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Abstract. Numerical Campedelli surfaces are minimal surfaces of general type with
vanishing geometric genus and canonical divisor with self-intersection 2. Although they have
been studied by several authors, their complete classification is not known.

In this paper we classify numerical Campedelli surfaces with an involution, i.e., an au-
tomorphism of order 2. First we show that an involution on a numerical Campedelli surfaceS

has either four or six isolated fixed points, and the bicanonical map ofS is composed with the
involution if and only if the involution has six isolated fixed points. Then we study in detail
each of the possible cases, describing also several examples.

1. Introduction. Numerical Campedelli surfaces are minimal surfaces of general type
with pg = 0 (and soq = 0) andK2 = 2. The first such example was presented by Campedelli
[Cam] in 1932. Since then several authors (cf. [Mi], [Pe], [Re1], [Re2], [Ko], [Su], [Na2],
[Ku], . . . ) have studied these surfaces, but our knowledge about them is far from being com-
plete.

Since a classification of numerical Campedelli surfaces does not seem feasible at the
moment, a possible approach is to restrict one’sattention to the Campedelli surfaces which
have some additional geometrical feature. This is what we do in the present paper, where
we study the Campedelli surfaces which have an involution, i.e., an automorphism of order 2.
This choice is motivated by work of Keum and Lee [KL] and of Calabri, Ciliberto and Mendes
Lopes [CCM2], who have studied the same problem for numerical Godeaux surfaces, that is
minimal surfaces of general type withpg = 0 andK2 = 1.

In order to put our work in perspective, we briefly recall here the main results of the
paper [CCM2], which contains a complete classification of numerical Godeaux surfaces with
an involution.

If S is a numerical Godeaux surface andσ is an involution ofS, thenσ has five isolated
fixed points and:

• the bicanonical map of the surface factors through the natural projection onto the quo-
tient surfaceS/σ ;

• the quotient surface is either rational or birational to an Enriques surface;
• the possible quotient surfaces are classified and examples of each possibility in the list

do exist;
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• if S/σ is rational, then the surfaceS can be obtained as a specialization of one of the
surfaces in the list proposed by Du Val (see [Ci], cf. also [Bo]), by letting the branch locus
acquire some singularities.

In the case of numerical Campedelli surfaces the situation is more involved, since the
bicanonical map may not factor through the quotient mapS → S/σ . Indeed, we show that
an involution on a numerical Campedelli surfaceS has either four or six isolated fixed points,
and the bicanonical map ofS factors through the quotient mapS → S/σ if and only if the
involution has six isolated fixed points. In the latter case the situation is very similar to the
case of Godeaux surfaces. We have the following:

• the ramification divisorR on S is not 0, and its components can be described (see
Section 3);

• the quotient surfaceS/σ is either birational to an Enriques surface or a rational surface;
• if S/σ is rational, then there are four possible cases which all have a precise description

(see also Section 3). Each of the four cases actually occurs (cf. Section 5).
The analysis in Section 3 shows also that, if the bicanonical map ofS is composed with the
involution, then the 2-torsion of the surfaceS is nontrivial in three of the five possible cases.

If the bicanonical map is not composed with the involution, i.e., if the involution has four
isolated fixed points, we show that the ramification divisorR is either 0 or constituted by one,
two or three−2-curves. Note that ifR �= 0 thenKS is not ample.

In this case there are more possibilities for the quotient surfaceS/σ , as explained below:
• S/σ is of general type (a numerical Godeaux surface) if and only if the ramification

divisorR is equal to 0;
• if R is irreducible, thenS/σ is properly elliptic;
• if R has two or three components, thenS/σ may be rational or birational to an Enriques

surface or properly elliptic.
The case whereS/σ is a numerical Godeaux surface appears in the examples constructed by
Barlow in [Ba1] and [Ba2]. In Section 5, by specializing one of the examples of Barlow, we
present examples for which the quotient surface is either an elliptic surface or birational to
an Enriques surface. We do not know any instance in which the quotient surface is a rational
surface for this case.

In Section 5 we also study a family of numerical Campedelli surfaces with torsionZ2
3,

whose construction is attributed by J. Keum to A. Beauville and X. Gang. We show that every
surface in this family has two involutions, one with four isolated fixed points and one with
six isolated fixed points, whose quotients are respectively birational to a numerical Godeaux
surface and a rational surface.

In Section 5 we study the involutions of numerical Campedelli surfaces with torsionZ3
2,

the so-called “classical Campedelli surfaces”. Using the description of these surfaces as aZ3
2-

cover ofP2 branched on 7 lines (cf. [Ku]), we show that these involutions are all composed
with the bicanonical map.
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The paper is organized as follows. In Section 2, using the results in [CCM2], we de-
scribe the general properties of numerical Campedelli surfaces with an involution, showing in
particular that such an involution always has four or six isolated fixed points.

In Section 3 we study the case where the involution has six isolated fixed points and we
describe in some detail each possibility. In Section 4 we study the case where the involution
has four fixed points. Finally in Section 5 we describe the examples mentioned before, two of
which were not (to our knowledge) previously known.

NOTATION AND CONVENTIONS. We work over the complex numbers. All varieties
are projective.

Most of the notation is standard in algebraic geometry, hence we only recall here a
few conventions that we use and that are maybe not universally accepted. We denote linear
equivalence of divisors on a smooth variety by≡ and numerical equivalence by∼. A divisor
D on a smooth varietyX is said to beeven if its class is divisible by 2 in the group Pic(X).

An involution of a variety is a biregular automorphism of order 2. A mapf : X → Y of
projective varieties is said to becomposed with an involutionσ if f ◦ σ = f . A −n-curve on
a smooth surface is a curveC such thatC � P1 andC2 = −n.

A singular point of type[m,m] on a curve is a point of multiplicitym with an infinitely
near point again of multiplicitym.

2. Involutions on a numerical Campedelli surface. Throughout the paper we make
the following:

ASSUMPTION 2.1. S is a smooth minimal complex projective surface of general type
with K2

S = 2, pg (S) = 0 (thus alsoq(S) = 0). Such a surfaceS is called anumerical
Campedelli surface.

Moreover, we assume that we are given an involutionσ of S, namely an automorphism
σ : S → S of order 2.

In this section we establish the notation and recall some known facts on involutions,
giving all the statements in the special case of a numerical Campedelli surface. Our main
reference is the paper [CCM2], which contains a detailed analysis of involutions on surfaces
of general type withpg = 0.

The fixed locus of the involutionσ is the union of an effective divisorR and ofk isolated
pointsp1, . . . , pk . The effective divisorR, if not 0, is a smooth, possibly reducible, curve.
Let π : S → Σ := S/σ be the quotient map, and setB := π(R) andqi := π(pi), i =
1, . . . , k. The surfaceΣ is normal andq1, . . . , qk are ordinary double points, which are the
only singularities ofΣ. In particular, the singularities ofΣ are canonical and the adjunction
formula givesKS ≡ π∗KΣ + R.

Let ε : V → S be the blow-up ofS at p1, . . . , pk and letEi be the exceptional curve
overpi , i = 1, . . . , k. Thenσ induces an involutioñσ of V whose fixed locus is the union
of R0 := ε∗(R) and ofE1, . . . , Ek. Denote byπ̃ : V → W := V/σ̃ the projection onto the
quotient and setB0 := π̃(R0), Ni := π̃(Ei), i = 1, . . . , k. The surfaceW is smooth and the
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Ni are disjoint−2-curves. Denote byη : W → Σ the map induced byε. The mapη is the
minimal resolution of the singularities ofΣ and there is a commutative diagram:

V
ε−−→ S

π̃

�
�π

W
η−−→ Σ

(2.1)

The mapπ̃ is a flat double cover branched oñB := B0 + ∑k
i=1Ni . Hence there exists a

divisorL onW such that 2L ≡ B̃, namelyB̃ is an even divisor.

REMARK 2.2. We havepg (V ) = q(V ) = 0, sinceV is birational toS. SinceV
dominatesW , we also havepg (W) = q(W) = 0.

