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Abstract. We develop the mathematical machinery necessary in order to describe
systematically the commutation and anticommutation relations of the field algebras
of an algebraic quantum field theory of the fermion type. In this context it is possible
to construct a skew tensor product of two von Neumann algebras and completely
describe its type in terms of the types of the constituent algebras. Mathematically
the paper is a study of involutory automorphisms of If*-algebras, of particular
importance to quantum field theory being the outer involutory automorphisms of
the type III factors. It is shown that each of the hyperfinite type III factors studied
by Powers has at least two outer involutory automorphisms not conjugate under the
group of all automorphisms of the factor.

1. Introduction. In the application of C*-algebras to the study of quantum
fields of the fermion type complications arise because of the fact that both com-
mutation and anticommutation relations need to be treated in a systematic manner.
While the algebras of local observables form a system of local algebras in the sense
of Haag and Kastler [10], this is not true of the full field algebras. In this paper we
develop the mathematical machinery necessary for a fuller description of the field
algebras. The main novelty is the definition of a IFf-algebra as a IF*-algebra sé
provided with a *-automorphism B of sé satisfying 02=1. The algebra sé ^séo + sé^
where séQ is the subalgebra of elements A such that 8A=A and sé1 is the subspace
of elements A such that 8A = —A.

In §2 we present the basic theory of a IF*-algebra acting on a Hubert space. We
define the opposed IF*-algebra, a natural generalisation of the commutant for
IF*-algebras, and prove that the second opposed W$-algebra is equal to the
original IF*-algebra. We identify the centre of a fF2*-algebra and see that, as in
the case of JF*-algebras, a general IF*-algebra can be studied by first analysing
the W$-factors and then using the usual techniques of integral decomposition
theory. Independently of their numerical type the JF*-factors can be classified into
three types which are described as follows. A Type A W$-factor consists of a
)F*-factor together with an inner involutory automorphism 6. A Type B IF*-factor
is a direct product of two isomorphic IF*-factors, and the involutory automorphism
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8 interchanges elements of the two factors. A Type C IF^-factor consists of a
!F*-factor with an outer involutory automorphism 8; alternatively a lF2*-algebra
sé, 8 is a Type C W*-factor if and only if both sé and sé0 are W*-factors.

In §3 we study tensor products of IF*-algebras. There are two ways of defining
a tensor product, the more interesting skew tensor product being the natural
infinite-dimensional, topological generalisation of the tensor product of two
associative linear algebras graded over the additive group Z2. The skew product
sé ®238 contains sé and 38 as JF*-subalgebras in such a way that AB = ( — )''BA
for all A e sé, and B e 38¡. We show that the skew product of two IF^-factors is
again a lf*-factor and that its type, both in the numerical sense and in the sense
outlined above, can be completely determined from the types of the constituent
algebras. We outline two examples from algebraic quantum field theory to show
how the skew tensor product arises naturally there. The section is concluded by
explicit computations of the finite-dimensional cases for later use. The interested
reader will be able to check that the finite-dimensional complex Clifford algebras
are all Wtf-facXoxs in a natural sense [1], but there are other finite-dimensional W$-
factors in addition.

As preparation for more detailed analysis of the Type C If^f-factors we develop
in §4 the necessary theory of representations of C*-algebras. All of the usual ideas
about states, cyclic representations, factor representations, etc., have their ana-
logues for C*-algebras. Irreducible representations in our sense correspond to
extremal invariant states and are divided into those of Types A and B. For most
of the section we concentrate on the class of U.H.F. Cf-algebras, which have
proved important for classifying representations of the canonical anticommutation
relations—in this connection see [17]. For these we obtain a necessary and suffi-
cient condition for a state to be a Type C factor state by extending arguments due
to Powers [13]. It turns out that a product state of a U.H.F. Cvf-algebra is almost
always of Type C. In other words, an involutory automorphism of a hyperfinite
factor is typically outer.

In §5 we consider the major mathematical problem of the theory, the classifica-
tion up to algebraic isomorphism of all IFjf-factors. This can be broken up into
two simpler problems. The first is the classification of all w/*-factors, and still
remains open thirty years after it was first raised. The other is the classification in a
given W*-factor of all the conjugacy classes of the involutory automorphisms in
the group of all automorphisms. It is an immediate consequence of the theorems
on the comparison of projections that any two inner involutory automorphisms of
a type III factor are conjugate, and one might hope that the same is true of any
two outer involutory automorphisms in a type III factor. We show that this is not
so by constructing two nonconjugate outer involutory automorphisms of each of
the hyperfinite type III factors studied by Powers [13]. In fact we construct an
infinite number of such automorphisms, but all except one turn out to be con-
jugate to each other. Our results pose more questions than they solve, but show how
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1971]        INVOLUTORY AUTOMORPHISMS OF OPERATOR ALGEBRAS 117

little is known about the automorphism group of any type III factor, and suggest
that the second problem above may be as difficult as the first problem has proven
to be.

In §6 we show how IFf-algebras are related to the theory of group representa-
tions. To do this we introduce the idea of an epigroup over a ring R, a concept
which appears to be new even at the algebraic level. Representations of 2-epigroups
are similar to spinor representations or ordinary locally compact groups.

The author would like to thank Professor I. Segal for some valuable comments
on this work.

2. Structure of IF*-algebras of operators. Let Jt be a Hubert space and Sf a
set of bounded operators on Jf such that A e Sf implies A* e Sf. Let sé1 be the
closure in the weak operator topology of the odd polynomials in elements of S?,
and let sé0 be the weak closure of the even polynomials. Then sé0 is a von Neumann
algebra and sé^-sé^séx, sévsé0<^séx, sé^sé^sé^

Proposition 2.1. Ifsé = sé0 + sé1 then sé is a von Neumann algebra. sé0 n séx is
a weakly closed ideal whose identity element we denote by (1 — P) where P is a
central projection of sé. The von Neumann algebra Psé has a unique involutory
*-automorphism 0 such that

Psé0 = {AePsé : BA = A}   and   Pséx = {AePsé : BA = -A}.

Proof. Let Sf" be the set of operators on 3#" =Jf ® J^ of the form (A, -A),
where A e Sf and we denote by (A, B) the operator (£, if) -»• (Ai, Brj), and let sé'0
and sé'i be constructed from Sf' as above. Then

sé'o = {(A, A): Ae sé0}   and   sé[ = {(A, -A): AeséJ

and, if sé' = sé'0 + sé'1, then sé' is a von Neumann algebra. If P' is the projection
P'(Ç, r¡) = (£, 0) then P' lies in the commutant of sé' and by [6] P'sé'P' is a von
Neumann algebra. But P'sé'P' =P'sé'0P' +P'sé'1P' can be identified with
sé = sé0 + sé1 so sé is weakly closed. The set J = séQc\ séx is weakly closed and is
stable under multiplication on both sides by elements of sé0 or sé± and so is a two-
sided ideal. As Psé0 n Psé1 = 0, Psé is the direct sum of Psé0 and Pséx. If X e Psé
we can write X= X0 + Xx uniquely where XQ e Psé0 and Xx e Pséx and we define
8X=X0 — X1. It is immediate that 8 is an involutory *-automorphism and that the
other statements of the proposition hold.

If y is any set of operators on a Hubert space ¿F we define

Sfc = {Be <£(Jf) : AB = BA for all A e Sf}
and

Sfa = {BeS?(Jf) : AB = -BA for all A e Sf}.

We define a symmetry R on 2f as a bounded operator 7? such that R^I, R2 = I,
R* = R. If 7? is a symmetry and AeSf implies A* e Sf and AR=— RA, then
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AR=—RA for ail Aeséx and AR = RA for ail Aesé0. Therefore in this case
sé0 n sé1 = 0,P=I, and the *-automorphism 8 is given by 6A = RAR for all A e sé.
We call such a ""-automorphism 8 spatial.

If sé is a von Neumann algebra with an involutory *-automorphism 9 then 8 is
isometric and ultra weakly bicontinuous by [6], so séx = {Aesé : 8A=—A} and
sé0 = {A e sé : 8A=A} are weakly closed. If J is the von Neumann algebra gener-
ated by sé1 then J is a weakly closed 0-stable ideal in sé whose identity element P
must satisfy 8P=P and so must lie in sé0 n séc. Then 0 restricted to (1 —P)sé is
the identity map. We now define a W$-algebra as a von Neumann algebra with an
involutory *-automorphism 8 such that sé is generated by séx.

Proposition 2.2. If sé, 6 is a W}-algebra of operators on ¿F there is a unique
W$-algebra 38, <p such that 3S = sé%, 380 = séc, 38x = sél ff this is called the opposed
algebra then the second opposed algebra of sé, 8 is sé, 8 itself.

Proof. Let us first consider the case where 8 is spatial induced by the symmetry
7? of 3>F. Defining 380 = séc and 38x = sé\ it follows from 380-380^380, 380-38x^38x,
38x-38ü^38x, 38x-38x^380 that @ = 38Q + 381 is a von Neumann algebra satisfying
séc<^38<^sé%. Therefore sé^38c^sé0 and if 38c^sé0 there exists a nonzero
A e 38° n séx ; but this is impossible since then Re38 C\ sé\ would have to com-
mute and anticommute with A. Therefore 38c = sé0 and sé% = 38.

