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Objective: The influence of cholinergic drugs on lithium-induced state-
dependent learning has been investigated in adult male mice. 
Method: A single-trial step-down inhibitory avoidance task was selected. 
The drugs used in the study were lithium chloride physostigmine , nicotine 
hydrogen tartrate and scopolamine hydrobromide, atropine sulphate. The 
drugs were administrated through the peritoneal route. Control animals 
received saline or respective vehicle for nicotine.  Ten animals were used in 
each experimental group. on day 1 or training session, the animals being 
trained in the step-down inhibitory avoidance task, and then immediately 
received post-training treatment of lithium or atropine or scopolamine.  On 
day 2 or testing session, the animals firstly received pre-test administration 
of drugs (for nicotine 30 min, for lithium 45 min and for cholinergic 
antagonists 60 min before the test), and then were tested for step-down 
latency. 
Results: The results showed that post-training and pre-test intraperitoneal 
(i.p.) administration of lithium (10 mg/kg) induced state-dependent learning. 
In addition, pre-test administration of an anticholinesterase, physostigmine 
(0.3 and 0.6 mg/kg, i.p.) and nicotinic acetylcholine receptor agonist, nicotine 
(0.1 and 0.5 mg/kg) could substitute for pre-test lithium. Pre-test co-
administration of an ineffective dose of physostigmine (0.1 mg/kg) but not 
nicotine (0.01 mg/kg), with lower doses of lithium (2.5 and 5 mg/kg) 
potentiated the effect of the latter drug on step-down latency. Post-training 
administration of a nonselective antagonist of muscarinic acetylcholine 
receptors, atropine, decreased the step-down latency, but pre-test 
administration of the same dose of the drug and also lithium, could not 
reverse the decrease of step-down latency. On the other hand, pre-test 
atropine at higher doses (0.3 and 0.6 mg/kg) disrupted lithium-induced state-
dependent learning. On the contrary, the decrease of step-down latency due 
to post-training administration of another nonselective muscarinic antagonist, 
scopolamine (1 mg/kg, i.p.) reversed by pre-test administration of not only 
the same dose of the drug, but also lithium (10 mg/kg). Interestingly, pre-test 
administration of scopolamine (1 mg/kg) also reversed the decrease of step-
down latency induced by post-training lithium (10 mg/kg). 
Conclusion: cholinergic system(s) may be involved in the lithium-induced 
state-dependent learning and the involvement of muscarinic receptors is 
more possible than nicotinic ones.     
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Although, lithium has been used as an important 
mood stabilizing agent in the treatment of bipolar 
mood disorders (1, 2), a neuroprotective role (3), and 
an antiapoptotic effect for lithium (4, 5) have also been 
reported. Animal studies may also suggest to 
investigate lithium effect in the treatment of drug 
addiction (6, 7). However, the drug’s side effects can 
not be tolerated by many patients (8). Lithium's 
primary effects on memory in general are debatable. In 
particular, inhibition of learning, memory, and speed of 
information processing in patients with bipolar 
disorders and to some extent in control subjects has  

 
been reported (9-12). On the contrary, it has been 
shown that lithium enhances memory in some tasks 
(13), or attenuates memory impairments induced by 
other factors (14).  
Brain cholinergic systems are thought to play an 
important role in memory function and mood 
regulation (15-19). Moreover, deterioration of the 
cholinergic system also contributes to memory failure 
and cognitive decline associated with aging (20, 21). It 
has also been hypothesized that dysfunction of many 
neurotransmitter systems including the cholinergic 
system is involved in bipolar disorder (22, 23). The 
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effects of mood stabilizers, especially lithium, on 
neurotransmitters and second messenger systems have 
been extensively investigated (16, 17, 24-27). As found 
with other neural systems, there are many reported 
changes in the cholinergic systems produced by 
lithium, but it is not clear if these alterations are direct 
effects and involved in the therapeutic efficacy of 
lithium (19). 
We have shown in our previous studies that lithium (10 
mg/kg) induced state-dependent learning, and the 
involvement of different mechanisms in this process 
have been investigated (28-31). Considering the 
involvement of cholinergic systems in some responses 
induced by lithium, in the present study the effect of 
cholinergic agents on retrieval of the state-dependent 
learning induced by lithium was investigated. 
 