The numberk of isolated fixed points is a very important invariant of the involutionσ .
As explained below, it determines whether the bicanonical mapϕ : S → P2 is composed with
σ .

PROPOSITION 2.3 ([CCM2], Proposition 3.3, (v) and Corollary 3.6).One of the fol-
lowing two possibilities occurs:

I) k = 6. In this case ϕ is composed with σ .
II) k = 4. In this case ϕ is not composed with σ . More precisely, π∗|2KΣ + B| has

dimension 1, namely it is a codimension 1 subsystem of |2KS |.
We setD := 2KW + B0. The divisorD will play an important role in our analysis of

numerical Campedelli surfaces with an involution.
One has the following properties (cf. [CCM2, §3] for the proofs):

PROPOSITION 2.4. (i) ε∗(2KS) = π̃∗D.
(ii) D is nef and big, andD2 = 4.
(iii) D +N1 + · · · +Nk is an even divisor.
(iv) If k = 6, then −4 ≤ K2

W ≤ 0, KWD = 0.
(v) If k = 4, then −2 ≤ K2

W ≤ 1, KWD = 2.

REMARK 2.5. We will often apply Proposition 2.4, (i) as follows. Given a curveC of
W , we can pull it back to a curveC′ of V . If C′ is not contained in the exceptional locus ofε,
then we can push it down to a curveC̃ onS. ThenKSC̃ = DC.

Assume thatKW +D is not nef. Then one can show that there is an irreducible−1-curve
E onW with DE = 0, ENi = 0 for i = 1, . . . , k. By repeatedly blowing down such−1-
curves, one obtains a sort of minimal model for the pair(W,KW + D). More precisely, we
have the following

PROPOSITION 2.6 ([CCM2], Proposition 3.9). There exists a birational morphism
f : W → W ′, where W ′ is smooth, with the following properties:

(i) For i = 1, . . . , k the curve N ′
i := f (Ni) is a −2-curve on W ′ and the curves

N ′
1, . . . , N

′
k are disjoint.
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(ii) There is a nef divisor D′ on W ′ such that f ∗(D′) = D, D′2 = D2 and KW ′D′ =
KWD.

(iii) D′N ′
i = 0 for i = 1, . . . , k andD′ + N ′

1 + · · · +N ′
k is an even divisor.

(iv) KW ′ +D′ is nef.

REMARK 2.7. The proof of [CCM2], Proposition 3.9 actually shows more. Namely:
(i) sinceKW +D is effective and the curves contracted byf satisfyE(KW +D) < 0,

the components of the exceptional locus off are contained in the fixed part of|KW +D|;
(ii) if E is an irreducible component of the exceptional locus off , thenE gives a

−2-curve onS. In particular, ifKS is ample then we haveW = W ′.

3. Involutions composed with the bicanonical map. This section studies case I) of
Proposition 2.3, namely here we assume thatk = 6 and the bicanonical mapϕ : S → P2 is
composed withσ .

In what follows we use freely the notation introduced in Section 2. By Proposition 2.4,
in this case−4 ≤ K2

W ≤ 0 andKWD = 0. This allows us to establish some properties of the
ramification divisorR onS.

Using Proposition 2.4, and arguing as in the proof of Proposition 4.5 of [CCM2], one
obtains the following:

PROPOSITION 3.1. Let S be a numerical Campedelli surface with an involution σ ,
such that the bicanonical map ϕ is composed with σ . Then the divisorial part R of the fixed
locus of σ satisfies:

(i) KSR = 2;
(ii) R2 = 2K2

W + 2 is even, and −6 ≤ R2 ≤ 2.
Furthermore, R = Γ + Z1 + · · · + Zh, where Γ is a smooth curve with KSΓ = 2 and
Z1, . . . , Zh are disjoint −2-curves, which are disjoint also from Γ . Here

(iii) either Γ is irreducible, 0 ≤ pa(Γ ) ≤ 3 and Γ 2 = 2pa(Γ )− 4; or Γ has exactly
two components Γ1 + Γ2, where each Γi , i = 1,2, is either a rational curve with self-
intersection −3 or an elliptic curve with self-intersection −1;

(iv) the number h of −2-curves Z1, . . . , Zh satisfies

h = pa(Γ )−K2
W − 3 ≥ 0 ;

(v) if Γ 2 = 2, then Γ ∼ KS and S has nontrivial torsion.

In order to study in more detail these surfaces we consider the system|D| := |2KW+B0|
and its adjoint systems.

LEMMA 3.2. Let |KW + D| = |M| + F , where F is the fixed part. Then one has the
following

(i) h0(W,OW(M)) = 3.
(ii) MD = 4.
(iii) If F �= 0, then every component E of F is such that DE = 0 and E2 < 0.
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PROOF. Assertion (i) follows by the adjunction sequence for the generalD, sinceW is
regular by Remark 2.2 andpa(D) = 3 by Proposition 2.4.

Let us prove part (ii). Since, by Proposition 2.4,D is nef andD(M + F) = 4, one has
MD ≤ 4.

Suppose by contradiction thatMD < 4. We claim that in this case|M| is not composed
with a pencil, and so, in particular,M2 > 0. Indeed, if|M| = |2C| andMD < 4, then one
would haveCD ≤ 1. But then|C| would give a pencil|C̃| on S such thatC̃KS = 1 (cf.
Remark 2.5), which is impossible by the index theorem.

By a similar argument we verify thatMD ≥ 2.
Suppose thatMD = 2. Then by the index theorem we obtainM2 = 1 and 2M ∼ D.

This is impossible, because we haveKWD = 0 by Proposition 2.4 and this impliesKWM =
0, contradicting the adjunction formula.

So we are left with the caseMD = 3. We haveM2 + MF = M(KW + D). So
MD = 3 means thatMF is also odd and thus, becauseM is nef,MF ≥ 1. Therefore
MKW = M2 +MF − 3 ≥ M2 − 2.

On the other hand, the index theorem givesM2D2 ≤ (MD)2 = 9 henceM2 ≤ 2. Since
|M| is not composed with a pencil, we haveM2 = 1 orM2 = 2.

In the first caseφM : W → P2 is a birational morphism, but this is impossible because
2g(M)− 2 = M2 +KWM ≥ 0.

In the second case the system|M| gives a system|M̃| onS with M̃2 ≥ 4 andKSM̃ = 3
(cf. Remark 2.5). By the adjunction formula we getM̃2 ≥ 5, contradicting the index theorem
applied toKS andM̃.

So we have shown thatMD = 4. Now (iii) follows immediately fromDF = 0 and the
index theorem. �

Consider now the morphismf : W → W ′ and the divisorD′ of Proposition 2.6.

PROPOSITION 3.3. (i) One has −4 ≤ K2
W ′ ≤ 0.

(ii) If K2
W ′ = 0, then W ′ is an Enriques surface.

(iii) If K2
W ′ < 0, thenW ′ is rational.

PROOF. We recall that−4 ≤ K2
W ≤ 0 by Proposition 2.4, and soK2

W ′ ≥ −4. Since
D′(KW ′ +D′) = 4, the index theorem implies that(KW ′ +D′)2 ≤ 4, or equivalentlyK2

W ′ ≤ 0.
The surfaceW ′ is either rational or birational to an Enriques surface by [CCM2, Corol-

lary 3.7]. SinceKW ′D = 0, if K2
W ′ = 0, thenKW ′ ∼ 0 andW ′ is an Enriques surface. If

K2
W ′ < 0, thenKW ′(KW ′ +D) < 0. SinceKW ′ +D′ is nef by Proposition 2.6, this implies

that the Kodaira dimension ofW ′ is negative, and thereforeW ′ is rational. �

LEMMA 3.4. If K2
W ′ < 0, then |KW ′ +D′| has no fixed part.

PROOF. Write, as usual,|KW ′ +D′| = F ′ + |M ′|, whereF ′ is the fixed part. Since the
morphismf : W → W ′ contracts only curves that are fixed for|KW + D| (cf. Remark 2.7),
by Lemma 3.2 we see thatM ′D′ = 4,F ′D′ = 0.
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Notice thatF ′KW ′ = F ′(KW ′ + D′) = F ′M ′ + F ′2, soF ′M ′ is even. Since bothM ′
andKW ′ +D′ are nef (cf. Proposition 2.6, (iii)), wehave the following inequalities:

M ′F ′ ≤ M ′F ′ +M ′2 = M ′(KW ′ +D′) ≤ (KW ′ +D′)2 = K2
W ′ + 4< 4 .