In the general case we define JF', sé'0, sé[, sé', P' as in the proof of Proposition
2.1. If 38' = (sé'oY, 38'0 = (sé')c, 38'x=(sé'x)a we have shown that 38'= 38'a + 38'x and
P'e38'0. Now defining 38=P'38'P', 3S0=P'38'0P', 38X=P'38'XP' it is shown in [6]
that we can identify %=séc, 38 = séc and that 38x<=,sél. As 38 = $l0 + 38x and séx
generates sé, sel r\ 380 = G and 38x = sé\ and 38aC\38x = 0. We now have to show that
38x generates 38. If this is not so there is a proper central projection P' e38aC\ 38c
such that P38x generates P38 and (1 -P)38X = Q. Then Pesé0nséc and (1 -P)380
= (\—P)38, which on taking commutants gives (1— P)sé = (\— P)sé0, which
contradicts the assumption that séx generates sé. This proves the existence of the
opposed algebra. If c€, if* is the second opposed algebra then (€=38%=sé, cßü=38c
= séQ and #i = 38\ = sé\a2séx. As <€ = % + % is a direct sum decomposition, ^ = séx
and the proof is complete.

Corollary 2.3. Let if be a set of operators 3FF such that A e SF implies A* e SF
and Ai = 0 for all A e SF implies f = 0. If there exists a symmetry RofJ'F such that
AR= —RA for all Ae SF then SFaa is the closure in the weak operator topology of
the odd polynomials in SF.

Proof. If séx is the weak closure of the odd polynomials and sé0 is the weak
closure of the even polynomials without constant terms then the conditions imply
that sé0 n sex = 0 and that sé0 contains the identity operator on JF, so sé=sé0 + séx
is a von Neumann algebra. Then SFaa=séla=séx.
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Now let sé, 8 be any IF*-algebra and let 38, <p be its opposed algebra. Then
sé0 n séc = 300 n 30c and we call this abelian algebra the centre of sé, or equiva-
lently of 3. Any disjoint family of projections in sé0 n séc with sum 1 effects a
central decomposition of sé into a sum of IFf-subalgebras on the corresponding
subspaces of ^f.

Clearly sé n séc=sé0n séc+sé1n sé0 and if <% is the von Neumann algebra
generated by séx n séc, % is a weakly closed ideal in sé r\ séc stable under 0, so
its identity element P lies in Jä/0 n j</c. Similarly ^ n sé% = 30 n 30C = 3S0 n ^c
+f ! n Jc=j/C n ^,+^î n rf0 and if ^ is the von Neumann algebra generated
by sel n ^o then T^ is a y-stable weakly closed ideal in 38 n á?c so its identity
projection g lies in 30Q c\ 3SC = sé0 c\ séc. As AB = BA=0 for all Aesé1r\séc and
7i £ ¿a/f n J3f0 it follows that PQ= QP = 0. Now observe that

sé C\sé% = @ c\30% = 380r\ 38%+3Sx n 30c0 = se n séc+sé\ n sé

= sé0r\ sé° + séx n ¿/c + << n ja/î+^i n ^

= sé0 n séc+sé1 n séc+sé0 n j/J.

We have now proved the following

Proposition 2.4. Every W$-algebra has a canonical central decomposition as a
sum of the following three types:

Type A. séy n séi=0, séQr\sé\ generates sé0nséc0, sé n séc=sé0 r\ séc,
se nséc0 = sé0nséc0.

Type B. sé0 n sé\ = f), séx n sé\ generates sé n séc, sé0 n sé^ = sé0 n séc,
se r\séc=sé c\sé%.

Type C. séx n sél=sé0 n ja/f = 0, ^0 <"> sé{=sé0 n séc0 = sé n sé° = sé n ja/g.
^4 W$-algebra is of Type A, B, C if and only if its opposed algebra is of Type

B, A, C respectively.
We call a IF*-algebra a factor ifsé0 n ja/c consists only of scalar multiples of the

identity and see that every IFf-factor must be one of the three stated types. The
structure of factors is clarified by the following

Proposition 2.5. The most general W* -factors are described as follows:
Type A. sé is a W*-factor and B is an inner automorphism.
Type B. sé is the direct sum of a W*-factor 30 with an isomorphic copy of 38 and

B interchanges terms of the two factors.
Type C. sé is a W*-factor and 8 is an outer automorphism.

Proof. Suppose sé, 6 is of Type B. Then se n séc is a commutative 0-stable
C*-algebra of dimension greater than one such that the subspace of 0-stable
elements is of dimension one. It follows that se n séc has dimension two so sé is
the direct sum of two !F*-factors 30 and (ê. As 8 does not act trivially on se n séc,
8 exchanges 38 and # which must be isomorphic.

If sé, 8 is of Type A or C then se n séc has dimension one, so sé is a IF*-factor.
If 8 is inner there exists Resé with R = R*, R2 = 1 and 8(X) = RXR for all Xe sé.
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Therefore sé0 n sé% has dimension two and sé, 8 is of Type A. Conversely if sé, 8
is of Type A the opposed algebra 38, <p is of Type B so sé0 n séc0 = 38 n 38c has
dimension two. As sé0 n sécQ = sé0 n séc + sé0 n sé\ and sé0 n j/c has dimension
one there exists Resé0nsél such that R = R* and R2=l. Then RX=-XR for
all Xeséx so 0(A")= - A'=7?A'7Î for all Xeséx and 0(Ar) = 7?A'7? for all Xesé0.
A special part of the following result was established in [16].

Proposition 2.6. Let sé, 8 be a W%-factor. Then sé and sé0 are W*-algebras of
the same general numerical type.

Proof. If sé is semifinite with normal faithful semifinite trace t then s=t + t8
is a normal faithful semifinite trace which is 0-invariant. The restriction of s to sé0
is still semifinite. For if 0<A esé0 there exists 0<B^A with B esé and s(7i)<co.
If C = %(B+8B) then 0<C^, Cesé0 and s(C) = s(B)<oo. Secondly one can
show that sé0 is discrete if and only if sé is discrete. Finally if sé is type III and
38, cp is the opposed algebra then 380 = sé° is type III by [6], so 38 must be type III,
hence sé0 must be type III.

We include the following result for completeness, although much more general
theorems are known [11].

Proposition 2.7. Every involutory *-automorphism of a Type C W*-factor is
spatial.

Proof. We first observe that every *-automorphism of a discrete factor is inner
so every Type C factor is continuous. By consideration of the opposed algebra it is
sufficient to prove that if sé, 8 is a Type C IFf-factor there exists R e séx with
7? = 7?*and7?2=l.

Given any nonzero A = A*= —8A the spectral projections P and ß of A corre-
sponding to {A : A>0}and{A : A<0} satisfy 8P= Q,soP(8P) = (8P)P = 0andP^0.
Let 7^^ go where ß0 is a nonzero projection satisfying tr [ßo] = (2«)_1 if ¿é is type
His tr [öo] = l if ¿4 is type IIX and Q^ = P if sé is \ypt III. 1henséQ is a factor and
X0 = Qo + 8Q0 is a projection in sé0 such that there exist Xx, X2,... equivalent to
X0 under partial isometries in U¡ in sé0, and A"0+ Xx+ ■ ■ • =1. If Qi=U?QQUi
then Qi(8Q) = (8Q)Qi = 0 and Qi+8Qi = Xi. If 7? = (ßo-0ßo) + ■■■ +(ß(-0ß,)
+ • • • then R = R*= — 8R and 7?2= 1, which completes the proof.

3. Tensor products of IF*-algebras. If sé, 8 and 38, cp are IF*-algebras acting
on the Hubert spaces JF and Jf respectively then we define sé ® 38 as the W*-
algebra on Jf <8> X generated by all operators A% B where A esé and Be38,
[6]. Since the tensor product is in fact independent of the particular spaces ¿8?, CFT
used, by changing these so 8, <p become spatial, we see that there is a unique in-
volutory automorphism 8 <g> <p of sé ® 38 such that (8 (g) <p)(A ® B) = (8A) (g> (<pB)
for all A esé and Be38. In this way sé ® 38 becomes a !F*-algebra and since

(sé (8) 38) n (sé <g) 38)c = (se n séc) ®(38 n 38°)
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it follows that the tensor product of two IF*-factors is a !F2*-factor unless both sé
and 30 are of Type B. The only nontrivial question of type is solved in the following
proposition which was obtained for a special case in [12].

Proposition 3.1. Let a and ß be * -automorphisms of the W*-factors sé and 30
respectively. Then a ® ß is inner if and only if both a and ß are inner.

Proof. We show that if sé acts on J4?, 38 acts on Jf and S is a unitary operator
in sé ® 38 such that (a ® ß)A = S*AS for all A e sé ® 30, then a is inner. There
exist |0, r¡0eJ^ and (u ^ e 3f such that <S(f0 ® fi), ??o <8> ??i>^0. If
A:.S%5f ®^)->=S?(.?f) is defined by <(XA)Ç, rl} = (A(€ ® &), r¡ ® ??i> then A
is a bounded weakly continuous linear mapping and 7==AS#0. Since X(A ® 7?)
= <7if !, ^!>^ for all y4 e ¿/ and Be30,X maps sé ® 38 onto jaf. For all A ese and
XeSe'á? ® Jf), A{(/i (g> l)Ar} = /4(AAr) and A{J!fL4 ® 1)} = (AA>4, so for all
^ e ja/, rH)=ir. Therefore for all ^ e ja/

,47T* = T(aA)T* = 7Xr«/4*)* = T(^*T)* = TT*A

and as ja/ is a factor 7T* = al for some a^O. Similarly

AT*T = (TA*)*T = ((ct-M*)F)*r
= T*(a.-XÄ)T = T*TA

so T*T=ßl for some )8#0. Then ßT=TT*T=aT so j8 = a and by normalising we
can assume that TT* = T*T=l. Then for all A ese, aA = T* AT so a is inner.

