1uv2 ∈ X }

We recall the definitions initiated in [11, 18] and used in [12, 19].
An involution θ : Σ → Σ of a set Σ is a mapping such that θ2 equals the

identity mapping.

Definition 1. Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution and
X ⊆ Σ+ be a code.

1. The set X is called θ-strict if X ∩ θ(X) = ∅.
2. The set X is called θ-infix if Σ∗θ(X)Σ+ ∩ X = ∅ and Σ+θ(X)Σ∗ ∩ X = ∅.
3. The set X is called θ-comma-free if X2 ∩ Σ+θ(X)Σ+ = ∅.
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Forbidden annealings for involution codes

−prefixθ −infixθ −suffixθ

−comma−freeθ−overlap−freeθ

Fig. 1. Schematic representation for forbidden inter molecular DNA hybridizations.
The 3′ ends are indicated with an arrow.

Note that when θ is identity θ-infix code and θ-comma-free code are just infix
and comma-free codes [2, 26]. In [12, 13] θ-strict codes are called strictly θ and
in [18] they are called θ-non overlapping.

Solid codes were introduced in [25]. Certain combinatorial and closure prop-
erties of solid codes were discussed in [15]. We recall the definition of solid codes
used in [17] defined by using a characterization given in [15].

Definition 2. A set X ⊆ Σ+ is a solid-code if

1. X is an infix code
2. PPref(X) ∩ PSuff(X) = ∅.

The notion of solid codes was extended to involution solid codes in [22]. Note
that when the involution map denotes the Watson-Crick complement, the set of
involution-solid codes comprises of DNA strands that do not overlap with the
complement of any other DNA strand (see Fig.1).

Definition 3. Let X ⊆ Σ+.

1. The set X is called θ-overlap free if PPref(X) ∩ PSuff(θ(X)) = ∅ and
PSuff(X) ∩ PPref(θ(X)) = ∅.

2. X is a θ-solid code if X is θ-infix and θ-overlap free.
3. X is a maximal θ-solid code iff for no word u ∈ Σ+\X, the language X∪{u}

is a θ-solid code.

Note 1. Let X be such that Xn is θ-overlap free for some n ≥ 1 then X i,
1 ≤ i ≤ n is also θ-overlap free.

Throughout the rest of the paper we use θ to be either a morphic or antimorphic
involution unless specified otherwise. Note that X is θ-overlap free (θ-solid) iff
θ(X) is θ-overlap free (θ-solid).

Proposition 1. If X is a θ-strict-solid code then X+ is θ-overlap free.
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Proof. We need to show that PPref(X+) ∩ PSuff(θ(X+)) = ∅ and PSuff(X+) ∩
PPref(θ(X+)) = ∅. Suppose there exists x ∈ PPref(X+) ∩ PSuff(θ(X+)) such
that x = x1x2..xia = θ(b)θ(y1)...θ(yj) for xi, yj ∈ X for all i, j and a ∈ PPref(X)
and θ(b) ∈ PSuff(θ(X)). Then x1 is not a subword of θ(b) as this contradicts
the assumption that X is θ-infix. Also, θ(b) being in PPref(x1)) contradicts the
assumption that X is θ-solid. Hence PPref(X+) ∩ PSuff(θ(X+)) = ∅. Similarly,
PSuff(X+) ∩ PPref(θ(X+)) = ∅. �

Corollary 1. Let X, Y ⊆ Σ+ be such that X ∪ Y is θ-strict-solid. Then XY is
θ-overlap free.

Proposition 2. Let X be a regular language. It is decidable whether or not X
is θ-overlap free.

3 Properties of Involution Solid Codes

In this section we consider the closure properties of the class of involution solid
codes. It turns out that involution solid codes are closed under a restricted kind
of product, arbitrary intersections and catenation closure while not closed under
union, complement, product and homomorphisms. The first two properties are
immediate consequences of the definitions.

Proposition 3. The class of θ-solid codes is closed under arbitrary intersection
and θ-solid codes is not closed under union, complement, concatenation and
homomorphism.