It follows thatM ′F ′ = 0 orM ′F ′ = 2. If M ′F ′ = 2, thenM ′2 ≤ 1.
We start by seeing thatM ′F ′ = 2 does not occur. IfM ′F ′ = 2 andM ′2 = 1, then

KW ′M ′ = (KW ′ + D′)M ′ − 4 = 3 − 4 = −1. SinceM ′2 = 1, |M ′| is not composed with
a pencil, the general curve of|M ′| is smooth andφM ′ : W ′ → P2 is a birational morphism.
This is impossible becausepa(M ′) = 1.

If M ′F ′ = 2 andM ′2 = 0, then|M ′| is composed with a pencil. Nowh0(W ′,M ′) = 3
andq(W ′) = 0 imply thatM ′ ≡ 2C, where|C| is a free pencil. SinceKW ′M ′ = (KW ′ +
D′)M ′ − 4 = 2 − 4 = −2, one has thatKW ′C = −1, which contradicts the adjunction
formula. SoM ′F ′ = 2 does not occur.

On the other hand, ifM ′F ′ = 0, thenF ′ = 0. Otherwise, sinceD′F ′ = 0, thenF ′2 < 0,
implying thatF ′(KW ′ +D′) = F ′2 +M ′F ′ < 0. This contradicts the fact thatKW ′ +D′ is
nef. So|KW ′ +D′| has no fixed part. �

Next we examine separately each of the possibilities forK2
W ′ , which ranges between−4

and 0 by Proposition 3.3.
3.1. The caseK2

W ′ = 0. In this case the surfaceW ′ is an Enriques surface by Propo-
sition 3.3.

PROPOSITION 3.5. The system |D′| is base point free and irreducible.

PROOF. WriteD′ := |M| + F , whereF is the fixed part. By Proposition 2.4 (i) and
Proposition 2.6 (ii), the system|M| pulls back onS to the moving part of|2KS |. Since the
bicanonical image ofS is a surface by [Xi2], the generalM is irreducible. In particular,M is
nef and big and the Riemann-Roch theorem gives 3= h0(M) = M2/2 + 1, namelyM2 = 4.
So we have: 4= M2 ≤ M2 +MF ≤ D2 = 4, which impliesMF = F 2 = 0. HenceF = 0
by the index theorem.

Now assume that|D′| has base points. By Proposition 4.5.1 of [CD], there exists an
effective divisorE onW ′ such thatE2 = 0, ED′ = 1. By Remark 2.5, this gives a divisor
Ẽ on S with KSẼ = 1 andẼ2 ≥ 0. The adjunction formula then gives̃E2 ≥ 1, but this
contradicts the index theorem. �

COROLLARY 3.6. The bicanonical system |2KS | is base point free.

PROOF. The statement follows immediately by Proposition 3.5, since|2KS | is the pull
back of|D| to S by Proposition 2.4. �

PROPOSITION 3.7. The torsion group Tors(S) of S has order 4 or 8.

PROOF. Since the group Tors(S) = Tors(V ) has order at most 9 (cf. [BPHV, Chap.
VII.10]), it is enough to show the existence of an étale cover ofV of degree 4.
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Let p : K → W be the étale double cover ofW induced by the K3 cover ofW ′. Then
we have a cartesian diagram:

K̃
p̃−−→ V

ρ

�
�π̃

K
p−−→ W

The mapp̃ is an étale double cover, whileρ is a double cover branched on the inverse image
∆ of B0 +N1 +· · ·+N6. The divisor∆ is the disjoint union of a divisor∆0 with∆2

0 = 8 and
of twelve−2-curvesΓ1, . . . , Γ12. Consider the natural mapψ : Z∆0 ⊕ ZΓ1 ⊕ · · · ⊕ ZΓ12 →
H 2(K,Z2). The image ofψ is a totally isotropic subspace, and hence it has dimension at
most 11, sinceh2(K,Z2) = 22 and the intersection form onH 2(K,Z2) is nondegenerate by
Poincaré duality. Hence the kernel ofψ has dimension at least 2. By Lemme 2 of [Be], the
surfaceK̃ has a connected étale double cover, and henceV has a connected étale cover of
degree 4. �

REMARK 3.8. Examples of this situation can be found in [Na1]. Those examples have
torsion groupZ3

2 or Z2 × Z4.

3.2. The caseK2
W ′ = −1. By Proposition 3.3,W ′ is a rational surface. Denote

M ′ := KW ′ + D′ and recall that|M ′| has no fixed part by Lemma 3.4. One hasM ′2 = 3,
KW ′M ′ = −1. Since|M ′| is 2-dimensional, the general curve of|M ′| is irreducible. The
system|KW ′ +M ′| has dimension 1 by the adjunction sequence for the generalM ′.

LEMMA 3.9. The linear system |KW ′ +M ′| is a base point free pencil of nonsingular
rational curves.

PROOF. We claim thatKW ′ +M ′ is nef.
Suppose otherwise. Then there exists an irreducible curveθ with θ(KW ′ +M ′) < 0. It

follows thatθ is a fixed component of|KW ′ +M ′| andθ2 < 0. SinceθM ′ ≥ 0, becauseM ′
is nef, it follows thatθKW ′ < 0. Thus necessarilyθ is a−1-curve andM ′θ = 0.

The divisorG := M ′ − θ is effective, since|M ′| has dimension 2, and we haveG2 = 2,
GD′ = 3. ThenG gives a divisorG̃ onS such thatG̃2 ≥ 4, G̃KS = 3 (cf. Remark 2.5), and
thereforeG̃2 ≥ 5 by the adjunction formula. This contradicts the index theorem applied to
KS andG̃, showing thatKW ′ +M ′ is nef.

Consider|KW ′ +M ′| = |C| + F , whereF is the fixed part. The generalM ′ is smooth
and irreducible and|KW ′ + M ′| restricts to the complete canonical system onM ′. Hence
the generalM ′ does not meetF . SoM ′F = 0, and thereforeF 2 < 0 if F �= 0. Because
KW ′ +M ′ is nef,C(KW ′ +M ′) = C2 +CF ≥ 0 andF(KW ′ +M ′) = F 2 +CF ≥ 0. Since
(KW ′ +M ′)2 = 0, we have equality in both cases.

But then, becauseC is nef, we must haveCF = 0, implying alsoF 2 = 0 and soF = 0.
So|KW ′ +M ′| = |C| is a pencil of rational curves. �
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PROPOSITION 3.10. (i) There exists a fibration f : S → P1 with 3 double fibres,
such that the general fibre of f is hyperelliptic of genus 3 and σ induces on it the hyperelliptic
involution.

(ii) The group Tors(S) contains a subgroup isomorphic to Z2
2.

PROOF. Let C := KW ′ + M ′. By Lemma 3.9,|C| is a free pencil of rational curves.
Notice thatCN ′

i = (2KW ′ +D′)N ′
i = 0 for everyi by Proposition 2.6, so that the curvesN ′

i

are contained in curves of|C|. SinceC ≡ 2KW ′ +D′ andD′ +N ′
1 + · · · +N ′

6 is divisible by
2 in Pic(W ′) by Proposition 2.6, (iii), the divisorC+N ′

1 +· · ·+N ′
6 is also divisible by 2. Let

Y → W ′ be the double cover branched onC+N ′
1 + · · ·+N ′

6, whereC ∈ |C| is general. The
surfaceY is smooth and the usual formulae for double covers giveχ(Y ) = 0. Pulling back
|C| to Y , one obtains a fibrationh : Y → Γ , whereΓ is a smooth curve and the general fibre
of h is isomorphic toP1. HenceY is a ruled surface withq(Y ) = 1 andh is the Albanese
pencil.