For IF*-algebras there is also a i&ew tensor product ®2 whose definition is more
complicated than that of ®, but which is more interesting. We leave the reader to
verify that if sé and 38 are finite dimensional then sé ®2 30 coincides with the
tensor product of sé and 30 in the category of associative algebras graded over Z2,
as described for example by Chevalley [2], \f sé and 38 are IFf-algebras defined on
Jf and Jf we define 3ti as the ultraweakly closed linear subspace of sé CD 30
generated by all A (g> B where ^ e sé, and 7? £ 38¡ for / = 0, 1 andy'=0, 1. The prod-
ucts of elements of two 3,¡ lies in another of the 3,¡, for example 3oy-3lí<^3í0.
Moreover the 3,, are disjoint, being alternatively defined by

3{j = {Xesé ® 30 : (0 <g> \)X = (-)'Xand (1 ® ft)X = (-)'X}

so     that     {sé <g> 38^ = 3^ + 3^   and   {ja/ ® 3S}i = 301+310.     We      identify
<S?(yf ® Jf® C2) with the set of 2 x 2 matrices with entries in Sf(Jf ® X) and
the obvious operations.

We define (€ = sé ®2 30^£f(Jf ® Jf ® C2) as the set

Í/A+B   C+D\ 1
llc-7)    A-B) -■Ae^o,Be310,Ce301,De31A
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and define

% = U *D    D^)-Ae ®°°> D 6 ̂ 11}

and

% = {{c   -p) :Be®"»Ce®°i\

All of these are selfadjoint ultraweakly closed linear spaces of operators. Direct
calculation yields ^0n^i = 0, %+<&!.=<<?, %-^0ç^0, ^0^i=^i, «i-^oS^i,
<€x-e€x<=,e€¡¡. Therefore ^ is a !F*-algebra and there is a unique involutory *-
automorphism ^ of ^ such that tft(C0 + Cx) — C0 — Cx for all C0e^0 and Ci e^.
There is a natural *-isomorphism tr of {sé 0 38}0 onto #0 given by tr(A + D)
= (-1d 'a) for all ,4 e 900 and 75 e 9XX. There is a natural *-isomorphism X of sé
into * given by

,,.,.,     Mo® l+^i® 1 0        \
**+*>-I 0 ¿.«l-^aij

for all ^0 e <s/0 and Ax e séx, and X(8A) = i/>(XA) for all ^4 e sé. There is a natural
*-isomorphism p oí 38 into ^ given by

P(B0 + BX) = (¡ ® B°    ¡ ® *x)    for all 7i0 e #0 and Bx e ¡Mx
\l ®BX    1 0 £0/

and p(cpB) = 4i(p.B) for all £ e ^. If ^ e j^ and £ e 38x then

/      0 A®B\

so that for all ,4 e séx, B e 38f, where i=0, 1 andy'=0, 1,

(XA)(pB) = (-y%pB)(XA).

The lF*-algebra generated by ^x contains X(séx) and p(38x) and hence A(¿/) and
p(38) ; therefore this lf*-algebra is ^. Noting that se 0 38 is independent of the
particular Hubert spaces on which sé and 38 act, the same is true oí sé ®2 38 and
we have proved

Proposition 3.2. Given two W$-algebras sé and 38 there is a Wg-algebra
sé ®2 &8 defined independently of the Hilbert spaces on which sé and 38 act, with
the following properties: sé and 38 are embedded as W2-subalgebras of sé 02 38
and generate sé 02 38. For all A esé¡ where i=0, 1, and B e 38¡, where j=0, 1, we
have AB=( — )iiBA. {sé 02 38}0 is isomorphic as a W*-algebra with {sé 0 38}0 and
is the ultraweak closure of the linear subspace generated by all products AB where
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Ax Be (sé0 x 300) u (sé1 x 38¿). {sé ®2 38}x is the ultraclosure of the linear subspace
generated by all products AB where Ax Be (sé0 x 38¡) u (sé1 x 3§¿).

We can now indicate the relation of the skew tensor product to algebraic field
theory [7]. For a mixed boson-fermion field we associate to every open bounded
subset U of space-time a IF*-algebra F(U), the field algebra, on a given Hubert
space. If t/ç F then F(U)^.F(V) and we define F as the norm closure of the
union of the &~(U). The C*-algebra ¡F must have an involutory *-automorphism 8
which leaves each of the algebras F(U) invariant, so we can write ßr(U) = F0(U)
+ ¿Fi(U). If U and V are causally unrelated regions then for any A e ¡F,(U), where
i=0, 1, and Be^V), where j=0, 1, we suppose that AB=(-)iiBA, as for the
skew tensor product above. The field operators of fermion type associated with
the region U all lie in FX(U) while the boson field operators and observables asso-
ciated with U lie in -F0(U). The ¿F0(U) form a system of local algebras in the sense
of [10].

The above work also allows us to generalize Segal's theory of regular gauge
space valued distributions [15] to arbitrary operator-valued distributions. If Jf is
a real Hubert space and sé, 8 a IFf-algebra we define a (bounded reflection in-
variant) distribution to be a linear map from 2tf to the selfadjoint elements of sé
with range contained in sér. \fT,: J^-^sé1, 8' are two distributions for /= 1, 2 then
the skew product is the distribution T=T1 + T2: Jfx+Jf2 -* sé1 ®2 sé2 and
clearly satisfies (T41y(T4a)= -(Tñ2)(Tñx) for all â% e^ and â2eJf2. Segal's finite
trace on sé, 8 can now be replaced by an arbitrary state, and we need not suppose
that the von Neumann algebras involved are of finite type.

The following proposition will be used later but since its proof is rather routine
we give it in outline only.

Proposition 3.3. If sé, 38, <€ are W*-algebras there is a W*-isomorphism of
(sé ®2 30) ®2 <€ onto sé ®2 (30 ®2 'if) which identifies sé, 38, <£ under their natural
embeddings as W*-subalgebras of the two algebras.

Proof. Both the algebras consist of certain *-algebras of 4 x 4 matrices with
values in S£(#f ® •#" ® JÍ). For i,j, k = 0, 1 there are natural maps

Xj, : sét x 30i x <gk -+ (sé ®2 30) ®2 ^

and

X2:sé,x30jxc€k-^sé ®2 (30 ®2^).

It is sufficient to find a unitary map on C\ actually obtained by a permutation of
the coefficients, such that if U is the corresponding scalar-valued 4x4 matrix

X¿A xBxC) = U*X2(A xBxC)U

for all A e sét, B e 38¡, C e ^k.
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As preparation for a more detailed study of the central structure oí<£=sé ®238
we note the following equations, obtained by direct computation :

Çf0 n <ec = I ( ) : A e 900 n (sé 0 J>)ï, 7) e 9XX n (jaf 0 ^)J j,

%n^ = i( \ : Ae900n(sé ® 38)1, De9xln(sé 0 J)£ U

«i n «? = U*    ^ : B e 9X0 n ^f0 n i%, Ce90Xn 9%x n SJ0V

Proposition 3.4. If sé, 8 and 38, cp are Type A W$-factors then sé ®238 is a
Type A W$-factor.

Proof. Let 8A = RAR and B = SBS for all A ese and Be38. Then
T=R®Se900 commutes with 90Q, 9XX and anticommutes with 9X0, 90X.
Therefore

IT     \(A + B    C+D\/T      \_IA-B      -C+D\       ,(A + B    C+D\
\    t)\c-d   a-b)\     t)~\-c-d    A+B ) ~*\C-D   A-Bj

so </i is inner on eê. sé 0 38 is a factor of Type A so

<^0 n #g = (sé 0 J% n (¿/ 0 ^%

has dimension two. Therefore ^0 n <^c has dimension one and ^ is a IF*-factor.

Proposition 3.5. If sé, 8 is a Type A W$-factor and 38, cp is a Type B W¿*-fiactor
then sé 02 38 is a Type B W$-factor.

Proof. Let 8A = RAR for all A ese and let 38 be the direct product of the factor
38x with an isomorphic copy of itself, sé 0 38x can be represented by 2 x 2 matrices
(m jv) with entries in sé 0 38x in such a way that 7? 0 1 is taken to (x _x); then
every element of *€ is given by a pair of such matrices, and

(^1}{(m £)'{£  a:)} = {(-m  ~n)\-m'   ~n)\

«®<p)l(K L\(K\ ï\\-{[?. L\{K L)\v       *'\\M   N)  \M'   N'Jj      \\M'   N'J  \M   N/J
Then {(x x), (-1 _i)} e 90X so (.sa/ 0 38) n ^g1=0. Therefore ^n n (ja/ 0 ^)?,
^00 c\(sé ® 38)1 and S>10 n S>ï0 n ^ are all zero. Also sé 0 38 is a fF2*-factor so

(.sa/ 0 J% <"> (sé 0 ^)c = ^oo r\(sé ® 38)l+9xx n (sé 0 38)\

has dimension one. Therefore ^0 n ^l — Cl and ^o n #1=0. Also one calculates
that ^oi n ^oi n ^io has dimension one so cêx n #ï has dimension one. Therefore
<g is a JF2*-factor of Type B.
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Proposition 3.6. If sé, 8 and 38, <p are Type B W$-factors then sé ®230 is a
W2-factor of Type A.

Proof. There exists a !F*-factor ê such that sé ® 38 is the direct product of
four isomorphic copies of S and

(8 ® 1)(A-, L, M, N) = (L, K, N, M),
(1 ® ft)(K, L, M, N) = (M, N, K, L).