Example 1. Consider the θ-solid codes {a} and {ab} over the alphabet set Σ =
{a, b} and with θ being an antimorphic involution that maps a �→ b and b �→ a.
The sets {a, ab} = {a}∪{ab} and {aba} = {ab}{a} are not θ-solid. Let h : Σ∗ �→
Σ∗ be homomorphism such that h(a) = aba and h(b) = bab. Note that {a} is
θ-solid but h(a) = aba is not θ-solid.

Proposition 4. If X is a θ-solid code then X is a θ-comma-free code.

Proof. According to proposition 3.5 in [14], X is θ-comma-free if and only if
X is θ-infix and XipXis ∩ θ(X) = ∅ where Xip = PPref(θ(X)) ∩ PSuff(X) and
Xis = PSuff(θ(X))∩PPref(X). Since X is θ-solid, X is θ-infix and Xip = Xis = ∅
and hence XipXis ∩ θ(X) = ∅. �

Note that the converse of the above proposition does not hold in general.
For example let X = {aa, baa} and let θ be an antimorphic involution such
that θ : a → b, b → a, then θ(X) = {bb, bba}. It is easy to check that X is
θ-comma-free. But ba ∈ PPref(X) ∩ PSuff(θ(X)) which contradicts condition 2
of definition 3.

Proposition 5. Let X, Y ⊆ Σ+ be such that X and Y are θ-strict and X ∩
θ(Y ) = ∅. If X ∪ Y is θ-solid then XY is θ-solid.
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Proof. Suppose XY is not θ-infix, then there exists x1, x2 ∈ X and y1, y2 ∈ Y
such that x1y1 = aθ(x2y2)b for some a, b ∈ Σ∗ not both empty. When θ is
morphic, x1y1 = aθ(x2)θ(y2)b. Then either θ(x2) is a subword of x1 or θ(y2)
is a subword of y1 which is a contradiction with X ∪ Y being θ-infix. Similar
contradiction arises when θ is antimorphic. From Corollary 1, XY is θ-overlap
free and hence XY is θ-solid. �

Corollary 2. X is a θ-strict-solid code if and only if X+ is a θ-strict-solid code.

Proposition 6. Let X be a regular language. It is decidable whether or not X
is a θ-solid code.

Proof. It has been proved in [11] that it is decidable whether X is θ-infix or not.
From Proposition 2 it is decidable whether X is θ-overlap free or not. Hence for
a regular X , one can decide whether X is θ-solid or not.

The following proposition gives a method for constructing θ-strict-solid codes.

Proposition 7. Let θ be a morphic or antimorphic involution and X ⊆ Σ+ be
θ-strict-solid code. Then Y = {u1vu2 : u1u2, v ∈ X, u1, u2 ∈ Σ∗} is a θ-solid
code.

The next proposition provides a general method for constructing not just θ-solid
codes, but maximal θ-solid codes.

Proposition 8. Let θ be an antimorphic involution. Let Σ = A ∪ B ∪ C such
that A, B, C are disjoint sets such that A and C are θ-strict and A ∩ θ(B) = ∅
and C ∩ θ(B) = ∅. Then X = AB∗C is a maximal θ-solid code.

Example 2. Let Σ = {a, b, c, d} and θ be an antimorphic involution such that θ
maps a �→ c and b �→ d. Then X = {a}{b, d}∗{c} is a maximal θ-solid code.

From the above definitions and propositions we can deduce the following.

Lemma 1. Let θ be an antimorphic involution.

1. Let Σ1, ..., Σn be a partition of Σ such that Σi is θ-strict for all i. Then
every language ΣiΣj is θ-solid.

2. If Σ1, Σ2 is a partition of Σ such that Σi is θ-strict for i = 1, 2, then Σ1Σ2
is maximal θ-solid code.

3. Let A ⊆ Σ such that A = θ(A) and X ⊆ A+. Then X is maximal θ-solid
code over A if and only if X ∪ (Σ \ A) is maximal θ-solid code over Σ.

4. Let B ⊆ Σ such that B ∩ θ(B) = ∅. Then X = B+ is θ-solid code.

The next proposition provides conditions under which the involution solid codes
are preserved under a morphic or antimorphic mapping.

