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Sialic acids are common monosaccharides that are widely expressed as outer terminal

units on all vertebrate cell surfaces, and play fundamental roles in cell–cell and cell–

microenvironment interactions. The predominant sialic acids on most mammalian cells

are N -glycolylneuraminic acid (Neu5Gc) and N -acetylneuraminic acid (Neu5Ac). Neu5Gc is

notable for its deficiency in humans due to a species-specific and species-universal inac-

tivating deletion in the CMAH gene encoding the hydroxylase that converts CMP-Neu5Ac

to CMP-Neu5Gc. However, Neu5Gc is metabolically incorporated into human tissues from

dietary sources (particularly red meat), and detected at even higher levels in some human

cancers. Early life exposure to Neu5Gc-containing foods in the presence of certain com-

mensal bacteria that incorporate dietary Neu5Gc into lipooligosaccharides can lead to

generation of antibodies that are also cross-reactive against Neu5Gc-containing glycans in

human tissues (“xeno-autoantigens”). Such anti-Neu5Gc “xeno-autoantibodies” are found

in all humans, although ranging widely in levels among individuals, and displaying diverse

and variable specificities for the underlying glycan. Experimental evidence in a human-like

Neu5Gc-deficient Cmah−/− mouse model shows that inflammation due to “xenosialitis”

caused by this antigen–antibody interaction can promote tumor progression, suggesting

a likely mechanism for the well-known epidemiological link between red meat consump-

tion and carcinoma risk. In this review, we discuss the history of this field, mechanisms

of Neu5Gc incorporation into tissues, the origin and specificities of human anti-Neu5Gc

antibodies, their use as possible cancer biomarkers, implications of xenosialitis in cancer

initiation and progression, and current and future approaches toward immunotherapy that

could take advantage of this unusual human-specific phenomenon.

Keywords: Neu5Gc, sialic acid, antibodies, inflammation, tumor antigen, red meat

HISTORICAL BACKGROUND

Nearly 100 years ago, Hanganutziu and Deicher independently
described human heterophile antibodies that agglutinated ani-
mal erythrocytes, as occurring in patients with serum-sickness,
who had received therapeutic animal antisera (1, 2). Similar
antibodies were later reported in patients with various diseases,
despite no prior exposure to animal serum (3). Characterization
of the antigenic determinants of these Hanganutziu–Deicher (H–
D) antibodies occurred when Higashi et al. and Merrick et al.
demonstrated that at least some of the major epitopes recog-
nized were gangliosides containing a sialic acid (Sia) called N -
glycolylneuraminic acid (Neu5Gc) (4, 5). This discovery spurred
further research and H–D antibodies were also described in sera
from patients with multiple pathological states such as rheumatoid
arthritis, infectious mononucleosis, leprosy, syphilis, leukemia,
Kawasaki disease, and various cancers (6–17). Expression of
Neu5Gc on gangliosides and glycoproteins of human meconium
and various human tumors was also detected by immunohisto-
chemistry or thin-layer chromatography using polyclonal chicken
antibodies raised against Neu5Gc-containing ganglioside GM3, or
indirectly, via inhibition of bovine erythrocyte agglutination by a
human H–D antiserum (10, 18–32). Given the data available at the
time, it was reasonable to assume that Neu5Gc was an “oncofetal

antigen,” expressed in fetal tissues, suppressed in adult life, and
later up regulated during carcinogenesis. However, the evidence
for an immune response raised questions about this assumption.
In retrospect, the early reports of H–D antigens in cultured human
cancer cell lines was probably due to animal serum used in the
medium, and those in human cancer samples were likely of dietary
origin (see below).

DIVERSITY IN THE SIALIC ACIDS

Classic studies of the structure, chemistry, and biosynthesis of
sialic acids (Sias) occurred in parallel with the discovery and char-
acterization of H–D antibodies. Sialic acids are a large family of
nine-carbon-backbone monosaccharides primarily expressed in
animals of the Deuterostome lineage (33, 34). They are most com-
monly found as the terminal units of the dense glycoconjugate coat
covering cell surfaces, and of glycan chains attached to secreted
molecules. By virtue of their position and high expression, Sias
frequently act as the interface between the cell and the extracel-
lular environment and mediate key roles such as stabilization of
molecules and membranes via negative charge and hydrophilic-
ity, transmembrane signaling, and receptor functions for self and
non-self ligands (35, 36). They are also remarkably diverse owing
to the various possible permutations involving different α-linkages
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between C-2 and the underlying glycan chain, as well as a variety of
natural modifications. The predominant types of Sias in mammals
include N -acetylneuraminic acid (Neu5Ac) and its hydroxylated
version, Neu5Gc (Figure 1). These two molecules differ by a sin-
gle oxygen atom, which is added to CMP-Neu5Ac in the cytosol,
via a reaction catalyzed by the enzyme cytidine monophosphate
N -acetylneuraminic acid hydroxylase (CMAH) (37–44). These
activated sugars are then transported into the Golgi, where they
act as donors for various sialyltransferases. (45).