Then (1, -1, 1, -1)e^10 so (sé ® 38) n 3^ = 0. Also (1, 1, -1, -1)e^01 so
(sé ® 30) r\ 3^=0. 3lxn(sé ®^)ï = C(l, -1, -l, 1) and 300 n (sé ® 38)\
= C(1, 1, 1, 1). Therefore ^ n ^=0, #0 n ifj and %0 n <€\ have dimension one,
and ^ is a Type A IF2*-factor.

Proposition 3.7. If sé, 8 and 30, <p are W$-factors and either is Type C then
sé ®230 is a W$-factor of Type C.

Proof. Suppose 38 is of Type C. Then by Proposition 3.1, sé ® 38 is a IF2*-factor
of Type C so

<g0 n <ëc0 = (sé ® 30)0 n (sé ® 30)1

has dimension one. By Proposition 2.4, ^ is a IF*-factor of Type B or C. If sé ®2 30
is of Type B and S is a IF* -factor of Type B then (3 ®2sé) ®230 = 3 ®2(sé ®2@)
is a W*-factor of Type A, which we have just shown cannot occur. Therefore
sé ® 2 38 must be of Type C.

For comparison we now tabulate the types of sé, 38, sé ® 38, sé ®2 30 together.
If sé and 38 are JF2*-factors so are sé ® 38 and sé ®2 30 in all but one case,
indicated below :

sé 30 sé ®38   sé ®230

A A A A
ABB B
B B B+B A
A C C C
B C B C
C C C C

As far as the numerical type is concerned the following considerations suffice for
a complete solution. The numerical type of sé ® 30 can be calculated from that of
sé and 30 by [6], [14]. The numerical type of sé ® 38 is the same as that of (sé ® 30)o,
and the numerical type of sé ®230 is the same as that of (sé ®2 3S)0, by Proposition
2.6. Moreover (sé ® 30)o is isomorphic with (sé ®2 30)o by Proposition 3.2.

We turn now to the study of the finite-dimensional fF¡*-algebras. For each integer
n there is exactly one Type B IF*-factor of dimension 2n2, isomorphic as a IF*-
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algebra with Jt(n, C) © Jt(n, C) with 8 exchanging the terms of the two sub-
algebras. We call this factor ^(ri).

lip, q are two positive integers and n=p+q, let e{j, 1 í i,jún, be a set of matrix
units whose linear span is M(ri, C). Let 7? be the operator 7? = 2?=i ea~2f=¡>+i en->
so R = R* and 7?2=1, and let 8 be defined by 8(X) = RXR for all XeJt(n, C).
Then ^#(n, C), 0 describes the most general finite-dimensional Type A IFf-factor
and we denote it by !F(p,q), or by ¿F{\p — q\,p + q}. If r is the positive trace on
J((n, C) normalised by t(1)=1 then t is 0-invariant and \,r(R)\ = \p—q\(p+q)~1
is called the discrepancy of &(p, q). Note that 8 may be induced by 7? or — R.

We define a set of matrix units for a finite-dimensional Type A !F*-factor to be
a set of elements etJ, l£i, jSn, whose linear span is the factor and such that
£»£&! = Sfte¡¡, e*f = e,¡, J,f=ieii=l and 8(etj)= ±etj. This last condition implies
6(ei) = ell for all i and divides the index set {i : H/^/i} into two equivalence
classes such that i, j are in opposite classes if and only if 0(eo) = — e{j.

Proposition 3.8.

&(rn) 02 ^(ri) ~ ^{0, 2mn},
3F{r, m} 02 &(ri) ~ &(mn),

3F{r, m} 02 &{s, n} ~ &{r, m} 0 &{s, ri) ~ 3F{rs, mn}.

Proof. All the above tensor products are finite-dimensional lF*-factors by our
general analysis, and the exact type can be found from the following dimensional
results, valid for arbitrary finite-dimensional IFf-algebras sé and 38:

dim (sé 0 38) = dim (sé 02 38) = dim sé dim 38,
dim (sé 0 38)a = dim (sé 02 J% = dim sé0 dim J'q + dim séx dim é^,
dim (ja/ 0 J*)i = dim (.sa/ 02 38)x = dim ja/„ dim 38x + dim j/x dim ^0-

These equations come immediately from the definitions.

Proposition 3.9. The algebra ^{r,n} contains a W$-subalgebra 38~^{s,m}
if and only if one of the following occurs:

(i) r = i = 0 and m\n. m and n must both be even.
(ii) r t¿ 0, s =£ 0, s\r,m\n,rn~1^sm~1 and the integers rs'1 and mn'1 are both even

or both odd.
Proof. If the conditions are satisfied we can construct such subalgebras using

Proposition 3.8. Conversely suppose &{r, n) contains 38~ßr{s,m}. Then
se = !F{r, n} n 38° is a 0-invariant IF*-factor so either the action of 8 on sé is
trivial or sé~¡F{t, p) for some integers t^p which are necessarily both even or
both odd. 3F{r, n}~sé ® 38 in the IFf-algebra sense, from which the result follows.

4. Representations of C*-algebras. In order to investigate further the structure
of !F*-factors it is necessary to introduce the class of C2*-algebras and study their
representations.
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We define a C*-algebra as a C*-algebra sé together with an involutory ^auto-
morphism 8 such that sé1 = {Aesé : 8A= —A} generates sé in the norm topology.
We caution the reader that because of the different topologies involved a
IF2*-algebra need not be a C$ -algebra. We always assume for simplicity that sé
has an identity element. We define a representation of sé on a Hubert space ¿ff to
be a *-homomorphism A of sé into the bounded operators on ¿f such that there
exists a symmetry R on ^f (said to be associated with A) such that X(8X) = R(XX)R
for all Xesé. We also suppose A(l)=l. If 30, is the weak closure of X(sé¡) for
/=0, 1 and 38 is the weak closure of X(sé), then 38,380,38y define a IF*-algebra
(called the enveloping IFf-algebra of the representation) whose involutive *-
automorphism is spatial, being induced by 7?. If A is a representation of sé on Jf
and P is an orthogonal projection such that P(XX) = (XX)P for all Xesé, and PR
= RP for some symmetry R associated with A, then A is said to be the direct sum
of the subrepresentations obtained by restricting A to P#f and (l-P)J'F; this
agrees with the obvious definition of the outer direct sum of two representations.
A representation is said to be a factor representation if the enveloping IF*-algebra
is a IFf-factor and to be irreducible if it cannot be written as a direct sum of proper
subrepresentations in the above sense. If sé is a C*-algebra and A: sé —> S£(¿8?),
X' : sé -*■ Sf(3tf") are two representations of sé, we say A and A' are unitarily equiv-
alent if there is a unitary operator U:Jf -^ 3^' such that X(X) = U*(X'X)U for all
X in sé. We say they are quasi-equivalent if there is a *-isomorphism T of the weak
closure 38 of Xsé onto the weak closure 38' of X'sé such that T(XX) = X'Xfor all X
in sé. Unitary equivalence implies quasi-equivalence and the *-isomorphism T
must necessarily be a W$-isomorphism. Finally we say that A and A' are algebraically
equivalent if 38 and á?' are isomorphic as IF2*-algebras.

We define a cyclic representation of sé on 3tf to consist of a *-homomorphism
A: sé ^£C(Jf), a symmetry 7? of Jf and a unit vector £eJf such that 7?|=i,
(Xsé)É, is dense in 2tf, and A(ÖJST) = R(XX)R for all Je ja/. We define a síate of sé
to be a positive linear functional <p on sé such that <p(l)= 1 and <p(0AO = 9X^) f°r
all J s sé. If A, 7?, | is a cyclic representation the functional <p(X) = {(XX)$, f > is a
state. Conversely every state of sé defines a cyclic representation of sé where
Jf, A and f are given by the Gelfand-Segal construction and R is defined by
R(XXO = A Y| for all J £ sé0 and 7?(AA^) = - A Yf for all Y e sé,. Finally if <p is the
state associated with a cyclic representation A, 7?, f, the cyclic representation con-
structed from <p is unitarily equivalent with A. Every representation is a direct sum
of cyclic representations so every irreducible representation is cyclic. We define a
pure state of sé to be a state <p such that if </r is a 0-invariant positive functional on
sé with î/>^9 then tf> = a<p for some real a, O^otg 1.

Proposition 4.1. Lei A, R, ^ be a cyclic representation of a C*-algebra sé, 8 on
¿f. Then the following statements are equivalent:

(i) Xsé, R generate the W*-algebra S£(Jf).
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(ii) 9>(Y) = <AArí, f> is apure state of sé.
(iii) A is an irreducible representation.
If X is an irreducible representation the enveloping W*-algebra 38, 8 of Xsé is a

W* -factor of Type A or B and the propositions (Ai)-(Aiii) are equivalent, as are the
propositions (Bi)-(Biii).

(Ai) The W*-algebra opposed to 38 is isomorphic to <F(l).
(Aii) A is an irreducible representation of the C*-algebra sé unitarily equivalent

to the representation X6.
(Aiii) A is an irreducible representation of sé, 8 of Type A.

(Bi) The W*-algebra opposed to 38 is isomorphic to F(\, 1).
(Bii) X = p + p8 where p. is an irreducible representation of the C*-algebra sé

which is not unitarily equivalent to p.8.
(Biii) A is an irreducible representation of sé, 8 of Type B.