Materials and Method 
Animals 
Male albino Naval Medical Research Institute (NMRI) 
mice weighing 22–30 g were used. The animals were 
maintained under a 12/12-h light–dark cycle (light 
beginning at 7 a.m.) and in a controlled temperature 
(22±2 °C), with ad libitum access to food and water. 
Ten animals were housed per cage and used in each 
experiment. Each animal was used once. All 
procedures were carried out in accordance with 
institutional guidelines for animal care and use. 
 
Inhibitory avoidance task 
The inhibitory (passive) avoidance apparatus consisted 
of a wooden box (30×30×40 cm3) with steel-rod floor 
(29 parallel rods, 0.3 cm in diameter set 1 cm apart). A 
wooden platform (4×4×4 cm3) was placed in the center 
of the grid floor. Electric shocks (1 Hz, 0.5 sec and 50 
V DC) were delivered to the grid floor by an isolated 
stimulator (Grass S44, West Warnick, RI,USA). 
In the training session, animals were gently placed on 
the wooden platform and their latencies to step down 
on the grid floor with all four paws were recorded. 
Immediately after stepping down on the grid, each 
animal received an electric shock continuously for 15 s. 
Retention test session was carried out 24 h after 
training session and was procedurally identical to it, 
except that no shock was given. After each test, the 
apparatus was cleaned by cotton embedded in saline. 
Step-down latency was used as an indication of 
inhibitory avoidance memory retention. An upper cut-
off time of 300 s was set. The training and testing 
sessions were carried out between 8:00 a.m. and 2:00 
p.m. 
 
Drugs 
The drugs used in the study were lithium chloride 
(LiCl; Merck, Germany), physostigmine (Sigma-
Aldrich Co. Ltd, Gillingham, England), nicotine 
hydrogen tartrate and scopolamine hydrobromide 
(Sigma Cookson Ltd. UK), atropine sulphate (Sina-
Daru Pharmaceutical Co. Ltd. Tehran, Iran). All drugs 
were dissolved in sterile saline except nicotine which 

was dissolved in sterile saline and then the pH of the 
solution was adjusted to 7.2 with NaOH (0.1 normal 
solution). The drugs were administrated through the 
peritoneal (i.p.) route. Control animals received saline 
or respective vehicle for nicotine.   

Experimental design 
Ten animals were used in each experimental group. For 
intraperitoneal (i.p.) injections the doses were adjusted 
so that each animal received a volume of at most 10 
ml/kg. The protocol and time of drug administration 
used were as following schematic diagram i.e. on day 1 
or training session, the animals being trained in the 
step-down inhibitory avoidance task, and then 
immediately received post-training treatment of lithium 
or atropine or scopolamine.  On day 2 or testing 
session, the animals firstly received pre-test 
administration of drugs (for nicotine 30 min, for 
lithium 45 min and for cholinergic antagonists 60 min 
before the test), and then were tested for step-down 
latency. We have used this protocol in our previous 
studies (29-31). 
 
Experiment 1 
This experiment examined effects of pre-test lithium, 
anticholinesterase physostigmine and nicotinic 
acetylcholine receptor agonist, nicotine on the decrease 
of step-down latency induced by post-training lithium. 
In this experiment, 11 groups of animals were used. 
One group of animals as control received both post-
training and pre-test injections of saline (10 ml/kg). 
The other ten groups of animals received lithium (10 
mg/kg) after training, and on the test day four groups of 
them received saline or lithium (2.5, 5 and 10 mg/kg), 
the other three groups received physostigmine (0.1, 0.3 
and 0.6 mg/kg), and the last three groups received 
nicotine (0.01, 0.1 and 0.5 mg/kg) before the test. 
 
Experiment 2 
In experiment 2, effects of pre-test co-administration of 
an ineffective dose of physostigmine or nicotine with 
lower doses of lithium on the decrease of step-down 
latency induced by post-training lithium were 
evaluated. Thirteen groups of animals were used. One 
group of animals received injections of saline (10 
ml/kg) both post-training and pre-test.  The other 
twelve groups of animals received lithium (10 mg/kg) 
after training, and on the test day these animals in three 
sets of four groups received saline or lithium (1.25, 2.5 
and 5 mg/kg) plus saline (10 ml/kg) or physostigmine 
(0.1 mg/kg) or nicotine (0.01 mg/kg) before testing. 
 