HUMAN DEFICIENCY OF Neu5Gc BIOSYNTHESIS

Following the reports of Neu5Gc in fetal and malignant tissues, it
was found that all humans are homozygous for an Alu-mediated
deletion of exon 6 in the CMAH gene, which results in a truncated,
inactive enzyme (46–48). We can only speculate if positive or neg-
ative selection was involved in the fixation of this mutation in the
human lineage. Negative selection by a lethal infectious pathogen
that preferred Neu5Gc as a binding target is a possibility (49).
Positive selection due a fertility advantage to Neu5Gc-negative
females could also have been operative (50). Alternatively, the
human condition may simply be the result of a random muta-
tion that became fixed in a small population that eventually gave
rise to modern humans. Regardless of these considerations, this
rather drastic change in the sialic acid topology of the cell surface
can be dated back to ~2–3 mya, prior to the origin of the genus
Homo, and may even have been involved in the origin of the genus
(50). Not only has there been a corresponding increase in the pre-
cursor Neu5Ac, but also multiple related changes in Sia biology
and pathogen regimes, which are discussed elsewhere (51, 52).

Since Neu5Gc has been found in many species of the deuteros-
tome lineage (ranging from sea urchins to fish to non-human
primates), the CMAH gene is at least 500 million years old (53).
Notably, Neu5Gc deficiency seems to have evolved independently

in sauropsids (birds and reptiles) and possibly in monotremes
such as the platypus (53). Indeed, chickens are similar to humans
in recognizing Neu5Gc as a foreign antigen and mounting a strong
immune response against it. A serum-sickness like condition can
be induced when horse serum is injected into chickens or by
the virally induced Marek’s disease, a lymphoma that expresses
Neu5Gc by unknown mechanisms (54–57).

Neu5Gc CAN BE METABOLICALLY INCORPORATED INTO

HUMAN TISSUES FROM DIETARY SOURCES

Until the end of the last century, the evidence for Neu5Gc in
human tissues remained indirect, based on polyclonal antibodies
raised in chickens or using H–D antibodies from human patients
(26, 32). In order to confirm the findings of the classic stud-
ies that showed the oncofetal expression pattern of Neu5Gc, a
chicken anti-Neu5Gc IgY with high specificity and avidity was
generated by affinity purification and it indeed detected accumu-
lation of Neu5Gc in human tumors such as breast carcinomas, in
fetal epithelial cells, and in placental endothelial cells (Figure 2)
(58). Surprisingly, small but definite amounts of Neu5Gc were also
detected in normal human secretory epithelia and on endothelia
of small- and large-blood vessels. These findings were supported
by mass-spectrometry analysis of purified sialic acids (58) and of
N -glycans released from human tumor samples (59). Subsequent
studies of Cmah−/− mice showed a complete absence of Neu5Gc
(59), indicating that there is no alternate pathway for the de novo

biosynthesis of Neu5Gc. In the Absence of any other explanation,
it was concluded that Neu5Gc must be entering human tissues
exogenously via oral ingestion. Dietary sources that are rich in
Neu5Gc include red meats such as beef, pork, lamb, and to a much
lesser degree, cow’s milk products. Of significant note is the fact
that plants and poultry do not contain Neu5Gc, and that fish
samples studied so far contain low to trace amounts (58, 60).

FIGURE 1 | Structures and predominant types of sialic acids. Left panel:

sialic acids (Sia) are often terminating units of N - and O-linked glycoproteins

and glycosphingolipids that can be found on the cell surface as part of the

glycocalyx, as well as on secreted glycoproteins. Ac, O-acetyl ester; Fuc,

fucose; Gal, galactose; GalNAc, N -acetyl galactosamine; Glc, glucose;

GlcNAc, N -acetylglucosamine; Man, mannose; Sia, sialic acid, type

unspecified; S, sulfate ester. Right panel: the two main mammalian sialic

acids Neu5Ac (N -acetylneuraminic acid) and Neu5Gc (N -glycolylneuraminic

acid) differ by one oxygen atom, which is added by the enzyme cytidine

monophosphate N -acetylneuraminic acid hydroxylase (CMAH) in the cytosol.

Humans lack this enzymatic activity due to an inactivating mutation of the

CMAH gene. Reproduced from Varki (34).

Frontiers in Oncology | Molecular and Cellular Oncology February 2014 | Volume 4 | Article 33 | 2

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samraj et al. Neu5Gc in cancer

FIGURE 2 | Examples of incorporation of Neu5Gc in malignant and

healthy human tissue. Expression of Neu5Gc is observed to be

enhanced in malignant epithelia as seen here in carcinomas of the ovary,

prostate and colon (left panel). In contrast, expression of Neu5Gc in

normal tissue is seen in the ducts of the prostate gland and in the

epithelial lining of the colon (Right panel). Endothelial cells of the normal

placenta is used here as a positive control for Neu5Gc immunostaining.

As a negative control, the binding is blocked competitively with

Neu5Gc-containing chimpanzee serum. Magnification used was 200×

and scale bar is 100 µm.

Given that Neu5Gc incorporation is practically significant,
there is a need for the sensitive and specific detection of Neu5Gc in
human and Cmah−/− mouse tissues, as well as in biotherapeutic
products (see below). There are several immunological and chem-
ical methods to detect such trace amounts of Neu5Gc. Table 1

summarizes the different methods with description of advantages
and disadvantages of each. Immunodetection with a polyclonal
anti-Neu5Gc IgY was among the first methods employed for the
detection of Neu5Gc in tissues. Polyclonal antibodies are able
to broadly detect epitopes with a terminating Neu5Gcα2-R unit,
whereas the various monoclonal antibodies are very specific for
different Neu5Gc-containing gangliosides. While such antibod-
ies (and newer versions that are more specific) are commonly
applied to immunohistochemical techniques now, certain caveats
apply. Gangliosides can be lost in the paraffin-embedding process,
therefore, frozen section analysis is preferred. Strong binding to
endothelial Neu5Gc maybe used as a positive control and neg-
ative control can include competitive inhibition with a Neu5Gc-
containing reagent such as 10% chimpanzee serum, mild periodate
oxidation of the sialic acid chain, or sialidase treatment of tissue
sections. Each approach has pros and cons and must be properly
controlled.