Proof, (iii) => (i) is obvious. We prove (i) <*■ (ii), (i) => (Ai) or (Bi), (Ai) => (Aii)
=> (Aiii) => (iii) and (Bi) => (Bii) => (Biii) => (iii).

(i) o (ii). There exists a one-one correspondence between the positive linear
functionals </» on sé with >/>S<p and the operators A e (Xsé) ~ with 0 ^ A ;£ 1 given by
4>(Y*X) = <AXX£, XYO for all X, Yesé.^is ö-invariant if and only if AR = RA.

(i) => (Ai) or (Bi). Let <€, </> be the IF2*-algebra opposed to 38, y and observe that
R e Tj. If R=P- Q where P, Q are orthogonal projections then <pP= Q.lfCe^
and O^C^P then 0^</<C^ Q and (C+<\>C)e(€a satisfies (C+4>C)R = R(C+4,C).
By hypothesis we conclude C+tpC=al so C=aP. It follows that for all Ce^,
PCP=aP and QCQ = ßQ. If PCQ = 0 for all Cef, then <£ is generated by P, Q
and is isomorphic with F(\). On the other hand suppose there exists a nonzero
C e «if with C=PC= CQ. If D £ if and D =PD = DQ then PDC* = DC* = DC*P
so DC* = aP for some «; similarly C*C=ßQ for some (8^0. Then D = DQ
= ß-1DC*C=ß~1aPC=ß-1aC. Therefore if is a four-dimensional !F*-factor
with basis elements P, Q, C, C*, and it follows that <€, </i~,F(1, 1).

(Ai) => (Aii). A maps sé onto a weakly dense subalgebra of c€% = (CYf = Sf(^)
so A is an irreducible representation of the C*-algebra sé. X8X=R(XX)R for all
Xe sé so A is equivalent to X8.

(Aii) => (Aiii) => (iii). For some unitary U, XBX=U(XX)U* for all Xesé.
Then XX= £/2(AY)£/*2 and A is irreducible so U2 = al. If i/= ± ^aR then 7? = 7?*
and R2=l and A0Y=i?(A Y)7? for all X e sé. Therefore A is a representation in the
C2*-algebra sense and it is irreducible of Type A.

(Bi) => (Bii). In a suitable matrix presentation «^ is the set of all 2x2 scalar
valued matrices, R = (° J), and sé = ^c0 is the set of all matrices (o B) where A
and B are arbitrary. Therefore XX=("o °x) for all Xesé where p. and v are
inequivalent irreducible representations. As X8X=R(XX)R = (V$ °x) we conclude
v = p,8.

(Bii) => (Biii) => (iii). X = p. + p,8 is a representation in the  C$-algebra sense
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since in the above matrix presentation R = (° 0) is an associated symmetry. One
verifies explicitly that % = {(% jj) : a, ß e C} and #i = {(? a0) : a, ß e C} so
#~«^"(1, 1) and A is a representation of Type B. If R is any symmetry associated
with A then Rx e ^x and

/ 0      eie\
Rl=\e-ie    0/    forsomeÖ-

Then {Xsé, Rx}c = {A" e #0 : R1X=XR1} = Cl so A is irreducible.
Since the structure of Type A and Type B factors is quite clear, from now on

we concentrate on the study of Type C factors.

Proposition 4.2. Let sé, 8 be a Cg-algebra and cp a state of sé. Let Teséx
satisfy cp(T*T) = l and let cpx be the restriction of cp to sé0, <p2 the restriction of
X->cp(T*XT) to sé0. Then cp is a Type C factor state if and only ifcp is a factor state
in the C*-algebra sense, and cpx is a factor state ofsé0, and cpx is quasi-equivalent to
<p2 on sé0.

Proof. Let A, R, f be the cyclic representation of sé, 8 on 3FF constructed from cp
and let 38 be the enveloping PF*-algebra of Xsé. If cp is a factor state in the C*-
algebra sense then 38 is a IFf-factor of Type A or Type C. If 38 is of Type C then
&0 = (Xsé0)~ is a factor and it is immediate that cpx and cp2 are quasi-equivalent
factor states of sé0.

Suppose on the other hand that 38 is of Type A, and that S=S* e 38, 52=1,
implements the involutory *-automorphism of f%. In general R^S but S~1Re 38°
always. We can write S=P— Q where P, Q are disjoint central projections in 380.
The two subrepresentations of sé0, Xx on PJF defined by XXX=P(XX)P and A2 on
ßjf defined by X2X=Q(XX)Q, are disjoint, that is, not quasi-equivalent, factor
representations. If fi=7>£ and £2=ß£ are both nonzero vectors then for all Xesé0

cpx(X) = <XX(ix + {2), (fi + 6» = <AATÍ1, fi> + <AA-í2, &>

so <pi is a mixture of two disjoint factor states of sé0 and is not a factor state. On
the other hand if one of these vectors is zero, say Ptj = £, and if r¡ = XT¿; then,
because Teséx, Qt)=t¡ and, because cp(T*T)=l, ¡i?|| = l. The two states cpx and
cp2 induce the subrepresentations Ai and A2 respectively and so are disjoint.

Generalizing [9], we now define a U.H.F. C*-algebra to be a C*-algebra sé, 8
which is the norm closure of an increasing sequence of finite-dimensional Type A
W$-subfactors sém. We suppose that sém~^(pm,qm) and that the involutory
♦-automorphism of sém is induced by ±Rmesém. If we write ¿%m = sém n sécn_x
then 38m is a !F*-factor invariant under 8. Either 38m is a !F2*-factor with involutory
♦-automorphism induced by Sm e 38m or the action of 8 on 38m is trivial in which
case we write Sm=l. sém can be identified with sém_x 0 38m and this is also a W$-
isomorphism with Rm = Rm_x 0 Sm. If cum is a state on 38m (in the PF2*-sense or an
arbitrary state if Sm= 1) there is a unique state a> on sé, which we call the product
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state, and which satisfies o>(Bx ■ ■ ■ Bn) = w^Bj) ■ ■ ■ wn(Bn) for all 7?¡ £ 38, and
i=l, 2,.... We recall for reference the following important theorem of Powers
[13].

Proposition 4.3. Let the C*-algebra *€ be the norm closure of the increasing
sequence of finite-dimensional W*-subalgebras «^„, all of these algebras having the
same identity element, and let q>±, cp2 be two states on (€. Then (px is a factor state if
and only if it has the asymptotic product decomposition property and the factor
states <f! and <j>2 are quasi-equivalent if and only if they are asymptotically equal.

We note that Powers' proof makes no essential use of his condition that the <gn
be factors.

Theorem 4.4. 7/ a? is a product state on the U.H.F. C*-algebra sé then a> is a
Type C factor state if and only if Y\?= m | oi^S,) | = 0 for all m = 1, 2, 3.

Proof. Since a> has the asymptotic product decomposition property it is a factor
state of Type A or C. If w has the stated property we show that it satisfies the
conditions of Proposition 4.2. Since sé0 is the norm closure of the increasing
sequence (sém)0 of finite-dimensional subalgebras (not factors) we do this by using
Proposition 4.3 on sé0.

To prove that oj1=w\sé0 has the asymptotic product decomposition property
it is more than enough to prove that if x e sén and e > 0 there exists m > n such that,
for all y e se n (sém)c0, \oj(x)co(y) — w(xy)\<e\\y\\. For any m if y e sé n (sém)c0,
y=^(l -Rm)yx+i(l + Rm)y2 where yu y2esé n sécm and || vj, \\y2\\ S \\y\\. Also

(i) w(y) = XI -7?mK^) + Xl + RmMy2)
and

(ii) w(xy) = %o>{x(\ - Rm)}co(yi) + ^oy{x(\ + Rm)}w(y2)

because w is a product state. Now let {e^jf^t^" be a set of matrix units of sén chosen
so that

Pn Pn + In

Rn = 2 e"~ 2 e« and w(e») = «V*-
i = l <=Pn + l

Then let Jc = 2y x,^ so co(x) = 2f2Ía" *iA and observe that

Pn Pn + In

Rm = Rn(RnRm) = 2 eu(RnBm)-   2    eu(RnRm)
i = 1 i = Pn + 1

and 7în7îm = 5'n+1- • -Sm commutes with all the eu. Therefore

Pn Pn + «n

œ(xRm) = 2 xuXtoj(RnRm)-   2    Xi¡V(7?n7ím)
i = l i=Pn + l
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and \oj(RnRm)\=\~[T=n+i K(S,)| -*■ 0 as m -s- oo. Therefore given e>0 by choosing
m large enough we obtain from (i) and (ii)

0') K>0-^Cvi)->Cv2)| <*i*Mbl.
("') \^(xy)-^(x)aj(yx)-^oj(y2)\ <i<=b||

which together imply

\oj(xy)-oj(x)üj(y)\ < e\\y\\.