Arguing as in [DMP, Theorem 3.2], one shows that there exist effective divisorsA1, A2,

A3 onW ′ such that, up to a permutation of the indices, the curves 2A1 + N ′
1 + N ′

2, 2A2 +
N ′

3 +N ′
4, 2A3 + N ′

5 +N ′
6 belong to|C|.

We haveCD′ = 4, and hence by Remark 2.5 the system|C| gives a pencil|C̃| on S
with KSC̃ = 4. SinceCN ′

i = 0 for everyi, we haveC̃2 = 0 and|C̃| defines a fibration
f : S → P1 of hyperelliptic curves of genus 3. The curves of|C| containing theN ′

i give rise
to double fibres off .

Statement (ii) follows trivially from the existence of three double fibres off . �

REMARK 3.11. In this case it is possible, using the same type of reasoning as in Corol-
lary 7.6 of [CCM2], to show thatS is a degeneration of surfaces with nonbirational bicanonical
map originally described by Du Val as double planes (cf. [Ci]). Indeed,S is birationally equiv-
alent to a double cover ofP2 branched on a curve which is the union of three linesr1, r2, r3

meeting in a pointq0 and of a curve of degree 13 with the following singularities:
• a 5-uple point atq0;
• a pointqi ∈ ri , i = 1,2,3, of type[4,4], where the tangent line isri ;
• three additional 4-uple pointsq4, q5, q6 such that there is no conic through

q1, . . . , q6.

3.3. The caseK2
W ′ = −2. As in the previous case we considerM ′ := KW ′ + D′.

Recall thatM ′2 = 2 andKW ′M ′ = −2. Moreover,M ′ andD′ are nef (cf. Proposition 2.6).

LEMMA 3.12. (i) One has h0(W ′,OW ′(KW ′ + M ′)) = 1 and, if G is the unique
curve in |KW ′ +M ′|, then GM ′ = 0.

Moreover, up to a permutation of the indices {1, . . . ,6}, one has the following:
(ii) There are two possible decompositions of G:
a) G = (2E1 + N ′

5) + (2E2 + N ′
6), where E1, E2 are −1-curves such that E1N

′
5 =

E2N
′
6 = E1D

′ = E2D
′ = 1 and the divisors (2E1 + N ′

5) and (2E2 + N ′
6) are

disjoint, or
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b) G = 4E1 + 3N ′
5 + 2Z1 +N ′

6, where E1 is a −1-curve and Z1 is a −2-curve such
that E1N

′
5 = Z1N

′
5 = Z1N

′
6 = E1D

′ = 1 and E1Z1 = E1N
′
6 = 0.

(iii) The divisor N ′
1 + · · · +N ′

4 is even, and it is disjoint from G.

PROOF. We will mimick the proof of Lemma 7.1 in [CCM2]. The first assertion follows
from the long exact sequence obtained from

0 → OW ′(KW ′ ) → OW ′(KW ′ +M ′) → OM ′ → 0

becauseW ′ is a rational surface by Proposition 3.3, (iii).
By definition ofG, one has thatG2 = GKW ′ = −4 andGM ′ = 0. Therefore, since

M ′ is nef, each componentθ of G is such thatθM ′ = 0 and the intersection form on the
components ofG is negative definite. SinceG2 = −4, there exists an irreducible curveE1

in G such thatE2
1 < 0 andE1G = E1(KW ′ + M ′) < 0. SinceM ′E1 = 0, one has that

E1KW ′ < 0, thusE1 is a−1-curve andE1G = −1,E1D
′ = 1. Recall thatD′ ≡ M ′ −KW ′

is nef, so the irreducible components ofG are either−1-curvesE such thatEG = −1 and
ED′ = 1, or−2-curvesZ such thatZG = ZD′ = 0.

SinceD′ +N ′
1 + · · · +N ′

6 is divisible by 2 andE1D
′ = 1,E1 must meet one of the−2-

curvesN ′
i , sayN ′

5. HenceN ′
5(G−E1) = −N ′

5E1 < 0, soN ′
5 ≤ G and moreoverE1N

′
5 = 1,

otherwise we would get(E1 +N ′
5)

2 > 0, a contradiction because the intersection form on the
components ofG is negative definite.

Similarly,E1(G− E1 −N ′
5) = −1 implies that 2E1 +N ′

5 ≤ G.
Recall thatGKW ′ = −4, so eitherG contains another−1-curveE2 or 4E1 ≤ G.

Assume the former case. Then, arguing as before, one sees thatE2 meetsN ′
i , for somei,

and 2E2 +N ′
i ≤ G. If i = 5, then(N ′

5 +E1 +E2)
2 ≥ 0, a contradiction. So we may assume

i = 6. Finally the negative definiteness implies thatE1E2 = 0 and that case a) of statement
(ii) occurs, because(G− 2E1 − 2E2 − N ′

5 −N ′
6)

2 = 0.
Assume now the latter case, i.e., 4E1 ≤ G. Note thatN ′

5 is the only−2-curve contained
in G that can intersectE1. Indeed, ifZ ⊂ G is a−2-curve such thatE1Z ≥ 1 andZ �= N ′

5,
then(2E1 +N ′

5 + Z)2 ≥ 0, contradicting again the negative definiteness.
SinceE1G = −1 andE1(4E1 + N ′

5) = −3, one has that 4E1 + 3N ′
5 ≤ G and the

components ofG′ = G − 4E1 − 3N ′
5 are−2-curves. SinceN ′

5G = 0 andN ′
5G

′ = 2, G
contains at least a−2-curveZ1 with Z1N

′
5 > 0. NowN ′

5Z1 = 1, otherwise(N ′
5 + Z1)

2 ≥ 0
gives a contradiction. SinceZ1G = 0, we have 2Z1 ≤ G′. Recall thatZ1D

′ = 0 and
D′ +N ′

1 +· · ·+N ′
6 is even, and henceZ1 meets another−2-curveN ′

i , sayN ′
6. ThenN ′

6(G−
Z1) = −N ′

6Z1 < 0, soN ′
6 ≤ G′. Finally the negative definiteness implies thatN ′

6Z1 = 1.
Then we are in case (ii), b), because(G− 4E1 − 3N ′

5 − 2Z1 −N ′
6)

2 = 0.
It remains to prove thatN ′

1+· · ·+N ′
4 is divisible by 2 in Pic(W ′). SinceD′+N ′

1+· · ·+N ′
6

is even, one has that 2KW ′ +D′ +N ′
1 + · · · +N ′

6 ≡ G+N ′
1 + · · · +N ′

6 is also even. Hence
G + N ′

1 + · · · + N ′
6 ≡ 2(E1 + E2 + N ′

5 + N ′
6) + N ′

1 + · · · + N ′
4 is even in case a), and

G+N ′
1 + · · · +N ′

6 ≡ 2(2E1 + 2N ′
5 +Z1 +N ′

6)+N ′
1 + · · · +N ′

4 is even in case b). In both
cases, one sees thatN ′

1 + · · · +N ′
4 is even.
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To finish the proof, it is enough to show thatN ′
1, . . . , N

′
4 are disjoint fromE1 andE2 in

case (ii), a) and fromE1 andZ1 in case (ii), b). Arguing as before, this follows easily from
the fact that the components ofG and the curvesN ′

1, . . . , N
′
4 are orthogonal to the nef divisor

M ′. �

By Lemma 3.12, there exists a birational morphismg : W ′ → X such thatX is a smooth
rational surface,G is the exceptional divisor ofg andM ′ = −g∗KX. In particular,−KX is
nef and big andK2

X = 2. In case (ii), a) of Lemma 3.12 the image ofG consists of two points
q5 andq6 and in case (ii), b) it is a single pointq.

PROPOSITION 3.13. (i) There exists a fibration f : S → P1 with 2 double fibres,
such that the general fibre of f is hyperelliptic of genus 3 and σ induces on it the hyperelliptic
involution.

(ii) The group Tors(S) contains a subgroup isomorphic to Z2.