MECHANISMS FOR METABOLIC INCORPORATION OF

Neu5Gc INTO Cmah NULL CELLS AND TISSUES

In vitro evidence shows that cultured human epithelial cells can
incorporate Neu5Gc into endogenous glycoproteins from animal
products (such as fetal calf serum) in the medium. Incorporation
of Neu5Gc involves fluid-phase pinocytosis to enter the lysosome,
where a sialidase releases Neu5Gc from glycoconjugates, and a
sialic acid transporter then delivers the foreign sialic acid to the
cytosol. Free Neu5Gc in the extracellular fluid can follow the

same pathway (61). Cytosolic Neu5Gc now becomes available for
activation to CMP-Neu5Gc in the nucleus and is subsequently
transported into the Golgi. Evidently, the single oxygen atom
difference between the foreign Neu5Gc and the native Neu5Ac
remains permissive for the human sialic biosynthetic machinery,
which utilizes Neu5Gc as if it were a “self” molecule (61, 62).

With regard to the intact organism, few studies had investi-
gated the fate of orally ingested Neu5Gc in mammals. Nöhle and
Schauer first showed that radioactive free sialic acid fed to mice
and rats appeared in urine and was metabolized, as a portion of the
radioactivity was recovered as expired CO2 (63–65). Radioactivity
from labeled sialic acids in mucins was also detected in murine tis-
sues after oral gavage (65). Oral ingestion studies in normal adult
humans showed that free Neu5Gc can be absorbed and excreted
within 4–6 h and detected only in trace amounts in salivary mucins
and facial hair (58). The generation of a Cmah−/− mouse in
2007 paved the way to further investigate the consequences of
Neu5Gc deficiency (66). Using this human-like Neu5Gc-deficient
mouse, it was shown that this foreign Sia can indeed masquerade
as a self-molecule and be incorporated in normal healthy tissues,
into the fetus, and into cancers (67). In these mice, free Neu5Gc
(i.e., the monosaccharide) can be rapidly absorbed into circula-
tion with peak levels seen at 1–2 h post ingestion and is efficiently
excreted by the kidneys. In contrast, oral ingestion of glycosidically
bound Neu5Gc (i.e.,Neu5Gc-glycoconjugates such as porcine sub-
maxillary mucins) led to incorporation into the small intestinal
wall, liver, kidney, and was detectable in the peripheral circu-
lation for several hours (67). Further investigation is necessary
to understand the factors affecting the bioavailability of ingested
Neu5Gc, the mechanisms behind the selective incorporation of
glycosidically bound Neu5Gc, the preferential incorporation into
endothelial and epithelial cells, and the eventual metabolic fate
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Table 1 | Overview of methods to detect small amounts of Neu5Gc.

Method Methodological features Commentsa

Polyclonal anti-Neu5Gc

chicken IgY

Ganglioside GM3(Neu5Gc) as immunogen (54) Recognizes gangliosides with Neu5Gcα2-R terminus.

Applied to immunohistochemistry and TLC overlays

Affinity-purified polyclonal

anti-Neu5Gc chicken IgY

Above polyclonal affinity purified on octyl-sepharose

immobilized GM3(Neu5Gc) (157)

Specificity as above, likely cleaner background

Improved affinity-purified

polyclonal anti-Neu5Gc

chicken IgY

Above polyclonal antibody affinity purified on sequential

columns of immobilized human and chimpanzee serum

sialoglycoproteins, then eluted with Neu5Gc (158).

Original immunogen noted to include bovine serum

albumin as stabilizer – actually contaminated with

Neu5Gc-rich bovine serum sialoglycoproteins, which

acted as additional immunogens

Recognizes terminal Neu5Gc irrespective of linkage or

underlying glycan chain (128). Applicable to ELISA, western

blot, immunohistochemistry, and flow cytometry. Still

contains IgY against animal albumin, removable by

adsorption with column of mild

periodate-borohydride-treated BSA (unpublished

observations)

Monoclonal anti-Neu5Gc

chicken IgYs

Monoclonal chicken anti-Neu5Gc IgYs (mChGc6-1,

mChGc2-7) (74, 159)

mChGc2-7 has relatively broad specificity, similar to above

polyclonal (128). Not yet studied for most applications

Monoclonal anti-Neu5Gc

mouse/human IgM or IgG

MK2-34 murine IgM anti-GM2(Neu5Gc) (160), Y-2-HD-1,

GMR14 murine IgG anti-GM2 (Neu5Gc) (81), 14F7

murine IgG anti-GM3(Neu5Gc) (140), GMR8 murine IgG

anti-GM3(Neu5Gc) (161), GMR3 murine IgG

anti-GD3(Neu5Gc-Neu5Gc-) (162), YK-3 human IgM

against Neu5Gc disialogangliosides (163)

Each specific for different Neu5Gc gangliosides, but will

miss many other Neu5Gc epitopes. Gangliosides get

extracted from tissues during paraffin-embedding process

and can be missed

Detection of sialidase or

acid-released free Neu5Gc by

HPAE-PAD

High-performance anion-exchange chromatography with

pulsed amperometric detection (HPAE-PAD) (164–166)

Purification of released Neu5Gc improves background.