Now let {ey}îji? be a set of matrix units for séx chosen so that oj(el}) = 8,^,
where/xj #0 and/tiPl +it^O, and let r=aeliPl + 1 where a is chosen so that o»(T*T)= 1.
We observe that Teséx and that the state oj'(X) = w(T*XT) is again a product
state, the product of oj'n oísén where oj'n = ojn for n> 1. To prove that w2 = o>'|j/0 is
asymptotically equal to ojx = w\sé0 it is more than enough to prove that for all
£>0 there exists m so that \ojx(y) — cj2(y)\ <e for all y e sé n (ja/m)0. Given w and
such a >> we can write j = i(l +-Rm)j'i + i(l_Rm)y2 where ji, j2 e sé n ja/J, and
bill, ball ̂  IIJ'II- Then

KOO-waOOl
= \^i(Rm)^i(yi)-^x{Rm)^i(y2)-^a(Rm)co2(yx) + \co2(Rm)oj2(y2)\

= i|{o,i(7?i) - o>'x(Rx)}u>(RxRm)w(yx) + {w'x(Rx) - wx(Rx)}oj(RxRm)co(y2)\

i2\\y\\\oJ(RxRm)\
m

= 2bI 2 KW)I-»-0   asw->oo.
f = 2

We now prove that if all the stated equalities are not satisfied and if Pi=qt for
all i=l, 2,... then cu is of Type A. Suppose n™=»+i KOSi)|=A>0 and choose
x = Rn e (sén)0- For any m>n choose y = %(l+Rv)esé0 n (sém)c0. Leta = co{jr(l+Rn)}
so that cü(x) = 2a—1. Let

)S = Xl+*n.Rm)
SO

|2/S-1| = NSn+i---Sm)| ^ A.
Then

xy = i*n(l+7<m) = KI+^HCI+^äJ-KI-äJKI-t?^)
so oj(xy) = aß — (l—a)(l—ß). Similarly

y = Kl + RnW+RnRm)+$(l-Rn)W-RnRm)

so ü>(_v) = aß+(l — a)(l — ß). Therefore

\w(xy)-w(x)co(y)\ = |a/5-(l-«)(l-j8)-(2«-lXo/î + (l-a)(l-/5)}|
= |2a(l-a)(2]8-l)|  ^ 2|a(l—ce)|A.
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Since a and A are independent of m, o)X can only have the asymptotic product
decomposition property if a = 0 or 1. Let us suppose this happens. Then w(Rn)
= ±l and because co(Rn) = ^(Sj)• • • u)(Sn) with |ü)(S0|^1 it follows that tu(7*i)
= «(5'1)=±1.

Using the fact that pn=<ln> let {e„)2p' be a set of matrix units for sén such that
7?m = 2fSifei-^p„+i,p„+¡) and «(eiy) = SyAi. Then either A¡ = 0 for all i^pn or
Ai=Oforall/è/'»+l.

Suppose for definiteness that the first of these possibilities occurs and define
T='2fi1eUPn+i so u)(T*T)=l and Te(sén)1. We define oj2 as the restriction of
X^m(T*XT) tosé0. For any m>n we define J = i(l+7*m) esé0 n (sém)c0. Then

y = i(l +7?n)i(l +RnRm)+W -P-nMl -RnRm)
and

T*yT = i(l - 7?n)i(l + RnRm)+i(l + Rn)i(l - 7?„7?m)
so

y-T*yT= ^(\+Rn)RnRm-\(\-Rn)RnRm = Rm.
Therefore

KOO-waOOl - M^-rwi
= \oj(Rm)\ = K7?X7?n7?ra)|

= \oj(RnRm)\ £ A>0

so o?! and ai2 cannot be asymptotically equal on sé0.
We have now only to deal with the case where pi^qt for some i. Let 38[=3f(\, 1)

and 38¡=38[ ® J1, so 30"~^r(pi+qi,pi+qf). Let «>X? «|) = oc and a?;' = a>¡ ® wt so
|cu;X5¡")| = h1(5<) |. Let sé' be the infinite tensor product of {3S¡}¡°=1 and sé" the
infinite tensor product of {30¡}™=í so sé"=sé' ® ja/ is a C^-algebra and for the
product states eo"=a»' ® cu. All these states are factor states and <x>' is a pure state
and so is of Type A. By Proposition 3.1 applied to the enveloping IFf-algebras
of the representations a> is of Type C if and only if w" is of Type C. But for the
latter state we have computed the condition for this to happen, and the general
result follows.

We finally include a result to show how badly behaved even a single involutory
*-automorphism of a separable C*-algebra can be. We shall need to use the
theory of 2*-algebras and use the notation of [3], [4]. If sé is a separable C*-
algebra its spectrum sé has two Borel structures. The Mackey-Borel structure Jt
is defined as the quotient Borel structure for the natural map v. P(sé) -> sé where
P(sé) is the set of pure states of sé. The other Borel structure 30 is smaller than Jt
and is defined in terms of the central elements of the a-envelope sé~ of sé. Effros
[8] has shown that these need not be equal, although they are in case sé is a sepa-
rable G.C.R. algebra [3].

If 8 is an involutory *-automorphism of sé, it induces an involutory auto-
morphism 8~ of sé~ and involutory Borel automorphisms, which we again call 8,
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A a

oíP(sé), (sé, JÍ) and (sé, 38) in an evident fashion. By Proposition 4.1 the unitary
equivalence classes of irreducible representations in the C*-algebra sense corre-
spond one-one to the 0-orbits of sé, each of which has either one or two points.

A A A A

Accordingly we define séA = {n ese ; 8tt = tt} and séB = {ir e sé : dn^n}.

Proposition 4.5. The set séA is not necessarily a Borel set in sé for the Borel
structure 38.

Proof. Let sé, 8 be the U.H.F. C*-algebra constructed as the norm closure of
the union of an increasing family of finite-dimensional Type A IFf-subfactors sén,
where sén n Xe-1=^-^(1, !)• Let a be a pure state of 3F(l, 1) such that
||a — a0||=2 and let an, an8 be the corresponding pure states of 38n. Let X
= {(xn)n = i '• xn = 0 or 1} and for x e X let cpx be the product state on sé whose
restriction to á?n is an or an8 according as xn=0 or 1 respectively. Let p be the Haar
measure of A'as a compact abelian group and for x e X let (8x)n = 0 or 1 according
as xn= 1 or 0 respectively. It is known that cpx is a pure state of sé and by Prop-
osition 4.3, cpx is not unitarily equivalent to cpgx for any x e X. It is easy to show
that for all A esé, x —>■ cpx(A) is continuous and

t(A) =      cpx(A)p(dx)
J X

where t is the unique normalised finite trace on sé. It follows that for all A e sé~,
x^-cp~(A) is a bounded Borel function on X and

r~(A) = j9x-(A)p(dx).

Similarly if y3 and y are two states on ^(l, 1) such that ß=ßd and y=y8 and
1/3 — y|j =2 we let >fix he the product state on sé such that ifix\38n=ß or y according
as xn = 0 or 1 respectively. ipx = >j>ax for all x e X and

r~(A) = f t~(A)p(dx)
J X

A A

for allAesé~.\íséA were a Borel set in sé for 38 we could find a central projection
Pesé~ such that <p~(P)=\ for all xe X and i/>x~(P) = 0 for all xeX. But then
t~(P) would equal zero and one, which is false.

5. Hyperfinite W*-factors. The finer structure theory of U.H.F. C*-aIgebras
exhibits certain pathologies which do not occur in the theory of U.H.F. C*-
algebras [9] and it is necessary to clarify these before we can proceed. The basic
difficulty is caused by the fact that J*"{0, n} 0 &{r, m}~^{0, mn} so that &{0, n}
has many inequivalent embeddings in ^{0, mn}. Let the U.H.F. C*-algebra sé, 8
be the norm closure of the union of the increasing sequence of finite-dimensional
Type A !F2*-subfactors sém~SF{rm, nm}.

Proposition 5.1. If{elJ}f,j=1 is a set of matrix units in sé and e>0 then there
exists an integer q and matrix units {/w}f,, = i in séq such that ||e(í—/J <e and 8(fu)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



134 E. B. DA VIES [July

= ±f,j according as 8(e,j) = ± eu respectively. Moreover there exists a unitary
uesé0 such that u*fjU — e& for l^i,jSp provided e > 0 is small enough.

Glimm's proof of the corresponding result for U.H.F. C*-algebras [9] needs
very minor modifications.

Corollary 5.2. If sé is a U.H.F. C*-algebra and 30^ sé is a finite-dimensional
Type A W%-subfactor then either sé n 30° is a U.H.F. C^-algebra or 8 is trivial on
sé n 30°, in which case 8 is inner on sé.

Proof. We can assume that 30<=, sén for some n. Then sé n 30° is the norm closure
of the union of sém n 38°, which are 0-stable finite-dimensional IF*-factors. Either
the action of 8 on all of these is trivial or they are all IFf-factors for large enough
m. The result follows.

Let sé, 8 be a U.H.F. C*-algebra. We say sé is degenerate if 8 is inner. We say
sé is regular if it is nondegenerate and contains no JFf-subalgebra isomorphic to
F{0, n} for any n. We say it is singular if it is neither degenerate nor regular.
Finally we say it is completely singular if se n 30c is singular for every finite-
dimensional Type A IFf-subfactor 38 of sé.

Proposition 5.3. The U.H.F. C^-algebra sé is regular if and only ifrm^0for all
m = 1, 2,... and the monotonically decreasing sequence am = rmnñ1 is not eventually
constant. Ifa = lim am and for all primes p we define

r(p) = sup {k : pk\rm some m},

n(p) = sup {k : pk\nm some m},

then two regular U.H.F. C2-algebras sé and sé' are isomorphic if and only ifa = a
and r = r' and n = n'.

Proof. We follow Glimm's arguments [9] closely.
If sé is regular then rm^0 for all m. Conversely if sé^30~F{0,n} then by

Proposition 5.1, sém^. J"~J^{0, «} for some m and then sém~30' ® {sém n (38')°}
so rm = 0 by Proposition 3.8. If ctm+n = an for all w^ 1 then the action of 8 on sém+n
n jaÇ is'trivial so 7?m+Tl = 7?n for all m^ 1 and 8 is inner. Conversely if am is not
eventually constant by passing to a subsequence we can assume ccm+1<am for all
m so that the action of 8 on each algebra 30m — sémn (sém_1)c is nontrivial. If a>m
is a pure state on 30m such that ||o>m — wm6\ =2 and o> is the product state, then a>
is a pure state on the C*-algebra sé such that a> is not unitarily equivalent to cod.
This shows that 8 is not inner, and moreover proves that every nondegenerate
U.H.F. C*-algebra has an irreducible Type B representation.