Proposition 9. Let Σ1 and Σ2 be finite alphabet sets and let f be an injective
morphism or antimorphism from Σ1 to Σ∗

2 . Let θ1 : Σ∗
1 �→ Σ∗

1 and θ2 : Σ∗
2 �→ Σ∗

2
be both morphic or both antimorphic involutions such that f(θ1(x)) = θ2(f(x)).
Define P = Pref(θ2(f(X)), S = Suff(θ2(f(X)) and A = Σ∗

2 \ f(Σ∗
1 ).
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Suppose (A+P ∩ SA+) ∩ f(Σ+
1 ) = ∅ and A+PA+ ∩ f(Σ1) = ∅. Then

1. If X is θ1-strict-infix (comma-free) then f(X) is θ2-strict-infix (comma-free).
2. If X is a θ1-solid code then f(X) is a θ2-solid code.

Proof. The first statement was proved in [14]. We consider the case of θ-solid
codes. Let X be θ1-solid code. Note that f(X) is θ2-infix by the first part of
the proposition. We need to show that PPref(f(X)) ∩ PSuff(θ2(f(X))) = ∅ and
PSuff(f(X)) ∩ PPref(θ2(f(X))) = ∅. Let θ1 and θ2 be morphic involutions and
let f be an injective antimorphism. Suppose there exists a ∈ Σ+ such that
a ∈ PPref(f(x1x2)) and a ∈ PSuff(θ2(f(y1y2)) for some x1x2, y1y2 ∈ X . Note
that f(x1x2) = f(x2)f(x1) and θ2(f(y1y2)) = f(θ1(y1y2)) = f(θ1(y1)θ1(y2)) =
f(θ1(y2))f(θ1(y1)). Hence if a = f(x2) = f(θ1(y1)) then x2 = θ1(y1) since f is
injective which is a contradiction to PPref(X) ∩ PSuff(θ1(X)) = ∅. The other
case follows similarly. Hence f(X) is θ2-solid. �

4 Involution Join Codes

In [10], Head, by using the coding properties relative to a language [9], showed
how a sequence of subsets which are comma-free ([2, 16, 26]) from a set that is
not comma-free can be obtained. The codes of this sequence are called join codes
Similarly a sequence of subsets which are θ-comma-free codes from a given set
that is not θ-comma-free can be obtained ([11, 12, 13, 18, 14]). The ith element in
this sequence of codes θ-join codes is called θ-join code of level i. In this section
we have several observations about these codes.

Definition 4. Let X ⊆ Σ∗ and w ∈ Σ∗. Then the context of the word w in X
is defined as the set CX(w) = {(u, v) : uwv ∈ X, u, v ∈ Σ∗}.
The following was defined in [10] and used in [7].

Definition 5. A word w in X is a join for X if (u, v) ∈ CX∗(w) then both u
and v are in X∗. The set of all joins for X is denoted J(X).

Recall that when X is a code, J(X) is comma-free subset of X (see [10]), but
J(X) is not necessarily the maximal comma-free subset of X .s

Example 3. Let X = {aab, aba, bab} over the alphabet set Σ = {a, b}. Note that
J(X) = {aab} but Y = {aab, bab} ⊆ X is the maximal comma-free subset of X
since Σ+Y Σ+ ∩ Y 2 = ∅.

Similar to the definition for J(X), we define Jθ(X) such that Jθ(X) is θ-
comma-free. The authors in [7] define Jθ(X) as J(X) \ θ(J(X)), but such de-
fined Jθ(X) is not necessarily θ-comma-free in general. For example, consider
X = {aab, bab, abbb}. For an antimorphic involution θ with a → b and b → a,
θ(X) = {abb, aba, aaab}. Note that Σ+{aab, abbb}Σ+ ∩ X2 = ∅ but Σ+XΣ+ ∩
X2 �= ∅. Hence J(X) = {aab, abbb} is comma-free subset of X and Jθ(X) = J(X)
since θ(J(X)) ∩ J(X) = ∅. But Jθ(X) is not θ-comma-free since, aabθ(aab)b =
aab.abbb ∈ (Jθ(X))2. We alter the definition for Jθ(X) such that Jθ(X) becomes
θ-comma-free for all involutions θ.
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Definition 6. A word w ∈ X is a θ-join for X if (u, v) ∈ CX∗(θ(w)), then both
u and v are also in X∗. The set of all θ-joins for X is denoted with Jθ(X).