PROOF. For i = 1, . . . ,4, write∆i for the image ofN ′
i in X. By Lemma 3.12,∆1 +

· · · +∆4 is again an even set of disjoint−2-curves. By [CCM1, 1.1], there exist a free pencil
|C′| of rational curves ofX and effective divisorsA1, A2 such that, say, 2A1 +∆1 +∆2 and
2A2 + ∆3 + ∆4 belong to|C′|. The pull back|C| of C′ onW ′ satisfiesCD′ = 4,CN ′

i = 0
for i = 1, . . . ,6, and hence it gives a fibrationf : S → P1 as in statement (i). The curves
2A1 +∆1 +∆2 and 2A2 +∆3 +∆4 correspond to two double fibres off .

Statement (ii) follows trivially from the existence of two double fibres off . �

REMARK 3.14. As in the previous case, it is possible, again using the same type of
reasoning as in Corollary 7.6 of [CCM2], to show that S is a degeneration of surfaces with
nonbirational bicanonical map originally described by Du Val as double planes (cf. [Ci]).
Indeed,S is birationally equivalent to a double cover ofP2 branched on a curve of degree
14 which splits in two distinct linesr1 andr2 and a curve of degree 12 with the following
singularities:

• the pointq0 = r1 ∩ r2 of multiplicity 4;
• a pointqi ∈ ri , i = 1,2, of type[4,4], where the tangent line isri ;
• two further pointsq3, q4 of multiplicity 4 and two pointsq5, q6 of type[3,3], such that

there is no conic throughq1, . . . , q6.
The pointq6 is infinitely near toq5, in case (ii), b) of Lemma 3.12.

3.4. The caseK2
W ′ = −3. DenoteM ′ := KW ′ + D′. We haveM ′2 = 1,KW ′M ′ =

−3 and |M ′| is 2-dimensional. Since|M ′| has no fixed part by Lemma 3.4, the map
φM ′ : W ′ → P2 is a birational morphism. It is an easy exercise to see that the branch curve
is mapped to a plane curve of degree 10, which, as it is well known, has 6 singular points of
type[3,3] (possibly infinitely near).

The original construction proposed by Campedelli ([Cam]) is one of these surfaces. For
a discussion of possible branch loci and relations with the 2-torsion ofS see [St] and [W].

3.5. The caseK2
W ′ = −4. We start by noticing that in this caseW ′ = W , because

−4 ≤ K2
W by Proposition 2.4, (iii).
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DenoteM := KW +D. Recall that|M| has no fixed part, by Lemma 3.4. ThenM2 = 0
andh0(W,M) = 3 imply that|M| = |2C|, where|C| is a pencil without base points. Since
K2
W = −4 andKWD = 0, we haveKWC = −2, and hence|C| is a pencil of rational curves.

SinceCNi = 0, i = 1, . . . ,6 andDC = 2, C gives rise to a genus 2 fibratioñC on S such
thatσ restricts to the hyperelliptic involution on the generalC.

Notice that in this case the curveB0 onW must be reducible, because by Proposition 3.1
pa(R) = −1 and, of course,pa(B0) = pa(R). In fact, recalling thatD = 2KW + B0, we
obtainB2

0 = −12,KWB0 = 8, and hencepa(B0) = −1.

REMARK 3.15. Conversely, assume that the numerical Campedelli surfaceS has a
free pencil|C| of curves of genus 2 and letσ be the involution ofS that induces the hyperel-
liptic involution on the generalC. Then the results of [Xi1, §1, 2] (cf. Remark 2.4, ibidem)
show that we haveK2

W ′ = −4 in this case.

REMARK 3.16. In this case by [Xi1, §2] the relative canonical map ofS expressesS
as a double cover ofF0 = P1 × P1 branched along a curve of degree(6,8), which in the
general case has 6 distinct singular points of type[3,3].

4. Involutions not composed with the bicanonical map. In this section we consider
case II) of Proposition 2.3, namely here we assume thatk = 4 and the bicanonical map
ϕ : S → P2 is not composed withσ . We recall that by Proposition 2.4 in this case we have
D2 = 4,KWD = 2, −2 ≤ K2

W ≤ 1.

LEMMA 4.1. The curve B0 decomposes as B0 = Γ1 + · · · + Γm, where the Γi are
disjoint irreducible −4-curves andm = 1 −K2

W .

PROOF. First of all, notice thatB0D = D2 − 2DKW = 0. LetΓ be an irreducible
component ofB0 and writep∗Γ = 2Γ̃ . We haveDΓ = 0, sinceD is nef, and thusε∗KSΓ̃ =
0, sincep∗D = ε∗(2KS) by Proposition 2.4. SincẽΓ is disjoint from the exceptional locus
of ε by construction, it follows thatΓ̃ is a−2-curve. HenceΓ 2 = −4 andΓ is a smooth
rational curve. Now letm ≥ 0 denote the number of components ofB0. By the adjunction
formula we haveKWB0 = 2m. On the other hand, we can compute:

2m = KWB0 = KW(D − 2KW) = 2 − 2K2
W .

Finally, the components ofB0 are disjoint, sinceB0 is smooth. �

COROLLARY 4.2. If K2
W ≤ 0, then KS is not ample.

PROOF. By Lemma 4.1, the branch divisorB of the mapπ : S → Σ contains at least a
smooth rational curveΓ with Γ 2 = −4. Then the inverse image ofΓ in S is a−2-curve and
KS is not ample. �

PROPOSITION 4.3. We have the following possibilities:
(i) K2

W = 1,W is minimal of general type and B0 = 0.
(ii) K2

W = 0,W is minimal and properly elliptic.
(iii) K2

W = −1,−2 andW is not of general type.
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PROOF. Recall that−2 ≤ K2
W ≤ 1 by Proposition 2.4. IfK2

W = 1, then by Lemma 4.1
we haveB0 = 0 andKS = π∗KΣ , and henceKW = η∗KΣ is nef and big andW is minimal
of general type.

Next we show that ifK2
W ≤ 0, thenW is not of general type. So assume by contradiction

thatW is of general type. Lett : W → W1 be the morphism to the minimal model and write
KW = t∗KW1 + E, whereE > 0. SinceDKW = 2 andD is nef, we haveDt∗KW1 ≤ 2. On
the other hand, sinceK2

W1
> 0, the index theorem applied toD andt∗KW1 givesDt∗KW1 ≥ 2.

So we getDt∗KW1 = 2 andD ∼ 2t∗KW1. This impliesB0 + 2E ∼ 0, a contradiction, since
B0 + 2E > 0.

Assume now thatK2
W = 0. By Lemma 4.1,B0 is a smooth rational curve withB2

0 = −4.
By the exact sequence

0 → H 0(2KW) → H 0(2KW + B0) → H 0(OB0) ,(4.2)

we obtain 1≤ h0(2KW) ≤ 2, and henceW has nonnegative Kodaira dimension. We have
seen thatW is not of general type, and hence it is minimal and it is either properly elliptic or
Enriques. SinceKWD = 2 �= 0, the latter case does not occur. This finishes the proof.�

REMARK 4.4. By Proposition 4.3, the desingularizationW of the quotient surface
S/σ may be a numerical Godeaux surface, an elliptic surface, birational to an Enriques surface
or rational.

Unlike the previous case, in which one knows examples for all the possibilities forW ,
in this case we do not know any example for whichW is rational. Barlow in [Ba1], [Ba2]
presents examples of numerical Godeaux surfaces with four nodes double covered by numer-
ical Campedelli surfaces and the new examples we present such thatW is not a surface of
general type are obtained by specializing one of these constructions (cf. §5).

It is possible to make a more detailed analysis of the cases withK2
W ≤ 0, in the style of

the previous section, but since the arguments are very lengthy and all the examples we know
are obtained by specialization, we do not think worthwhile including it here.

5. Examples. In this section we study some families of numerical Campedelli sur-
faces with an involution, providing examples for the cases 3.2 to 3.5 in §3 and for the cases
(i)–(iii) in Proposition 4.3.

EXAMPLE 1. Numerical Campedelli surfaces with torsion Z3
2.