Experiment 3  
In this experiment twelve groups of animals were 
divided in two sets of six groups. In the first set, one 
group received injections of saline (10 ml/kg) both 
post-training and pre-test. The other five groups 
received muscarinic cholinergic antagonist, atropine 
(0.1 mg/kg) after training. On the test day, one group of 
these animals received saline, one group received 
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atropine (0.1 mg/kg), and the other three groups 
received lithium (2.5, 5 and 10 mg/kg) before the test. 
In the second set of animals, one group received 
injections of saline (10 ml/kg) both post-training and 
pre-test. The other five groups received lithium (10 
mg/kg) after training. On the test day, one group of 
these animals received saline, one group received 
lithium (10 mg/kg), and the other three groups received 
lithium (10 mg/kg) plus atropine (0.1, 0.3 and 0.6 
mg/kg) before the test. 
 
Experiment 4    
In this experiment, seven groups of animals were used. 
One group of the animals received injections of saline 
(10 ml/kg) both post-training and pre-test. Three 
groups of animals received injections of a muscarinic 
cholinergic antagonist, scopolamine (1 mg/kg) after 
training, and on the test day they received saline or 
scopolamine (1 mg/kg) or lithium (10 mg/kg) before 
testing. The other three groups received lithium (10 
mg/kg) after training, and they received saline or 
lithium (10 mg/kg) or scopolamine (1 mg/kg) before 
testing.  
 
Data analysis 
Because of individual variations, the data were 
analyzed using the Kruskal–Wallis nonparametric one-
way analysis of variance (ANOVA) followed by a two-
tailed Mann–Whitney’s U-test. Holmes Sequential 
Bonferroni correction test was used for the paired 
comparisons as appropriate. The step-down latencies 
for ten animals in each experimental group were 
expressed as median±quartile ranges. In all statistical 
evaluations p<0.05 was used as the criterion for 
statistical significance. 
 
Results 
Effect of pre-test lithium, physostigmine and nicotine 
on the decrease of step-down latency induced by post-
training lithium 
The result of experiment 1 showed that post-training 
lithium (10 mg/kg) decreased step-down latency on the 
test day, and pre-test administration of not only 
lithium, but also physostigmine and nicotine reversed 
the decrease of step-down latency induced by post-
training lithium (Kruskal–Wallis non-parametric 
ANOVA, H(10)=59.39, P<0.001).  Post hoc analysis 
by Mann-Whitney's U-test indicated that lithium at 
doses of 5 and 10 mg/kg partly or fully reversed the 
decrease of step-down latency induced by post-training 
lithium (10 mg/kg), indicating state-dependent 
learning. Interestingly, physostigmine at doses of 0.3 
and 0.6 mg/kg, and nicotine at doses of 0.1 and 0.5 
mg/kg, could mimic the effect of pre-test lithium (Fig. 
1). 
Effects  of  pre-test  co-administration  of an ineffective 
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Figure1. The effects of pre-test lithium, physostigmine and 
nicotine on the decrease of step-down latency induced by 
post-training lithium. One group of animals received 
injections of saline (10 ml/kg) both post-training and pre-
test. Ten groups of animals received lithium (10 mg/kg) 
after training, and on the test day, four groups received 
saline or lithium (2.5, 5 and 10 mg/kg), the other three 
groups received physostigmine (0.1, 0.3 and 0.6 mg/kg), 
and the last three groups received nicotine (0.01, 0.1 and 
0.5 mg/kg) before the test. Each value represents the 
median±quartiles for 10 animals. +++P<0.001 compared to 
saline-saline group. *P<0.05 and ***P<0.001 compared to 
lithium-saline group. 
 