If sé is regular then the discrepancy am of sém is characterised by

l-«m = sup{r(^2) : A - A* - -8A and ||^|| û 1 and AeséJ
so

1-a = sup{r(^2) : A = A* = -8A and ||^|| ^ 1 and A ese}.
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Moreover by Proposition 5.1

i"(p),fi(p)} = sup {{k, 1} : pk\n and pl\r and sé'2 38 ~ 3F{r, «}},
so a, n, r only depend on the isomorphism class of sé.

lise, 8 is regular with parameters a, n, r then, by Proposition 3.9, sé, or equiva-
lent^ Um = i J^m, contains a IFf-subalgebra isomorphic to !F{s, m} if and only if
sm'1>a and r(p) — sup {k : pk\s}'e:0 and n(p) — sup {k : pk\m}^0, while for p = 2
these last two expressions must also be either both zero or both finite nonzero or
both infinite. The point is that this condition depends only on a, n, r. Now suppose
that sé and sé' are two U.H.F. C¿f-algebras with a = a, n = n' and /• = /•'. Suppose
A is an isomorphism of sét into sé¡. Then sé n séf is the closure of the union of
<gk = séi+kC\séic and is regular with parameters aaf1, rrf1, nnf1. Similarly
sé' r\ (Xsé)c is the closure of the union of <ê'k = séjJrk c\ (Xsé)Q and is regular with the
same parameters, aaf1, rrf1, nnf1. By our above observation there is an integer k
and an isomorphism p of &[ into ^k. Then p 0 A-1 is an isomorphism of sé¡+x
into séi+k which extends A-1. Repeating this procedure inductively provides an
isomorphism of sé with sé'.

Proposition 5.4. The U.H.F. C%-algebra sé, 8 is completely singular if and only
if there is a subsequence m(i), /'= 1, 2,..., such that rm(i} = 0for all i and

for all i. If for all primes p we define
n(p) = sup {k : pk\nm some m}

then two completely singular U.H.F. C*-algebras sé and sé' are isomorphic if and
only ifn = n'.

Proof. We call a sequence with the properties of sémii) a standard sequence. The
proof that a completely singular algebra has the required properties follows from
Proposition 5.1, and the converse follows as in the previous proposition. Similarly

n(p) = sup {A: : pk\n for some ^{0, «} ~ 38 £ sé}

and since for a standard sequence nm«m-i is even, n(2) = oo. Therefore sé contains
a subalgebra isomorphic to ^{s, m} if and only if sup {k : pk\m}-¿n(p) for all p,
a criterion which depends only on n. The rest of the proof is as in the previous
proposition.

Proposition 5.5. If sé is a regular or completely singular U.H.F. C%-algebra
and if38x and382 are isomorphic finite-dimensional Type A W*-subfactors of sé then
sé c\38x and sé C\(%2 are isomorphic. If sé is singular but not completely singular
this may not be true.

Proof. If sé is regular with parameters a, r, n and 38x~!F{s, m} then sé n 38f
are regular with parameters a', r', n' given by sa' = ma and

r(p) = r'(p) + sup{k : pk\s},

n(p) = n'(p) + sup {k : pk\m}.
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By Proposition 5.3 the two commutants are isomorphic. A similar argument works
if sé is completely singular.

If sé is singular but not completely singular then for large enough i the following
holds, sé, has discrepancy zero and sé n sé,c is regular with parameters a, r, n.
sé{ contains two subalgebras 38r, 302 both isomorphic to &{0, m} with sét n 38\
~.F{r, «¡w"1} and sé, n 30c2~^{s, «¡m"1} with r=f-s, r#0 and s^O. Then sé n 30\
and sé c\382 are regular with parameters au ru nx and a2, r2, n2 satisfying a1
= rn,m~1a and a2 = sn,m~1a. If a#0 then a1^a2 and the two commutators are not
isomorphic.

Proposition 5.6. Let a»! and o>2 be two Type C factor states of a U.H.F. C$-
algebra sé which is regular or completely singular. Then o>x and u>2 are algebraically
equivalent if and only if there is an automorphism v of sé (as a C*-algebra) such that
o}x and o>2v are quasi-equivalent.

Proof. This important theorem is due to Powers [13]. If á?, 8 is the enveloping
IFf-algebra of the representation we must be careful to construct all the unitary
operators of [13, Lemmas 3.1-3.6] to lie in 30a. In [13, Lemma 3.3] we must assume
that 30 is a Type C JFf-factor in order to use the conclusion that 38a is a factor,
and also make use of Proposition 2.6.

Now let us suppose that sé, 8 is a U.H.F. C*-algebra and sémnsé£_1
=38m~F{r, n} for all m, so sé is regular if r#0 and completely singular if /- = 0.
Suppose o> is the product of the states «?m on 38m, all of which correspond to the
same state w0 on F{r, n}. If 7? induces the involutive automorphism of F{r, n}
then, by Theorem 4.4, w is a Type C factor state of sé if and only if |o?0(7?)| ̂  1.
Let a be constructed in the same way from another state v0 on !F{r, ri}.

Proposition 5.7. Ifœ and o are algebraically equivalent states then for any e>0
there exists an integer k such that the following holds. Suppose 30 is a W2-factor
isomorphic to ¡F{rk,nk} and Jf^ i=l,..., k, is a factorisation of 30 into W2-
subfactors with isomorphisms X,: Jf, —> F{r, k). Let w, = w0Xi on Jf, and let tu' be
the product state on 38. There exists a factorisation Jiu J(2 of 38, states pu p2 on
Jíx, Jí2-respectively, and an isomorphism p.: Jtx ~^>-!F{r, ri} such that p1 = a0p. and
¡Pi   ® p2-Oj'\\<E.

This is again obtained by minor modifications of Powers' proof [13].
From now on we shall restrict our analysis to the completely singular U.H.F.

algebra sé, 8 whose parameter n is given by n(2) = oo and n(/?) = 0 for p + 2. If <p
is any state on ^{0, 2ri} then matrix units eu can be chosen for F{0, 2ri} so that
<p(e,j) = SwAj. If the involutory automorphism of ^{0,2«} is induced by
7? = 2?=i (e¡i — en+i>n+¡), the set of eigenvalues with multiplicities is divided into
two classes according as i^n+l or i^n. The multiplicity of each eigenvalue in
each class is independent of the particular set of matrix units chosen, although the
two classes are interchanged if we replace 7? by — 7?.
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For any integer k by taking a suitable subsequence of the generating algebras
we can assume that each of the algebras 38i=séi n séic_x is isomorphic to ^{0, 2k}.
If 0< A<^ let p0 be a state on ^{0, 2k} whose eigenvalues are A'(l — A)fc_i with
multiplicities (k\){(i\)(k — i)]}~1, the eigenvalues being divided into two classes of
equal size by a set of matrix units of J^ÍO, 2k} chosen to diagonalise p0. Let p be
the product state on sé, 8 whose restriction to each a?, is carried onto p0 by the
isomorphism of ^"{0, 2k} with 38x. Under these circumstances we call p a product
state of sé, 8 associated with A, 0 < A < \.

Theorem 5.9. The product states of sé, 8 associated with each X, 0 < A < \, fall
into exactly two algebraic equivalence classes. Each of the hyperfinite type III
factors of Powers has at least two involutory outer automorphisms which are not
conjugate under the group of all automorphisms of the factor.

Proof. We first take k = 2, so 38i = séir\séic_x is isomorphic to J*"{0, 4}. Let
{e0}f>i = 1 be matrix units for ^{0,4} so that the involutory *-automorphism of
■^{0, 4} is induced by 7? = exx + e22 — e33 — e44. Let wQ be the state

°>0 (  2   XVeV )  ~ W ~ A)*H + *(1 - A)*22 + A2x33 + (1 - A)2x44,
\¡,í=i       /

and let a0 he the state

CTo( 2  *«*«) = A2*n + A(l-A)x22 + A(l-A)x33 + (1-Xfxa.
\¡.í=i /

We prove that the conclusion of Proposition 5.7 is invalid for e = A2, so that the
product states tu and a on sé, 8 are not algebraically equivalent in the C*-algebra
sense. Since they are clearly algebraically equivalent in the C*-algebra sense this
proves the second statement of the theorem.