These surfaces have two different descriptions: as the quotient by a freeZ3
2-action of

the intersection of four quadrics inP 6 (cf. [Mi], [Re1]) and asZ3
2-covers ofP2 branched on

7 lines (cf. [Ku]). We use the second description, which is more suitable for our purposes.
Two special instances of surfaces in this family are the Burniat surface withK2 = 2 and the
classical Campedelli surface (cf. [Ku, §4]).

SetG := Z3
2 and letχ1, χ2, χ3 be generators ofG∗, the group of characters ofG. By

[Pa, Proposition 2.1 and Corollary 3.1], to give a normalG-coverp : X → P2 it is enough to
give an effective divisorDg for every 0 �= g ∈ G and line bundlesL1, L2, L3 onP2 such that
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the divisor∆ := ∑
g �=0Dg is reduced and the following relations are satisfied:

2Li ≡
∑

g �=0

εi(g)Dg , i = 1,2,3 ,

where we defineεi(g) = 0 if χi(g) = 1 andεi(g) = 1 if χi(g) = −1.
Here we take theDg to be distinct lines inP2 and we setLi := OP2(2), i = 1,2,3.

Moreover we make the following assumptions on the configuration of the linesDg :
1) at most three of theDg pass through the same point;
2) if Dg1,Dg2,Dg3 pass through the same point, theng1 + g2 + g3 �= 0.
We now examine the singularities ofX. By [Pa, Proposition 3.1],X is singular above a

pointP ∈ P2 if and only if P lies on three branch linesDg1, Dg2 andDg3. To resolve the
singularity, letψ : P̂ → P2 be the blow up ofP2 atP , letE be the exceptional curve ofψ and
consider theG-coverp̂ : X̂ → P̂ obtained fromp by base change and normalization. Write
g0 := g1 + g2 + g3. By [Pa, §3], the components of the branch divisor ofp̂ are the following:
D̂g := ψ∗Dg if g �= g0, . . . , g3, D̂g0 := ψ∗Dg0 + E, D̂gi := ψ∗Dgi − E for i = 1,2,3.
The surfaceX̂ is smooth aboveE andψ−1(E) is a−2-curve. HenceX has a rational double
point of typeA1 overP . We have 2KX = ψ∗(OP2(1)), and henceKX is ample andX is the
canonical model of a surfaceS of general type withK2

S = 2. By the projection formulae for
abelian covers we have|2KX| = ψ∗|OP2(1)|, and henceh0(X,2KX) = 3,χ(S) = χ(X) = 1
andψ is the bicanonical map ofX.

Kulikov [Ku, Thm. 4.2] shows that the automorphism group of the general surface in this
family coincides with the Galois groupG = Z3

2 of the bicanonical map. The result that follows
is a partial refinement of his, and gives evidence for the difficulty of finding an involution of
a numerical Campedelli surface such thatits bicanonical map is not composed with it.

PROPOSITION 5.1. Let S be a numerical Campedelli surface with torsion Z3
2 and let

σ be an involution of S. Then σ is in the Galois groupG = Z3
2 of the bicanonical map of S.

PROOF. Assume by contradiction thatσ is an involution ofS such that the bicanonical
mapϕ : S → P2 is not composed withσ . SinceG is defined intrinsically, we haveσGσ = G

andσ induces an involution ofP2 that we denote bȳσ . Since the set of linesDg contains at
least 4 lines in general position,σ̄ induces a nontrivial permutation of theDg . Denote byh the
automorphism ofG defined byh(g) = σgσ . Then we haveσ(Dg ) = Dh(g), and it follows
thath is a non trivial automorphism ofG. Sinceh has order 2, we can find generatorse1, e2, e3

ofG such thath(ei) = ei for i = 1,2 andh(e3) = e3 + e1. Hence the linesDe1,De2,De1+e2
are fixed forσ̄ , whileDe3 andDe3+e1 are exchanged bȳσ and the same happens toDe3+e2 and
De3+e2+e1. Then, taking also into account the combinatorial conditions on the configuration
of the linesDg , up to exchanginge2 ande1 + e2, we can find homogeneous coordinates on
P2 such that̄σ(x0, x1, x2) = (x0, x1,−x2) and such that:

De1 = {x1 = 0} , De2 = {x0 = 0} , De1+e2 = {x2 = 0} ,
De3 = {ax0 + bx1 + cx2 = 0} , De3+e1 = {ax0 + bx1 − cx2 = 0} ,

De3+e2 = {a′x0 + b′x1 + c′x2 = 0} , De3+e1+e2 = {a′x0 + b′x1 − c′x2 = 0} .
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Sincehmaps the subgroupH ofG generated bye1 ande3 to itself,σ induces an involution of
the surfaceZ := S/H that lifts σ̄ . On the other hand, the function fieldC(Z) is the quadratic
extension ofC(P2) obtained by adding the square root ofx0(a

′x0 + b′x1 + c′x2)(a
′x0 +

b′x1 − c′x2)/x
3
2, and it is easy to check that the action ofσ̄ on C(P2) cannot be extended to

an automorphism of order 2 ofC(Z). Hence we have obtained a contradiction. �

We now study the involutions ofG. There are different cases, according to the relative
positions of the lines in∆.

Case 1. The lines of∆ are in general position.
In this caseKS is ample and thereforeW = W ′ for any involution ofS by Remark 2.7.
The divisorial partR of the fixed locus onS of any 0 �= σ ∈ G is a paracanonical curve.

Hence, the adjunction formulaKS ≡ π∗KΣ + R gives that 2KΣ ≡ 0 andΣ is an Enriques
surface with 6 nodes. So this is an instance of case 3.1 of §3. Other examples of this case,
with torsionZ2 × Z4, appear in [Na1].

Case 2. The divisor∆ has one triple pointP , lying on the linesDg1, Dg2, Dg3. Con-
sider the involutiong0 := g1 + g2 + g3. In this case the cover̂p : X̂ → P̂ is smooth and
we haveS = X̂. The divisorial part of the fixed locus ofg0 on S is the disjoint union of
the−2-curve that resolves the singularity ofX and of a paracanonical curve. Hence one gets
K2
W = −1. Since the only−2-curve ofS is in the fixed locus ofg0, we haveW ′ = W and the

surfaceW is rational by Proposition 3.3, namely this is an example of case 3.2. Indeed, it is
easy to check that the lines through the pointP ∈ P2 pull back to a pencil of rational curves
onW , which in turn gives a free pencil of hyperelliptic curves of genus 3 with three double
fibres onS.

Case 3. The divisor∆ has a triple pointP1, lying on the linesDg1, Dg2, Dg3, and
another triple pointP2, lying on the linesDh1,Dh2 andDh3, with g1+g2+g3 = h1+h2+h3 =:
g0.

Arguing as in Case 2, one shows that the fixed locus ofg0 onS is the disjoint union of a
paracanonical curve and of the two−2-curves that resolve the double points ofX lying above
P1 andP2. We haveW = W ′,K2

W = −2 andW is rational. Hence this is an example of Case
3.3.

Case 4. The divisor∆ has three triple points:P1, lying on the linesDg1,Dg2,Dg3, P2,
lying on the linesDh1,Dh2 andDh3, andP3, lying on the linesDf1,Df2 andDf3. Moreover,
we assume thatg1 + g2 + g3 = h1 + h2 + h3 = f1 + f2 + f3 =: g0. We remark that the
existence of such a configuration of lines is not difficult to verify.

Arguing as in Case 2, one shows that the fixed locus ofg0 on S is the disjoint union of
a paracanonical curve and of the three−2-curves that resolve the double points ofX lying
aboveP1, P2 andP3. We haveW = W ′, K2

W = −3 andW is rational. Hence this is an
example of Case 3.4.

REMARK 5.2. One can check that∆ cannot have four triple pointsP1, . . . , P4 such
that Pi lies onDg1i , Dg2i , Dg3i with g1i + g2i + g3i = g1j + g2j + g3j �= 0 for every
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i, j = 1, . . . ,4. Hence, by Proposition 5.1 the cases 1–4 described above are essentially the
only possibilities for an involution of a numerical Campedelli surface with torsionZ3

2.