dose of physostigmine or nicotine with lower doses of 
lithium on the decrease of step-down latency due to 
lithium given after training  
The results of experiment 2 indicated that in the 
animals which received post-training lithium (10 
mg/kg), the pre-test co-administration of the ineffective 
dose of physostigmine (0.1 mg/kg) with lower doses of 
lithium (1.25, 25 and 5 mg/kg) altered step-down 
latency (Kruskal–Wallis ANOVA, H(8)=45.55, 
P<0.001). Post hoc analysis revealed that 
physostigmine (0.1 mg/kg) in combination with lithium 
(25 and 5 mg/kg) increased the step-down latency on 
the test day (Fig. 2).  
On the contrary, the ineffective dose of nicotine (0.01 
mg/kg) did not alter the effect of lower doses of lithium 
before the test on step-down latency (data not shown). 
Effects of post-training and pre-test administration of 
atropine on step-down latency and evaluation of its 
cross-effect with lithium. 
The results of experiment 3 showed that there was a 
significant decrease of step-down latency due to post-
training administration of atropine (Kruskal–Wallis 
ANOVA, H (5) = 18.56, P<0.01). Post hoc analysis by 
Mann-Whitney's U-test indicated that post-training 
injection of atropine (0.1 mg/kg) decreased step-down 
latency on the test day, and administration of neither 
the same dose of atropine nor lithium (2.5, 5 and 10 
mg/kg) reversed the effect of post-training atropine. 
On the other hand, pre-test administration of atropine at 
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Figure 2. The effects of pre-test co-administration of an 
ineffective dose of physostigmine with lower doses of 
lithium on the decrease of step-down latency induced by 
post-training lithium. The control group received 
injections of saline (10 ml/kg) both post-training and pre-
test.  The other eight groups of animals received lithium 
(10 mg/kg) after training, and on the test day in two sets of 
four groups they received saline or lithium (1.25, 2.5 and 5 
mg/kg) plus saline (10 ml/kg) or physostigmine (0.1 
mg/kg). Each value represents the median±quartiles for 10 
animals. +++P<0.001 compared to saline-saline group. #P< 
0.05 compared to lithium-saline group. **P < 0.01 
compared to lithium-(saline+physostigmine) group. 
 
doses of 0.3 and 0.6 mg/kg disrupted the state-
dependent learning induced by lithium 10 mg/kg 
(Kruskal–Wallis ANOVA, H(5)=32.85, P<0.001) (Fig. 
3). 
Effects of post-training scopolamine on the step-down 
latency and evaluation of its cross-effect with lithium  
The results of experiment 4 indicated that in the 
animals which received post-training scopolamine, 
decreased the step-down latency on the test day 
(Kruskal–Wallis ANOVA, H (6)=37.89, P<0.001). 
Post hoc analysis indicated that scopolamine (1 mg/kg) 
decreased step-down latency on the test day, which 
reversed by pre-test administration of the same dose of 
scopolamine (partly) and lithium 10 mg/kg (almost 
fully). On the other hand, pre-test administration of 
lithium (10 mg/kg) and scopolamine (1mg/kg) reversed 
the decrease of step-down latency induced by post-
training lithium (Fig. 4).  
 
Discussion 
Consistent with our previous studies (29, 30), the 
present data show that post-training administration of 
lithium decreased step-down latency of inhibitory 
avoidance task in mice, which was fully or partly 
reversed by pre-test administration of the drug. This 
effect of lithium on inhibitory avoidance memory 
seems to be due to state-dependent learning (29-31). In 
state-dependent learning when pre- or post-training 
administration of a drug decreases memory for a task, 
administration of the drug prior to testing reinstates the 
memory for the task (32, 33). 
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Figure 3. The effects of post-training and pre-test atropine 
on step-down latency on the test day and its interaction 
with lithium-induced state-dependent learning. In two sets 
of six groups of animals, one group received injections of 
saline (10 ml/kg) both post-training and pre-test. The other 
five groups in the first set received atropine (0.1 mg/kg) 
after training, and on the test day, they received saline, 
atropine (0.1 mg/kg) and lithium (1.25, 2.5 and 5 mg/kg) 
before the test. In the second set of animals, five groups 
received lithium (10 mg/kg) after training, and on the test 
day, they received saline, lithium (10 mg/kg), and the other 
three groups received lithium (10 mg/kg) plus atropine 
(0.1, 0.3 and 0.6 mg/kg) before the test. Each value 
represents the median±quartiles for 10 animals.  
+++P<0.001 compared to saline-saline group. ##P<0.01 
compared to lithium-saline group, and **P<0.01 compared 
to  lithium-(lithium+saline) group. 
 