Lemma 2. Let X ⊆ Σ+ and θ be a morphic or antimorphic involution. Then
the following hold true.

1. Jθ(X) = J(X) when θ is identity.
2. Let X ∪ θ(X) be a code. When X is θ-comma-free, Jθ(X) = X.
3. X ∪ θ(X) is θ-comma-free if and only if X ∪ θ(X) is comma-free and hence

X ∪ θ(X) is an infix code.

Note that X ∪ θ(X) being θ-infix does not necessarily imply that X ∪ θ(X) is θ-
comma-free. For example let X = {aa, aba} with θ being antimorphic involution
mapping a → b and b → a. Then we have θ(X) = {bb, bab}. It is easy to check
that X ∪θ(X) is θ-infix but not θ-comma-free since ababb = a(bab)b = aθ(aba)b.

Lemma 3. If X ∪ θ(X) is a code then Jθ(X) is θ-comma-free.

Proof. Suppose Jθ(X) is not θ-comma-free, then there are x, y, z ∈ Jθ(X) such
that aθ(z)b = xy for some a, b ∈ Σ∗. Since z ∈ Jθ(X) with aθ(z)b ∈ X∗, for
a, b ∈ X , xy has two distinct factorizations in X ∪ θ(X). This contradicts that
X ∪ θ(X) is a code. Hence Jθ(X) is θ-comma-free. �

Corollary 3. If X ∪ θ(X) is a code then Σ+θ(Jθ(X))Σ+ ∩ X2 = ∅.

Note that Jθ(X) is not necessarily the maximal θ-comma-free subset of X .

Example 4. Let X = {abb, aab, aba} over the alphabet set Σ = {a, b} and for
an antimorphic θ with a → b and b → a, θ(X) = {abb, bab, aab}. Note that
Y = {aab, abb} is the maximal θ-comma-free subset of X . But Jθ(X) = {aab}.

Lemma 4. Let X ∪ θ(X) be a code and let Y be the maximal subset of X such
that Σ+θ(Y )Σ+ ∩ X2 = ∅. Then Y = Jθ(X).

Proof. Since Jθ(X) is θ-comma-free, Jθ(X) ⊆ Y . Note that Σ+θ(Y )Σ+∩X2 = ∅
if and only if Σ+θ(Y )Σ+ ∩ X∗ = ∅. Then for w ∈ Y and for all (u, v) ∈
CX∗(θ(w)), u = v = 1 which implies w ∈ Jθ(X). Hence Jθ(X) = Y .

A possible communication by transferring single stranded DNA molecules can
be done in the following way. To derive the meaning represented by a single
stranded DNA molecule, by allowing attachments of complementary pieces of
single stranded molecules. The meaning conveyed by the message molecule is
expressed by the sequence of complementary code word molecules that attach. In
such cases, each code word that is part of a θ-comma-free code has a unique place
for hybridization, and the whole “message” molecule can be recovered. However,
if the set of code words is not θ-comma-free, then we can extract a subset of
code words that form a θ-comma-free set, i.e., the θ-joins for the code words.
These code words would have unique places for annealing to the “message” DNA
(see Fig. 2) leaving positions complementary to other words “empty”. From the
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(a) ssDNA to be decoded

θ(c) Step 2: use    −join of level 2.

θ(d) Step 3: use    −join of level 3 to decode.

θ(b) Step 1: use    −joins for the set of code words 

Fig. 2. Step-by-step recovery of a “message” encoded within a single stranded DNA

remaining code words another θ-comma-free set can be extracted, i.e., the θ-
joins for the remaining code words. Now these words can anneal in a unique
way to the the empty places that were not occupied by the first set of words.
If this process ends, the “message” can be uniquely decoded. This process is
schematically represented in Fig. 2.