EXAMPLE 2. A family of numerical Campedelli surfaces with torsion Z2
3 and two in-

volutions.
This example has been kindly communicated to us by JongHae Keum, who attributes it to

X. Gang and A. Beauville (cf. also Example 3.8 of [Cat]). For the classification of numerical
Campedelli surfaces with torsionZ2

3 see [MP].
ConsiderX := P2 × P2 with homogeneous coordinates(x0, x1, x2; y0, y1, y2) and let

two generatorsg1 andg2 of the groupG := Z2
3 act onX as follows:

(x0, x1, x2; y0, y1, y2)
g1�→ (x1, x2, x0; y1, y2, y0) ;

(x0, x1, x2; y0, y1, y2)
g2�→ (x0, ωx1, ω

2x2; y0, ω
2y1, ωy2) ,

whereω is a primitive 3-rd root of 1. Consider the family of surfacesY of X defined by the
equations:

x0y0 + x1y1 + x2y2 = 0 ,

(x3
0 + x3

1 + x3
2)(y

3
0 + y3

1 + y3
2)+ λx0x1x2y0y1y2 = 0 .

For a general value of the parameterλ ∈ C the surfaceY is smooth and simply connected
with K2

Y = 18, pg (Y ) = 8, and the groupG acts freely on it. Hence the quotient surface
S := Y/G is a numerical Campedelli surface with fundamental group equal toG.

The surfaceY is mapped to itself also by the involutioñσ1 of X defined by

(x0, x1, x2; y0, y1, y2)
σ̃1�→ (y0, y1, y2; x0, x1, x2) .

The involutionσ̃1 satisfies the following relations

σ̃1g1 = g1σ̃1 , σ̃1g2 = g2
2 σ̃1 ,(5.1)

and henceG andσ̃1 generate a groupG0 of order 18, the involutioñσ1 induces an involution
σ1 of S and we haveY/G0 = S/σ1.

The fixed locus of̃σ1 onY consists of 12 points and the same is true forσ̃1g2 andσ̃1g2
2 ,

since these involutions are conjugated toσ̃1. Consider now an element ofG0 of the formσ̃1g,
whereg ∈ G\〈g2〉. The relations (5.1) imply that(σ̃1g)2 is a nonzero element ofG, and hence
in particularσ̃1g has no fixed points onY . It follows thatσ1 has 4 fixed points onS and the
quotient surfaceT := S/σ1 is a numerical Godeaux surface. By [Ba2, §0], the fundamental
group ofT is isomorphic toZ3. Hence we have an example in which the bicanonical map is
not composed with the involution and the quotient surface is of general type, that is Case (i)
of Proposition 4.3.

Consider now the involutioñσ2 defined by

(x0, x1, x2; y0, y1, y2)
σ̃2�→ (x0, x2, x1; y0, y2, y1) .
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For everyg ∈ G one has the relatioñσ2g = g−1σ̃2. Hence the groupG0 generated byG
andσ̃2 has order 18.G0 contains nine elements of order 2, that form a conjugacy class. The
surfaceY is mapped to itself bỹσ2 andσ̃2 induces an involution ofS that we denote byσ2.
We haveY/G0 = S/σ2.

The fixed locus of̃σ2 on the threefold{x0y0+x1y1+x2y2 = 0} ⊂ X consists of 3 disjoint
rational curves:Γ1 = {(0,1,−1; a, b, b) | (a, b) ∈ P1}, Γ2 = {(a, b, b; 0,1,−1) | (a, b) ∈
P1}, Γ3 = {(a, b, b; −2b, a, a) | (a, b) ∈ P1}. It is not difficult to check thatΓ1 andΓ2 are
contained inY , whileΓ3 meets the generalY at 6 distinct points. SinceKY is the restriction
of OP2×P2(1,1) to Y , we haveKYΓi = 1, for i = 1,2 andΓ1, Γ2 are−3-curves onY .
Hence the fixed locus ofσ2 onS is the union of 6 isolated points and two−3-curves, and thus
K2
W = −4. If Y is smooth, thenKY andKS are ample and we haveW = W ′ by Remark 2.7.

So this surface is also an example of Case 3.5.
We are now going to show that the involutionσ2 of S is actually induced by a genus 2

pencil, as explained in 3.5. Consider the pencil of hypersurfaces ofX spanned byx0x1x2 and
x3

0 + x3
1 + x3

2 and denote by|F | the restriction of this pencil toY . The fixed part of|F | is the
union of the curves in the orbit ofΓ1 under the groupG. Then we can write|F | = Z + |C|,
where theZ is the disjoint union of nine−3-curves and|C| has no fixed part. On the surface
Y we haveF 2 = 27,KYF = 27. Using this andFΓ = 0 for every componentΓ of Z, one
getsCΓ = 3,KYC = 18,C2 = 0. Every element of|C| is mapped to itself byG0. Hence
|C| induces a genus 2 pencil|C′| of S such that every element of|C′| is mapped to itself by
σ2. Finally, usingΓ2F = 3 and the fact that theG-orbits ofΓ1 andΓ2 are disjoint, we get
CΓ1 = CΓ2 = 3. So the generalC′ meets the fixed locus ofσ2 at 6 points, and henceσ2

restricts to the hyperelliptic involution onC′.

EXAMPLE 3. Numerical Campedelli surfaces with an involution with which the bi-
canonical map is not composed and such that the quotient is not of general type.

Here we provide examples for Cases (ii) and (iii) of Proposition 4.3. These examples are
obtained by specializing a construction due to Barlow ([Ba1]). We start by recalling briefly
her construction.

Consider the spaceP 6 with homogeneous coordinates(x1, . . . , x7) and the automor-
phisms ofP 6 defined as follows:

(x1, . . . , x7)
t�→ (ζ x1, ζ

2x2, . . . , ζ
7x7) ,

(x1, . . . , x7)
a�→ (x3, x6, x1, x4, x7, x2, x5) ,

whereζ is a primitive 8-th root of 1. The automorphismt has order 8, the automorphisma
has order 2 and one has

ata = t3 .

Hencea andt generate a subgroupG of order 16 of Aut(P 6). Consider the intersectionY of
the following four quadrics ofP 6:

F0 := b(x1x7 + x3x5)+ ax2
4 + f x2x6 ,
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F2 := cx2
1 + dx3x7 + ex4x6 + hx2

5 ,

F4 := k(x2
2 + x2

6)+ gx1x3 +mx5x7 ,

F6 := cx2
3 + dx1x5 + ex4x2 + hx2

7 .

Barlow proves that for a general choice of the coefficientsa, b, c, d, e, f , g, h, k, m the
following are true:

• Y is a smooth surface mapped to itself byG;
• the subgroupZ8 of G generated byt acts freely onY ;
• the involutiona has 8 isolated fixed points onY .

It follows easily from the properties above that the quotient surfaceS := Y/Z8 is a numerical
Campedelli surface with torsionZ8. In addition, the involutiona of Y induces an involution
σ of S with four isolated fixed points. The quotient surfaceΣ := S/σ has four nodes and
its minimal desingularizationW is a minimal surface of general type withK2

W = 1 and
pg (W) = 0, namely a numerical Godeaux surface. Barlow also shows thatπ1(W) = Z2.

Let Γ be the group of automorphisms ofP 6 of the form Diag(1, λ,1, µ, ν, λ, ν) for
λ,µ, ν ∈ C∗. The elements ofΓ commute witha andt and act on the family of surfacesY ,
and hence the family of numerical Campedelli surfacesS that we obtain has at most 4 moduli.

We are going to specialize this construction by lettingS acquire one or two ordinary
double points which are fixed byσ and whose images inΣ are quotient singularities of type
(1/4) (1,1). Passing to the minimal desingularizationS′ of S we obtain an involution whose
fixed locus consists of four isolated points and of the−2-curves that resolve the singularities
of Y . In the case of one double point we get an example of Case (ii) of Proposition 4.3. In
particular, the minimal desingularizationW of Σ is a properly elliptic surface. In the case of
two double points we have an example of Case (iii) of Proposition 4.3 and we will show that
W is a nonminimal Enriques surface.