Accumulated data has been shown that memory 
impairment in several tasks, including inhibitory 
avoidance tasks, by pre- or post-training administration 
of some drugs and hormones could be reversed by their 
administration before testing (34-38). With the idea of 
state-dependent learning, the decrease of  step-down 
latency in animals which received post-training 
lithiumand pre-test saline may not to be due to 
impairment of memory by lithium but rather the 
animals are not in the ‘lithium state’ when the retrieval 
test is done. However, the exact mechanism of state-
dependent learning induced by drugs including lithium 
will require more investigations. 
Previously, we have shown that cholinergic function is 
involved in inhibitory avoidance memory processes 
and morphine-induced state-dependent learning (39). 
We have also shown cross state-dependene between 
lithium and morphine (40). Therefore, we expected that 
cholinergic system(s) may also influence lithium-
induced state-dependent learning . 
The present results show that in the animals which 
were under post-training treatment of lithium, pre-test 
injections of an anticholinesterase, physostigmine and 
nicotinic acetylcholine receptor agonist, nicotine 
reversed the decrease in step-down latency induced by 
post-training lithium. Interestingly, pre-test co-
administration of an ineffective dose of physostigmine 
with the lower doses of lithium potentiated the effect of 
pre-test lithium on step-down latency.   
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Figure 4. The effects of post-training and pre-test 
administration of scopolamine on step-down latency on 
the test day and its interaction with lithium-induced state-
dependent learning. Seven groups of animals were used. 
One group of the animals received injections of saline (10 
ml/kg) both post-training and pre-test. Three groups of 
animals received injections of scopolamine (1 mg/kg) after 
training, and on the test day they received saline or 
scopolamine (1 mg/kg) or lithium (10 mg/kg) before 
testing. The other three groups received lithium (10 
mg/kg) after training, and they received saline or lithium 
(10 mg/kg) or scopolamine (1 mg/kg) before testing. Each 
value represents the median±quartiles for 10 animals. 
+++P<0.001 compared to saline-saline group. *P<0.05, 
***P<0.001 compared to  scopolamine-saline group. 
##P<0.01 and ###P<0.001 compared to lithium-saline 
group. 
 
It has been shown that pre-test administration of 
physostigmine and nicotine improved state-dependent 
retrieval of  ethanol and morphine (41, 42). 
Improvement of cognitive and memory dysfunctions 
have also been  reported in other investigation (43, 44). 
The potentiation effect of pre-test physostigmine on 
lithium response may support the involvement of 
cholinergic mechanism(s) in state-dependent learning 
induced by lithium  . 
On the contrary, pre-test co-administration of an 
ineffective dose of nicotine with lower doses of lithium 
had no effect on step-down latency on the test day. 
Therefore, it seems that in the present study nicotine 
had no interaction with lithium response on the test 
day.  It has been revealed that neuronal nicotinic 
systems play an important role in learning, memory, 
and cognition (45). Therefore, improvement of state-
dependent retrieval by nicotine may be mediated 
through its effects on cognition and attention not a 
direct interaction with lithium effect. Thus, in the last 
of the study we examined the effects of blockade of 
muscarinic cholinergic receptors on state-dependent 
learning induced by lithium. 
Our present data indicate that post-training 
administration of a nonselective antagonist of 
muscarinic acetylcholine receptors, atropine, decreased 
the step-down latency on the test day. Furthermore, the 
same dose of atropine could not reverse the decrease of 
step-down latency and did not show state-dependent 
learning. In addition, lithium caused also no change in 

the decrease of step-down latency induced by post-
training atropine. On the other hand, pre-test co-
administration of atropine with lithium prevented the 
response of the effective dose of lithium. One may 
propose that the decrease of step-down latency due to 
atropine or lithium administration results from different 
mechanism(s), and the disruption effect of atropine on 
lithium may be due to its impairing effects on memory 
(41, 42). 
The present results also show that post-training 
administration of another nonselective muscarinic 
antagonist, scopolamine decreased the step-down 
latency on the test day which was partly reversed by 
the pre-test administration of the drug, suggesting 
state-dependent learning induced by scopolamine. In 
support of our results, it has been shown that post-
training administration of scopolamine induced 
amnesia in a passive avoidance task (46, 47), and state-
dependent learning was also observed by scopolamine 
(48). Furthermore, the present data show that there was 
cross state-dependent retrieval of memory which 
acquired under post-training treatment of lithium or 
scopolamine. Therefore, it can further be supported that 
the muscarinic cholinergic receptors may be involved 
in the state-dependent learning induced by lithium. But, 
the difference which was observed between responses 
of atropine and scopolamine in the present study is not 
clear and will require more investigations. 
In conclusion, it can be suggested that cholinergic 
receptor stimulation by physostigmine or nicotine has 
an influence on state-dependent learning induced by 
lithium, but their influence on lithium effects seems to 
be mediated through different mechanisms. Blockade 
of the muscarinic acetylcholine receptors by atropine 
and scopolamine showed the involvement of 
muscarinic acetylcholine receptors in lithium-induced 
state-dependent learning, but mechanisms of their 
effects needs more investigations. 
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