Alkaline HPAEC conditions destroy O-acetyl groups

Detection of sialidase or

acid-released free Neu5Gc by

mass spectrometry

RP-HPLC with tandem MS interfaced with an

electrospray ionization source (ESI) (167, 168)

Purification of released Neu5Gc and selective ion

monitoring in mass spectrometry improves signal to noise

Detection of derivatized free

Neu5Gc (sialidase or

acid-released)

Fluorescent labeling with

1,2-diamino-4,5-methylenedioxybenzene (DMB) followed

by RP-HPLC (164, 169, 170)

Sensitivity of fluorescence labeling can detect in the pmol

range and ultra HPLC (UHPLC) allows run times as short as

10 min. DMB derivatization less likely to change Sia

O-acetylation

Mass-spectrometry of

glycans carrying Neu5Gc

Released N - or O-Glycan mixtures permethylated to

facilitate purification and enhance signal in MALDI-TOF

mass spectrometry (59)

Requires specific release of glycans. Alkaline permethylation

destroys O-acetyl groups

Neu5Gc specific aptamers Aptamers screened from a chemically synthesized

nucleic acid library by “systematic evolution of ligands by

exponential enrichment” (SELEX) (171)

Novel method with high affinity and apparent specificity

Not tested on biological samples yet

aSee text for further discussion.

of this foreign molecule in human cells. With regard to the latter
issue, recent work has revealed a degradative pathway involving
sequential conversion to N -glycolylmannosamine (ManNGc), N -
glycolylglucosamine (GlcNGc), and GlcNGc 6-phosphate, with
eventual release of the glycolyl group into cellular metabolic path-
ways (68). With the exception of the last step, all other reactions
are reversible, and little is known about rates of turnover and any
other metabolic pathway that may be involved. The same studies
also practically ruled out prior suggestions that Neu5Gc expression
in humans might originate from an alternate pathway involving
glycolyl-CoA (69, 70).

ORIGINS AND IMPLICATIONS OF THE HUMAN IMMUNE

RESPONSE AGAINST Neu5Gc

Until the end of the 1990s, anti-Neu5Gc antibodies were thought
to be present only in humans who had received therapeutic ani-
mal sera injections or those diagnosed with diseases like cancer,
but not in normal healthy individuals. However, reports from the
xenotransplantation field identified non-Gal antibodies specific
for Neu5Gc that were detectable by flow cytometry in the majority
of normal healthy humans (71). Parallel studies in our lab showed
that the immune response against Neu5Gc was actually univer-
sal in humans (58), but of widely ranging levels. The antibodies
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were also diverse and of broad polyclonal specificities, arising from
selective recognition of the underlying glycan as well (72, 73). The
discrepancy with the earlier studies was likely due to the different
methods of detection and/or antigens used in the assays. One of
the cancer-associated H–D antigens used as the ELISA detection
target in earlier studies was the ganglioside GM3(Neu5Gc) (4, 74,
75), an antigen against which antibodies in healthy humans tend to
be low. Also, in some studies the antibody binding signal in normal
subjects was simply assumed to be non-specific and subtracted as
background (30, 76). Further, it was assumed that H–D antibodies
were directed against Neu5Gc alone. However, a monosaccharide
by itself cannot fill the binding pocket or paratope of the antibody,
which can accommodate four to five sugars (77). Thus, the wide
range of naturally occurring Neu5Gc-glycoconjugates would war-
rant a diverse, polyclonal immune response not just against the Sia,
but also the underlying glycan (72). Indeed, chemo-enzymatically
synthesized α2-3 or α2-6 linked sialoside pairs (i.e., identical gly-
cans with either Neu5Gc or Neu5Ac) (78, 79) were used to analyze
anti-Neu5Gc antibodies, revealing complex patterns of IgG, IgM,
and IgA reactivities with marked variations in the antibody pro-
files within the normal human population (73). In retrospect, this
also explains prior successes in obtaining monoclonal antibodies
with specificities for particular Neu5Gc-containing molecules (74,
80–84).

The levels of these naturally occurring polyclonal antibodies
can be quite high in some humans, approaching those of the
major anti-glycan antibodies in normal human serum: anti-ABO
blood group and anti-α-Gal (anti-Galα1-3Galβ1-4GlcNAc) (72).
Such antibodies arise from antigenic stimulation by gastrointesti-
nal bacteria and the latter are well known as an immunological
barrier for xenotransplantation. In contrast to α-Gal, which is not
expressed on human cells, the “xenogenic” Neu5Gc is enriched
in cancer cells and can be incorporated into normal vertebrate
cells as it is recognized by the biochemical pathways as a self
or “autogenic” entity. Thus, Neu5Gc is the first example of a
“xeno-autoantigen” (59, 62). Given this incorporation, circulating
anti-Neu5Gc antibodies become potentially relevant in the patho-
genesis of diseases associated with chronic inflammation such as
cancer, atherosclerosis, and autoimmune disease (73, 85).