Formally, let X = X0 and X1 = X \ Jθ(X). We define Xi, i ≥ 0, a chain of
descending subsets of X such that Xi+1 = Xi \ Jθ(Xi) where Jθ(Xi) is a θ-join
of Xi (see Fig. 3). We call Jθ(Xi) the θ-join at level i. When θ is identity the
θ-join code at level 1 is precisely J(X).

Definition 7. The set X is called as θ-split code if X =
⋃∞

k=0 Jθ(Xk).
If there exists m such that Xm+1 = ∅ then X is called as θ-k-split where k =

min{m : Xm+1 = ∅}.

Example 5. Let X = {abb, aab, aba} over the alphabet set Σ = {a, b} and for
an antimorphic θ with a → b and b → a, θ(X) = {abb, bab, aab}. Note that
Jθ(X) = {aab} and hence X1 = X \Jθ(X) = {abb, aba}. But Jθ(X1) = ∅. Hence
X is not a θ-split code.

We assume that for a set X , X ∪ θ(X) is a code throughout the rest of this
section.

Proposition 10. X is a θ-split code if and only if θ(X) is θ-split code.

Note that it is possible to find an X such that X is θ-infix but not θ-split. For
example let X = {aba, bab} and let θ be an antimorphic involution such that θ
maps a �→ b. Then X is θ-infix and Jθ(X) = ∅.
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X

θJ  (X)

J  (X  )θ 1 X2

J  (X  )θ 2 X3

Xn

J  (X  )θ 2X2

J  (X  )θ 1X1

θJ  (X)X1 =       \

=       \

X n−1

=       \

X

=           \ θ n−1 θ n−1J  (X      ) J  (X      )

Fig. 3. The construction of θ-split code

Corollary 4. If X and Y are such that X ∪ Y is a θ-split code, then XY is
θ-split code.

Corollary 5. If X is a θ-split code, than Xn is a θ-split code for all n ≥ 1.

5 Concluding Remarks

The theory of codes, born in the context of information theory, has been devel-
oped as an independent subject using both combinatorial and algebraic methods.
The objective of the theory of codes, from an elementary point of view, is the
study of properties concerning factorizations of words into a sequence of words
taken from a given set. Solid codes were introduced in [25] in the context of the
study of disjunctive domains. Certain combinatorial properties of solid codes
have been investigated in [15] and results concerning maximal solid codes of
variable length were presented in [17]. In the hierarchy of codes, solid codes
lie below the class of comma-free codes. By using code properties relative to
a language [9], a sequence of generalizations of the concept of a comma-free
code was developed in [10]. In other words, Head showed a way to partition
a non-necessarily comma-free code into a sequence of subsets all of which are
comma-free. The codes of this sequence are the join codes of various levels. The
comma-free codes are precisely the join codes of the first level. The split codes of
level k allow the segmentation of messages to be made in a sequence of k steps
for which each step has the simplicity of a comma-free segmentation.

In this paper we extended the concepts of solid codes and join codes to incor-
porate the notion of an involution function replacing the identity function (An
involution function θ is such that θ2 equals identity). An involution code refers to
any of the generalization of classical notion of codes ([2, 16, 26]) that replace the
identity function with the involution morphic or antimorphic function in a way
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explained in Definition 1. Involution codes were introduced in [11] in the process
of designing DNA strands suitable for computation. Along these lines properties
of θ-comma-free codes, θ-infix codes, θ-prefix codes, θ-outfix codes, θ-intercodes
were introduced and studied in [11, 13, 14, 19, 21]. This paper completes this line
of research by investigating the notions of θ-solid codes and θ-join codes. Several
closure properties of θ-overlap free and θ-solid codes were discussed and we in-
troduced θ-split codes as codes that can be “split”, i.e., partition into a sequence
of θ-comma-free codes. Properties of a code X that is a θ-split code of finite or
infinite level remain to be determined. Note that if θ is the identity function,
these notions become the well known notions of solid respectively join codes and
the results obtained hold true for solid respectively join codes. Generalizations
where θ is substituted with an arbitrary morphism seem as a natural next step.
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