The fixed locus ofa on P 6 consists of theP3 defined by

x1 − x3 = x2 − x6 = x5 − x7 = 0

and of theP2 defined by

x1 + x3 = x2 + x6 = x5 + x7 = x4 = 0 .

In [Ba1] it is shown that the generalY intersects theP3 in 8 points and it does not intersect
the P2. Let P1 ∈ P2 be the point(1,1,−1,0,1,−1,−1) and letP2 := t4(P1) ∈ P2 the
point (1,−1,−1,0,1,1,−1). LetP3, . . . , P8 denote the remaining points in the orbit ofP1

under the action ofZ8. The surfacesY that containP1, . . . , P8 are defined by four quadrics
as follows:

F0 := b(x1x7 + x3x5)+ ax2
4 − 2bx2x6 ,

F2 := cx2
1 + dx3x7 + ex4x6 − (c + d)x2

5 ,

F4 := k(x2
2 + x2

6)+ gx1x3 + (2k − g)x5x7 ,
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F6 := cx2
3 + dx1x5 + ex4x2 − (c + d)x2

7 .

It is easy to verify that the tangent space to the generalY atP1 has dimension 3 anda acts
on it as multiplication by−1. Since the pointsP1, . . . , P8 form an orbit under the action oft
andY is mapped to itself byt, the singularities ofY atP1, . . . , P8 are isomorphic.

REMARK 5.3. The orbit ofP1 under the action ofΓ is dense in theP2 fixed by a.
It follows that if a surfaceY intersects thisP2 in a pointP , thenY is singular atP and the
subspace of the tangent space toY atP on whicha acts as multiplication by−1 has dimension
at least 3. In addition, ifP satisfiesx1x2x5 �= 0 andY is general among the surfaces through
P , then the tangent space toY atP has dimension 3 anda acts on it as multiplication by−1.

We claim that for a general choice of the parametersa, b, c, d, e, g, k the surfaceY
satisfies the following conditions:

1) the subgroup generated byt acts freely onY ;
2) Y meets theP3 fixed bya in 8 points and it meets theP2 fixed bya in P1 andP2;
3) Y has an ordinary double point inP1, . . . , P8 and it is smooth elsewhere.
Conditions 1)–3) are open, and hence it is enough to check them for one surfaceY . Let

Y0 be the surface corresponding to the following choice of parameters:

a = e = −1 , b = c = d = g = k = 1 .

Using a computer program (we have used Singular), one checks the following:
• Y0 does not intersect the spacesH1 := {x1 = x3 = x5 = x7 = 0} andH2 := {x2 =

x4 = x6 = 0} fixed byt4, and hence condition 1) is satisfied;
• Y0 intersects theP3 fixed byY at 8 points;
• the scheme of singular points ofY0 has dimension 0 and degree 8.
Since we already know thatY is singular atP1, . . . , P8, the last condition above implies

3). The fact thatY0 meets theP2 fixed bya only atP1, P2 is now a consequence of Remark
5.3. Hence Conditions 1)–3) are satisfied byY0 and therefore they are satisfied by the general
Y that has nonempty intersection with theP2 fixed bya. For such a surfaceY , the quotient
surfaceS := Y/Z8 has an ordinary double point at the image pointP of P1, . . . , P8 and it is
smooth elsewhere. HenceS is the canonical model of a numerical Campedelli surface. Let
S′ be the minimal resolution ofS, letZ be the exceptional curve and letσ ′ be the involution
of S′ induced bya. Sincea acts on the tangent space toY atP1 as multiplication by−1, the
fixed locus ofσ ′ onS′ consists of the curveZ and of 4 isolated fixed points. Hence we have
K2
W = 0 by Lemma 4.1 andW is minimal and properly elliptic by Proposition 4.3. Applying

the argument used in [Ba1], one can show that the fundamental group ofW is Z2.
Since the elements ofΓ with λ = ν = 1 act on the family of surfacesY passing through

P1, the family of Campedelli surfaces with one node that we have constructed has at most 3
moduli.

We are now going to degenerate the construction further, lettingS acquire two double
points, and thus obtain an example withK2

W = −1. SetQ1 := (1,2,−1,0,4,−2,−4) and
Q2 := t4Q1 = (1,−2,−1,0,4,2,−4) and denote byQ3, . . . ,Q8 the remaining points in
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the orbit ofQ1 under the action oft. The surfacesY throughP1, . . . , P8 andQ1, . . . ,Q8 are
defined by the following four quadrics:

F0 := b(x1x7 + x3x5)+ ax2
4 − 2bx2x6 ,

F2 := cx2
1 − 5

4
cx3x7 + ex4x6 + 1

4
cx2

5 ,

F4 := 5(x2
2 + x2

6)+ 8x1x3 + 2x5x7 ,

F6 := cx2
3 − 5

4
cx1x5 + ex4x2 + 1

4
cx2

7 .

By Remark 5.3 every surface as above is singular atP1, . . . , P8,Q1, . . . ,Q8. Let now
Y0 be the surface corresponding to the following choice of parameters:

a = −1 , b = 1 , c = 4 , e = −1 .

Also in this case, we have used the computer program Singular to check thatY0 has the
following properties:

• the automorphismt acts freely onY0;
• Y0 intersects theP3 fixed bya at 8 points;
• Y0 intersects theP2 fixed bya atQ1,Q2, P1, P2;
• the scheme of singular points ofY0 has dimension 0 and degree 16, and thusY0 has a

node atP1, . . . , P8,Q1, . . . ,Q8 and is smooth elsewhere.
Since these properties are open, they hold for the generalY passing throughP1 andQ1. The
quotient surfaceS := Y/Z8 has two nodes which are fixed bya andKS is ample. LetS′ be
the minimal desingularization ofS, letZ1 andZ2 be the exceptional curves onS′ and letσ be
the involution ofS induced bya. The fixed locus ofσ onS consists of 4 isolated points and
of the curvesZ1 andZ2 (cf. Remark 5.3). Hence we haveK2

W = −1 and this is an example
of Case (iii) of Proposition 4.3.

As in the case of one node, one can use the same argument as in [Ba1] to show that
π1(W) = Z2. HenceW is not rational and, by Proposition 4.3, it is birational either to
an Enriques surface or to a properly elliptic surface. We are going to see that in factW is
birational to an Enriques surface.

The intersection ofY with the hypersurfacex2
4 = 0 is a bicanonical curve which descends

to a bicanonical curve 2C ⊂ S passing through the nodes ofS. Pulling back toS′, we obtain
a bicanonical curve 2C′ = 2Z1 + 2Z2 + 2G′, whereG′ is effective.

By the adjunction formula, there is an effective divisorG onW such thatG ∼num KW

and such that the pull back ofG to S′ is G′. Let t : W → W̄ be the morphism onto the
minimal model and letE be the exceptional curve oft. We haveGE = KWE = −1, hence
G = E + G0, whereG0 ≥ 0 andG0 ∼num t

∗KW̄ . Assume thatW is properly elliptic and
denote byF a general fibre of the elliptic fibration ofW . Then there isα ∈ Q, α > 0, such
thatG0 ∼num αF . For i = 1,2 letΓi be the image ofZi inW . The curvesΓ1 andΓ2 are−4-
curves, and hence we have 4= KW(Γ1+Γ2) = E(Γ1+Γ2)+G0(Γ1+Γ2). By construction,
the curveR0 does not meet the nodal curvesN1, . . . , N4 ofW contained in the branch divisor
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B0 of the double coverV → W . HenceEB0 = E(Γ1 + Γ2) andG0B0 = E(Γ1 + Γ2) are
both even. Moreover, we haveEB0 > 0, since otherwiseE would pull back onS′ to the
disjoint union of two−1-curves, contradicting the minimality ofS′, andG0B0 > 0, since
otherwise|F | would pull back onS′ to a pencil of elliptic curves, contradicting the fact that
S′ is of general type. Hence we haveEB0 = G0B0 = 2 and the pull back ofE onS′ is either
a −2-curve or the union of two−2-curves meeting in a point. This is not possible, sinceZ1

andZ2 are the only−2-curves ofS′ by construction. Hence we have reached a contradiction
and the only possibility is thatW is birational to an Enriques surface.
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