It was recently shown that anti-Neu5Gc antibodies in humans
emerge during the first year of life and are likely not germ-line
encoded “natural” antibodies (86). They appear at 6 months and
steadily rise to adult levels by 1 year of age. This occurs coin-
cident with the introduction of Neu5Gc via cow’s milk in baby
formula. Cmah−/− mice were used to study this temporal effect
further. A variety of Neu5Gc-feeding paradigms failed to gener-
ate anti-Neu5Gc antibodies in these mice. Instead, it was found
that commensal non-typeable Haemophilus influenza is able to
scavenge free dietary Neu5Gc and express it as an immunogenic
epitope, thereby effectively “vaccinating” the host to generate anti-
Neu5Gc IgM and IgG antibodies (86). It is possible that other
commensal or pathogenic bacteria can also carry out this “xeno-
autoimmunization,” and it is likely that there are other routes of
immunization as well, considering the variable response that is
seen across normal individuals. Further investigation is neces-
sary to define the cellular and molecular pathways required for
antibody selection, generation, and secretion, the specific B cell

populations responsible, the levels of IgA antibodies in secretions,
whether the anti-Neu5Gc response is T cell independent, and
whether affinity maturation of the antibody binding site occurs
following class-switching.

RED MEAT CONSUMPTION INCREASES CARCINOMA RISK

Diet remains one of the most modifiable risk factors for many
chronic diseases including cancer. Although meat is a valuable
source of essential amino acids, iron, key vitamins and minerals,
numerous epidemiological studies agree that consumption of red
meat (meat from mammalian sources such as lamb, pork, and
beef), is associated with not only increased risk of certain can-
cers but also cardiovascular disease (87, 88). Prominent among
the large prospective cohorts are the Health Professionals Follow-
up Study and the Nurses’ Health Study that recently confirmed
that a higher intake of red meat was associated with a signif-
icantly elevated risk of cancer, cardiovascular disease, and total
mortality (89).

The cancer type that has been most prominently associated
with red meat consumption is colorectal cancer (CRC), one of the
leading causes of cancer-related deaths in the United States (90).
A statistically significant increase in CRC risk of 1.35-fold is seen
with a high intake (>160 g/day) of red meat (91). This associa-
tion is stronger for processed meat than for unprocessed meat.
Esophageal, gastric, prostate, and endometrial cancer risk is also
significantly elevated by high meat consumption, although con-
flicting reports exist (92–95). These associations are understand-
ably variable, as diet is difficult to measure accurately, especially
given the multiple correlations between different components
of food.

There have been several mechanisms proposed by which red
meat consumption increases the risk of cancer including: (1)
high-fat intake (96); (2) the production of heterocyclic amines
and polycyclic aromatic hydrocarbons formed by high tempera-
tures during grilling (97); (3) the presence of mutagenic N -nitroso
compounds (98); and, (4) the higher levels of heme iron as a pro-
moter of carcinogenesis through increased cellular proliferation,
increased oxidative stress, and iron-induced hypoxia signaling
(99). The first three mechanisms have been effectively ruled out by
epidemiological data, and by the fact that the risk is exclusive for
red meat, and not for poultry or fish. More recently, a new mech-
anism for the link between cardiovascular disease and red meat
was proposed to involve the intestinal microbiota. Metabolism of
l-carnitine that is abundant in red meat by the microbiota gener-
ates trimethylamine-N -oxide (TMAO), which is proatherogenic
in mice (100) and is associated with increased cardiovascular risk
in humans (101). However, no connection of TMAO to cancer risk
was reported.

Overall, there is no theory that has been conclusively proven.
We propose that “xenosialitis” or the interaction between the non-
human Neu5Gc and circulating anti-Neu5Gc results in chronic
inflammation that promotes carcinogenesis and atherogenesis. In
this regard, red meat consumption and the “western diet” have
been associated with increased circulating markers of inflamma-
tion in human population studies (102). Thus, Neu5Gc may be the
missing link between red meat consumption and risk of cancer and
cardiovascular disease, an association that so far appears unique to
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humans. Evidence supporting our hypothesis is presented in the
further sections.

ROLE OF INFLAMMATION IN CANCER

The mammalian immune system recognizes and eliminates cells
with non-native DNA, including transformed cells (103–108).
During cancer progression, however, tumor cells can escape
elimination by the immune system by being selected for low
immunogenicity or by being able to inhibit immune cell activa-
tion and induce an immunosuppressive microenvironment (104,
109–111). Some of these pathways can be targeted for cancer
immunotherapies (108, 112–114).

In contrast to this immunosurveillance function, inflammation
and associated activation of the immune system can also pro-
mote cancer progression (115–117). Chronic inflammation due to
infectious and non-infectious agents such as auto-inflammatory
diseases and diet-induced metabolic syndrome is an impor-
tant etiology for the development of cancer (116–118). In this
regard, epidemiological analyses have confirmed that interfer-
ence with inflammation using non-steroidal anti-inflammatory
drugs including aspirin are protective for the development of
inflammation-induced cancers such as colorectal carcinomas (119,
120). Aspirin use has also been associated with reduced inci-
dence of other cancers including those of the esophagus and
stomach (121).

Inflammation not only works as promoter during carcino-
genesis (inflammation-induced cancer), but growing tumors
that escaped immunosurveillance also induce an inflammatory
response that can support cancer progression (cancer-related
inflammation) (115, 122). In particular, cells from the myeloid
lineage such as neutrophils and monocytes/macrophages support
cancer progression (110, 123–125). Thus, while the immune sys-
tem exerts considerable immunosurveillance to eliminate tumor
cells, inflammatory pathways can be co-opted by tumor cells to
promote cancer progression. Moreover, inflammation can also act
as an oncogenic promoter during tumorigenesis, inducing DNA
damage via reactive oxygen species.