Using the notation of Proposition 5.7 it is immediate that the eigenvalues of ca'
on 38 are Ai(l-A)2'£-i with multiplicities (2A:)!{(/!)(2Ä:-/)!}"1 and that these are
divided into two classes according as /' is even or odd. Let us call this set of eigen-
values T and let px,..., p¡ denote the eigenvalues of p2 on J(2, with multiplicities
included, so the eigenvalues of px 0 p2 are X2ph A(l — X)ph A(l—A)^f, (1— X)2p¡
where 1 SiSl, multiplicities being included. Comparing the eigenvalue lists of cu'
and px 0 p2 separately for the two classes we obtain as in [13]

I

iipi ® P2-°>'\ = 2s'i=i
where

Si = jAVi- ?iiI +1 A(l - A)^ — ii2| +1 A(l - AV,-/i3| 4-1(1 — A)Vi-i14|
^ \tm-tm\

and where r,y, 1 újú^, 1 úiúh is a suitable parametrisation of the elements of T.
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For each i the two eigenvalues X(l—X)p,t are of opposite class, so ti2 and ti3 are of
opposite class. Therefore

\ta-t»\ = max{ri2, ti3}X(l-X)-\

X2 > ¡Pi ® Pa-oi'H = 2^=2 |2A(1 — A)Mi —?i2 —/i3|

We also have by hypothesis
i

i = l

I

so

= 2A(l-A)-2fe + í¡3)

I¡ = i2 max{ri2, ti3} ̂  2 ('« + *«)
i = l

^ 2A(1-A)-A2 > A(l-A).
Therefore i

II Pi ®/?2-^'| > 2 max{íi2, íiajAíl-A)-1 > A2
¡ = i

which contradicts the above hypothesis.
To prove the first part of the theorem let p be a product state constructed from

p0 on F{0, 2k}. If the eigenvalues A'(l — A)k_f are divided into two classes according
as i is even or odd then it follows quickly from Proposition 5.6 that p is alge-
braically equivalent to œ. We show that if this is not so then p is algebraically
equivalent to a.

We suppose there exist integers i,j either both even or both odd and eigenvalues
A'(l — A)fc_< and Xi(\—X)k'i of opposite classes. If i+j=2x then

{Xx(l-X)k~x}2 = AXl-Af-'-AXl-Af-í

so X2x(l —X)2k~2x occurs in both classes of the eigenvalue list of p\sé, n sé,c_2 for
every /. It is therefore sufficient to consider the case where k is even and the two
classes of eigenvalue lists of p, say p,±,..., p.y and p.y + u ..., p.2y, have some common
entry, say p-i = py+i. Here each p., is of the form AJ(1 —X)k~i and 2^ = 2fc.

Let £>0 and let n be any integer. The eigenvalues of p\sén are ^i1 • • -pJ2yy where
r1+■—\-r2y = n. We can write {(r1,ry+1) : 0^rx + ry + 1¿n} as a disjoint union
of sets Sx,..., St, S such that each set S, consists of two points

{(>i, ry+i + 1), (ri + 1, ry+1)}   and   S ç {(ru ry+1) : rt = 0}.

For each r2,..., ry, ry+2,..., r2y and each set S, the two eigenvalues

P-l P-y P-y +1       P-y + 2 /*2y
and

l¿l+1l¿2---l¿2%y
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are equal numerically but lie in opposite classes. Moreover the sum of the remaining
eigenvalues is not greater than the constant coefficient of

(PiX + p2+ ■ ■ ■ +p2y)n = (l-H-i)n + xf(x).

Therefore for sufficiently large n we can divide the eigenvalues of p\sén into three
sets T, U, V such that the eigenvalues in T, U are the same with the same multi-
plicities but lie in opposite classes, and the sum of the eigenvalues in V is less than
e/4. If the multiplicity of the eigenvalue A, = A'(l — X)nk 'linT (or in U) is w, then we
have shown that

2«, < (nky.^ilXnk-iy.}-1
and

nk
2 [(nky.{(i\)(nk-iy.}-1-2ni]Xi(l-X)nk-i < e/4.
(=0

Similar arguments apply to the state a on sé, 8 and for large enough n we can find
sets T, U', V such that if the multiplicity of A, in X" (or in U') is m, then

2m, S («/c)!{(/!)(«&-/) i}"1
and

nfe
2 K«A:)!{0!)(«Ä:-0!}-1-2m,]Ai(l-Ar-' < e/4.
i = 0

If pi = min (rnu n¿) then
nk

2 [(«A:)!{0-!)(nÂ:-/)!}-1-2/),]Ai(l-Ar-' < «/2
i = 0

and T, U, T, U' each contain subsets Tx, Ux, T'x, U'x such that the eigenvalue A,
occurs in each subset with multiplicity p,. The eigenvalues of 7"i and Ux (as of T'x
and U'x) lie in opposite classes so by changing the notation if necessary we can
assume that the eigenvalues in Tx and T'x (or in Ux and U'x) lie in the same class.
It is now straightforward to construct a unitary operator U e {sén}Q such that

\\o(-)-p(U*-U)\sén\\  <e.

Exactly the same argument can be applied to the restriction of p and a to
sé r\ sé°. Inductively it follows that there exists a sequence mn and a sequence of
unitary operators Un e {sémn}0 n {sémnl}° such that

\\a(.)-P(U*-Un) | sémn n «,.¿1 < 1/2«.

If a is the unique *-automorphism of sé such that a(X)=U?XUn for all
Xe sémn n {sémni}c and p'(X) = p(aX) then p is algebraically equivalent to p and

\\(a-p')\sémttn{sémn_íy\\ < 1/2™.

The proof is completed by proving that a and p are asymptotically equal, and so
quasi-equivalent.
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Let pn be the state on sé which has a product decomposition given by

p'n = <j    on sém. n {sémi_iy   for i < n,

P'n = p'   on sém n {sémt _JC   for i ^ w.

It is easy to check that \\p'n — pú+ill <21_n and also that a—p' = 2"=i (pn — />n-i),
the limit certainly existing in the weak* topology of sé*. Therefore

\\(a-p')\sén{sémty\\ í 2 21-< = 22-"
n = l

so a and p' are indeed asymptotically equal.
We leave as an open question whether each of the hyperfinite type III factors

has an infinite number of nonconjugate involutory automorphisms. We also leave
the interested reader to work out for himself the much easier problem for the
hyperfinite IL factor. The classification of the involutory inner automorphisms is
of course trivial.

6. Group representations. In this section we show how our study of C2*-
algebras and IF2*-algebras is related to the theory of group representations and
give some illustrative examples. To do this we have to introduce the idea of an
epigroup and, since this seems to be new even at the algebraic level, we do this
more generally than will be needed in the application.

An epigroup (G, <p, z) over a ring R is defined as a group G together with a
homomorphism <p on G onto (7? + ); we define G0 = ker q> and suppose G1 = G\GQ
generates the group G; we also suppose r-> zr is an isomorphism of (R + ) into
the centre of G with range contained in G0. If 7? has an identity element 1 we write
z1=z. If (G,cp,z) is an epigroup we define a homomorphism a from (R + ) to
Aut (G) by ar(g) = zoíí)-g and write ^ = a if 7? has an identity element.

If (G, (p, z) and (77, <p, a>) are two epigroups over R we define their skew product.
The definition

(g, h)(gl, hj = (ggl, wWK^hhi)

makes the set G x 77 into a group. The subset {(zr, tus) : r, s e R} is a central subgroup
and we define the skew product G x2 H as the quotient group of GxH under the
homomorphism n: (7x77-> G x2 H whose kernel k is {(zr,w~r) : re R}. We
define X: G x2 H-+(R + ) by X{rr(g, h)} = <p(g) + fth) and define x:(R+) -> G x2H
by

Xr = tt(z", e) = Tr(e, cur).

These definitions make (G x2 H, X, x) into an epigroup over R and the maps
g -*■ n(g, e) and h —> 7r(e, h) are one-one embeddings of G, 77 as subepigroups of
G x2 H in an obvious sense. G x2 H is generated by G, 77 subject to the relations
zr = ojr for all r e R and hg=wi*'h)<-«>a)gh for all g e G, h e 77.

We define a 2-epigroup (G, <p, z) to be an epigroup over R = Z2 such that G is a
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separable locally compact group and both G0 and Gx are closed. We define a
representation U of a 2-epigroup (G, cp, z) on a Hubert space Jf to be a unitary
representation such that Uz= — I and such that there exists a symmetry 7? on 38F
such that UgR= —RUg for all geGx, or equivalently Uag = RUgR for all g eG.
We then define

4 = ¡S {£/9l : g, e G,}

for i=0, 1 where lin is the weak operator closed linear span. Then for all A¡ esé{,
AiR = ( — )iRAi so séx n séo = 0 and sé = sé0+séx is a JFf-algebra which we call the
enveloping algebra of the representation. The type of the representation is identified
with the type of sé. It is easy to define the skew tensor product of two represen-
tations of two 2-epigroups in such a way as to correspond naturally to our definition
of the skew tensor product of two lF2*-algebras. We now give some examples
of 2-epigroups.

Example 1. Let Pin (n) be the double covering of 0(n) constructed in [1] and
let tfi: Pin (n) -> Z2 be the homomorphism whose kernel is Spin (n). Let w be the
central element of Pin (n) of order two which maps to the identity under the cover-
ing map of Pin (n) onto 0(ri). Let G be the semidirect product of Pin (n) with Rn
under the obvious action of 0(n) on Rn. Let z be the element of G corresponding
to w; z is central of order two since to acts trivially on Rn. Let cp be the homomor-
phism of G onto Z2 whose kernel is the semidirect product of Spin (n) with Rn.
Then G is a 2-epigroup and its irreducible representations can be calculated from
Proposition 4.1 and the theory of induced representations.

Example 2. Let G0 = SL(2«, R) and let ß:G0->G0 be the Cartan involution
ß(A) = (AT)'1. Then we define G as the semidirect product of G0 by ß and let
cp: G -> Z2he the homomorphism with kernel G0. If we define z= — 1 then (G, cp, z)
is a 2-epigroup. It is possible to associate such a Lie 2-epigroup canonically with
several of the symmetric spaces in this way.

Example 3. If (G, cp, z) is an abelian 2-epigroup then (G, cp, z) is an abelian
2-epigroup if we define cp = z and z = cp.
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