EXPERIMENTAL STUDIES OF Neu5Gc-INDUCED

XENOSIALITIS IN CANCER

Aberrant cell surface glycosylation is a well-known characteris-
tic of cancer and can be altered by the loss or gain of certain
structures, the presence of truncated structures, accumulation of
precursors, and the synthesis of novel structures (126). Increased
cell surface sialylation is one such example. Not only is there an
increase in the total sialic acid content, but also significant changes
in their modifications such as the accumulation of Neu5Gc. This
molecule preferentially accumulates in malignant tissue due to
multiple mechanisms, including increased macropinocytosis (61),
rapid growth rates, and up-regulation of the sialin transporter in
response to hypoxia (127). In keeping with this, subcutaneous syn-
geneic tumors showed high levels of Neu5Gc incorporation when
Cmah−/− mice drank water containing Neu5Gc (67), conditions
under which normal tissues were not easily loaded.

This accumulation occurs in the presence of circulating xeno-
autoantibodies against Neu5Gc-glycans. Different experimen-
tal models were used to ask if inflammation mediated by the

anti-Neu5Gc immune response (xenosialitis) could influence
tumor growth by affecting cancer-related inflammation (59, 73).
Cmah−/− mice subcutaneously injected with the low metasta-
tic B16F1 murine melanoma cell line that expresses Neu5Gc on
its surface developed antibodies against Neu5Gc and the tumors
then grew larger over time (59). Subcutaneously injected murine
MC38 tumor cells also formed larger tumors in Cmah−/− mice
when polyclonal mono-specific murine anti-Neu5Gc antibodies
were transferred passively via intraperitoneal injection (59). The
increase in tumor growth was associated with enhanced infiltra-
tion of cells of the innate immune system, suggesting a role of
these cells in promoting effects.

Blunting cancer-related inflammation in the subcutaneous
MC38 model with a cyclooxygenase-2 inhibitor repressed the
effect of anti-Neu5Gc antibodies (59). However, when higher
doses of human anti-Neu5Gc antibodies purified from commer-
cially available human intravenous immunoglobulins (IVIG) were
transferred passively into mice by intraperitoneal injection, the
growth of subcutaneous syngeneic MC38 tumors was significantly
inhibited (73). This finding indicates that Neu5Gc-containing gly-
cans could potentially serve as targets for immunotherapy. Indeed,
when Neu5Gc production in MC38 cells was silenced via siRNA
targeting the Cmah transcript, inhibition by transferred Neu5Gc
antibodies was blunted (73). The experimental evidence discussed
here indicates that low levels of anti-Neu5Gc antibodies can sup-
port cancer progression by enhancing tumor-related inflamma-
tion via induction of “xenosialitis,” and that higher doses might
possibly be used to target tumors that have high levels of Neu5Gc
in their glycocalyx. Further studies of this issue are underway,
including models where tumors in mice accumulate Neu5Gc from
dietary sources, in a manner similar to the human condition.

CIRCULATING ANTI-Neu5Gc ANTIBODIES AS TUMOR

MARKERS

Earlier studies discussed above had reported an increased inci-
dence of H–D antibodies in patients with cancer. Sera of patients
with cancer were therefore analyzed for the presence of anti-
Neu5Gc antibodies with specificity toward different Neu5Gc-
glycan epitopes (73). A sialoglycan microarray of over 70 chemo-
enzymatically synthesized sialoglycans including unique pairs of
Neu5Gc- and Neu5Ac-containing glycans were used to analyze
the different binding properties of antibodies from patients with
breast cancer versus controls in order to identify a classifier of
20 Neu5Gc-containing glycans (73). Using these 20 Neu5Gc-
containing glycan targets, analysis of binding properties of anti-
bodies in sera were further tested and validated in more breast
cancer patients. The four most significant glycans were also able
to differentiate between controls and patients with various carci-
nomas including prostate, ovary, endometrium, colon, lung, and
pancreas (73). These findings suggest that anti-Neu5Gc antibodies
can function as tumor markers. Notably one of the most significant
cancer-associated epitopes was very similar to the known sialyl-Tn
tumor antigen, except that Neu5Gc replaced Neu5Ac (73). A caveat
to the use of glycan microarrays is that interpretation of the results
should take into consideration the differences in producing, pre-
senting, coupling, and detecting the glycans (128). Anti-Neu5Gc
antibodies can also be analyzed by using Neu5Gc-rich natural
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glycoproteins (such as wild type mouse serum) or by coupling
glycans to polymers such as polyacrylamide and probing with
antibodies on an ELISA plate (72, 86). This less expensive, simpler
method could be used as a screening tool, perhaps to monitor dis-
ease progression and/or therapeutic response. However, dilution
effects on antibody binding and competition between different
antibody classes also complicate such studies, and caution must
be taken to avoid reagents of animal origin that might intro-
duce Neu5Gc contamination. Population studies are necessary
to identify correlations between anti-Neu5Gc antibody levels and
carcinoma risk and progression.

IMPLICATIONS FOR CANCER PREVENTION AND TREATMENT

Given the evidence for Neu5Gc in human tissues along with circu-
lating anti-Neu5Gc antibodies, the observed xenosialitis in mouse
models could potentially play an important role in the develop-
ment of cancer (59). Since the source of this foreign sialic acid is the
diet, avoidance of Neu5Gc-rich food could possibly reduce cancer
risk. Indeed, as discussed above, Neu5Gc-rich red meat increases
the risk of inflammation-induced cancers including CRC (89) and
our proposed xenosialitis model could be replicating this increased
risk. Furthermore, the data predict that the reduction of Neu5Gc
consumption could also be important during therapy of already
established malignancies in order to interfere with cancer progres-
sion. Indeed, high intake of a “western” dietary pattern, rich in red
meat, was associated with a higher risk of recurrence and mortal-
ity among patients with stage III colon cancer treated with surgery
and adjuvant chemotherapy (129).

It is well described that tumor cells are aberrantly sialylated
and that content of sialic acid on the surface of tumor cells signif-
icantly increase as compared to cells in healthy tissues (130, 131).
The up-regulation of sialylation might also explain why ingested
Neu5Gc preferentially accumulates in cancer tissues (58, 67). Aber-
rant sialylation includes an increase of the tumor antigen sialyl-Tn
(132–136), which is uncommon in normal tissues (132, 137, 138)
or cryptic due to O-acetylation of the sialic acid (133) in healthy
tissue. As discussed before, analysis of anti-Neu5Gc antibodies by
a sialoglycan microarray showed significant up-regulation of anti-
bodies targeting Neu5Gc-sialyl-Tn suggesting that such antibodies
might function as specific tumor biomarkers (73). If this epitope
is indeed a relatively cancer-specific antigen, it could be poten-
tially useful as a target for imaging as well as a therapeutic tool for
drug delivery. As in vitro assays have shown that human antibodies
purified from IVIG preparations against Neu5Gc-Tn antigen can
activate antibody-dependent cellular and complement-dependent
cytotoxicity (ADCC and CDC) (73), the epitope could potentially
be directly targeted by anti-Neu5Gc-Tn antibodies.

Neu5Gc-containing gangliosides including GM3 were origi-
nally described as an epitope for H–D antibodies (4, 5) and
(Neu5Gc)GM3 was found to be a tumor-associated antigen par-
ticularly in skin and breast cancer (139, 140). Vaccination with
(Neu5Gc)GM3 along with the outer membrane protein com-
plex of Neisseria meningitidis in proteoliposomes lead to anti-
body production in advanced stage breast cancer patients in a
phase I study (141). Immunization of mice with (Neu5Gc)GM3
led to the isolation of specific antibody 14F7 (140), which was
recently humanized and named racotumumab (142, 143). This

FIGURE 3 | Xenosialitis hypothesis. Neu5Gc is metabolically incorporated

from the diet (primarily red meats) into cellular glycans to form

xeno-autoantigens. Anti-Neu5Gc antibodies or xeno-autoantibodies are

induced by immunization via commensal bacteria (such as non-typeable

Haemophilus influenza or NTHi) that scavenge and express Neu5Gc. The

resulting antigen–antibody interaction is hypothesized to lead to chronic

inflammation termed xenosialitis that potentially promote cancer and/or

atherosclerotic vascular disease.

monoclonal antibody is able to bind several malignant tissues
including skin cancers, neuroectodermal tumors, genitourinary
cancer, non-small cell lung cancer, and tumors of the gastroin-
testinal tract (144–148). Trials testing the efficacy of racotumumab
are currently recruiting (e.g., NCT01598454, NCT01460472). But
there is no attempt to control for dietary Neu5Gc intake by
patients.

Similar approaches might be taken toward other Neu5Gc-
glycan epitopes that are enriched in tumors. For example, vacci-
nation with proteins containing Neu5Gc as terminal sugars could
potentially boost an immune response against established tumors.
For instance, self-assembling MUC1 with Neu5Gc-Tn antigen
could be used to immunize patients with carcinomas (149, 150).

Notably, Neu5Gc is present as a component of some cancer
therapeutic agents. Immunotherapy with monoclonal antibod-
ies against other tumor epitopes such as targeting HER2 with
trastuzumab, EGF receptor 1 with cetuximab, or CD20 with rit-
uximab are well integrated in today’s cancer therapies (151).
Antibodies are glycosylated and biotechnological production of
such glycoproteins can involve Neu5Gc-rich media and/or non-
human cells expressing Neu5Gc (152). Thus, it was previously
shown that incorporation of Neu5Gc in cetuximab enhanced the
formation of immune complexes and promoted drug clearance
(153). Moreover, Cmah−/− mice injected with cetuximab reacted
with an anti-Neu5Gc immune response (153). Thus, avoidance
of Neu5Gc during production of glycoproteins might improve
half-life of therapeutics and also reduce the immunogenicity and
therefore has important implications in cancer therapy.

CONCLUSIONS AND FUTURE DIRECTIONS

We have discussed the incorporation of the non-human sialic acid
Neu5Gc into human tissues, and its potential impact on can-
cer initiation and progression. We particularly emphasized the
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Table 2 |Timeline of discoveries/studies concerning Neu5Gc and anti-Neu5Gc antibodies.

Year(s) Discoveries/studies Reference

1924 Discovery of H–D antibodies in patients with serum-sickness (1, 2)

1970–1980s Association of H–D antibodies with multiple pathological states, including cancer (3, 6–9)

1977–1978 Definition of Neu5Gc as key component of H–D antigen (5)

1980s Neu5Gc detected in human meconium and carcinomas by immunohistochemistry or TLC; assumed to be an “oncofetal”

antigen

(10, 18–22)

1998 Human deficiency of Neu5Gc synthesis due to CMAH inactivation (46–48)

2003 First results of trial with vaccine containing GM3 (Neu5Gc) (141)

2003 Metabolic incorporation of Neu5Gc in human tissues from dietary sources (58)

2003 Neu5Gc is enriched in red meats (58)

2003 Anti-Neu5Gc response is universal to humans (58, 71, 72)

2005 Molecular mechanisms of uptake and incorporation of Neu5Gc into cells elucidated – role of macropinocytosis and

lysosomal sialin transporter noted

(61)

2006 Up-regulation of the sialin transporter in response to hypoxia in cancer increases Neu5gc accumulation (127)

2007 Development of Cmah−/− mouse model. No alternate pathway for Neu5Gc synthesis (66)

2008 Passively transferred anti-Neu5Gc antibodies enhance Cmah-positive carcinoma progression in Cmah−/− mice (59)

2010 Origin of anti-Neu5Gc antibodies via “xeno-autoimmunization” by commensal bacteria that incorporate diet-derived Neu5Gc (86)

2011 Humanized anti-Neu5Gc-GM3 antibody racotumumab, first trials using this antibody start recruiting (143)

2011 Neu5Gc-sialyl Tn as potential biomarker cancer biomarker (73)

2012 Oral glycosidically linked bound Neu5Gc preferentially incorporated into Cmah−/− mouse tissues, fetuses, and orthotopic

tumors

(67)

2012 Intracellular degradative pathway for Neu5Gc discovered (68)

2013 Simple method for assessment of human anti-Neu5Gc antibodies (154)

See text for discussion.

resulting inflammatory activation or xenosialitis induced by xeno-
autoantibodies against Neu5Gc-containing epitopes (Figure 3).
Notably, Neu5Gc can also be incorporated into glycans of endothe-
lial cells in healthy individuals and the subsequent xenosialitis has
been potentially implicated in the pathogenesis and progression
of atherosclerosis (85). Additionally, screening of antibody speci-
ficity by Neu5Ac/Neu5Gc specific sialoglycan microarray revealed
a Neu5Gc antibody response in children with Kawasaki disease
suggesting a possible role of these antibodies in disease pro-
gression (154). All these findings support the hypothesis that
xenosialitis may be involved in various inflammatory diseases.
Thus, avoidance of the Neu5Gc by reducing the consumption
of Neu5Gc-containing food could not only have a major impact
on the prevention of malignant diseases, but also potentially
reduce the risk of cardiovascular disorders. Furthermore, exami-
nation and cloning of human anti-Neu5Gc xeno-autoantibodies
can provide information about the nature of the anti-Neu5Gc
immune response and offer ways to manipulate this in order
to produce more efficient vaccines against Neu5Gc-containing
tumor-associated epitopes.

Further analysis is needed to determine the pathways by which
Neu5Gc is absorbed and transported to healthy and cancerous
tissues, in order to be able to interfere with pathological conse-
quences of Neu5Gc incorporation. Since Neu5Gc uses the same
biochemical pathways as Neu5Ac, Neu5Gc could be potentially
“flushed” out of the body by high amounts of Neu5Ac. The rela-
tively specific accumulation of Neu5Gc on glycans of tumor cells,
in particular as Neu5Gc-Tn antigen and (Neu5Gc)GM3 ganglio-
side is particularly intriguing and should be further studied to
harness tumor cells for therapeutic and diagnostic purposes. How-
ever, it must be carefully determined if anti-Neu5Gc antibodies
are well suited for immunotherapy of tumors or if there are “off-
target” effects due to the presence of Neu5Gc-containing epitopes
in other tissues. The accumulation of Neu5Gc-containing glycans
in tumors in Cmah−/− mice fed with the monosaccharide Neu5Gc
(67) suggests another strategy of deliberately loading tumors in a
selective fashion in order to subsequently target them. Such “load-
ing” of tumor tissue with Neu5Gc might be optimally combined
with monoclonal antibody immunotherapies. Finally, it remains
to be seen if the increase of Neu5Gc-containing sialoglycans on
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the surface of cancer cells might directly influence the cell intrin-
sic properties such as response to hypoxia or signaling through
glycosylated surface receptors.

While much more work is needed to prove or disprove the
overall hypothesis, it is encouraging that a prominent textbook of
cancer biology has designated this as an “area to watch” (155).
But major milestones of progress in the field are likely to be
slow. While we are not assuming a similar level of importance
to disease pathogenesis, it is instructive to compare the progress
to date (Table 2) with those underlying the seminal discovery
that cholesterol played a key role in atherosclerosis progression
and risk (156). Cholesterol was found in atherosclerotic plaques
in 1910, familial hypercholesterolemia was associated with early
heart attacks in 1949, and population studies showed an associ-
ation of heart disease with cholesterol levels by the early 1960s.
However two more decades followed before cholesterol lowering
by statins was shown to reduce heart attacks and another decade
passed before a large scale double-blinded statin trial showed a
positive effect in 1994 (156). While studies have clearly shown that
Neu5Gc is a tumor-associated antigen with diagnostic and ther-
apeutic potential and mouse models have established the role of
xenosialitis in tumor progression, fundamental questions remain
unanswered. Can anti-Neu5Gc antibodies and/or Neu5Gc tissue
load predict carcinoma risk in human population studies? Will
lowering Neu5Gc load reduce carcinoma risk? Is it possible to
eliminate the foreign Neu5Gc from tissues or perhaps interfere
with the metabolic incorporation process? Considering the poten-
tial impact on the prevention and treatment of human disease,
it is evident that Neu5Gc and its interactions warrant further
experimental and translational investigation.
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