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Breast cancer is one of the largest causes of women’s death in the world today. Advance engineering of natural image classi	cation
techniques and Arti	cial Intelligence methods has largely been used for the breast-image classi	cation task. �e involvement
of digital image classi	cation allows the doctor and the physicians a second opinion, and it saves the doctors’ and physicians’
time. Despite the various publications on breast image classi	cation, very few review papers are available which provide a detailed
description of breast cancer image classi	cation techniques, feature extraction and selection procedures, classi	cation measuring
parameterizations, and image classi	cation 	ndings. We have put a special emphasis on the Convolutional Neural Network (CNN)
method for breast image classi	cation. Along with the CNN method we have also described the involvement of the conventional
Neural Network (NN), Logic Based classi	ers such as the Random Forest (RF) algorithm, Support Vector Machines (SVM),
Bayesianmethods, and a few of the semisupervised and unsupervisedmethodswhich have been used for breast image classi	cation.

1. Introduction

�e cell of the body maintains a cycle of regeneration
processes. �e balanced growth and death rate of the cells
normally maintain the natural working mechanism of the
body, but this is not always the case. Sometimes an abnormal
situation occurs, where a few cells may start growing aber-
rantly. �is abnormal growth of cells creates cancer, which
can start from any part of the body and be distributed to any
other part. Di
erent types of cancer can be formed in human
body; among them breast cancer creates a serious health
concern. Due to the anatomy of the human body, women
are more vulnerable to breast cancer than men. Among the
di
erent reasons for breast cancer, age, family history, breast
density, obesity, and alcohol intake are reasons for breast
cancer.

Statistics reveal that in the recent past the situation has
become worse. As a case study, Figure 1 shows the breast
cancer situation in Australia for the last 12 years. �is 	gure
also shows the number of new males and females to start
su
ering frombreast cancer. In 2007, the number of new cases

for breast cancer was 12775, while the expected number of
new cancer patients in 2018 will be 18235. Statistics show that,
in the last decade, the number of new cancer disease patients
increased every year at an alarming rate.

Figure 2 shows the number of males and females facing
death due to breast cancer. It is predicted that in 2018 around
3156 people will face death; among them 3128 will be women
which is almost 99.11% of the overall deaths due to breast
cancer.

Women’s breasts are constructed by lobules, ducts, nip-
ples, and fatty tissues. Milk is created in lobules and carried
towards nipple by ducts. Normally epithelial tumors grow
inside lobules as well as ducts and later form cancer inside the
breast [1]. Once the cancer has started it also spreads to other
parts of the body. Figure 3 shows the internal construction
from a breast image.

Breast cancer tumors can be categorized into two broad
scenarios.

(i) Benign (Noncancerous). Benign cases are considered as
noncancerous, that is, non-life-threatening. But on a few
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Figure 1: Number of new people facing cancer in Australia from
2007 to 2018 [5].
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Figure 2: Number of people dying due to cancer in Australia from
2007 to 2018 [5].

occasions it could turn into a cancer status. An immune
system known as “sac” normally segregates benign tumors
from other cells and can be easily removed from the body.

(ii) Malignant (Cancerous). Malignant cancer starts from an
abnormal cell growth and might rapidly spread or invade
nearby tissue. Normally the nuclei of the malignant tissue
are much bigger than in normal tissue, which can be life-
threatening in future stages.

Cancer is always a life-threatening disease. Proper treat-
ment of cancer saves people’s lives. Identi	cation of the
normal, benign, and malignant tissues is a very important
step for further treatment of cancer. For the identi	cation
of benign and malignant conditions, imaging of the targeted
area of the body helps the doctor and the physician in
further diagnosis. With the advanced modern photography
techniques, the image of the targeted part of the body can be
captured more reliably. Based on the penetration of the skin
and damage of the tissue medical photography techniques
can be classi	ed into two groups.

(i) Noninvasive. (a) Ultrasound: this photography technique
uses similar techniques to SOund Navigation And Ranging
(SONAR)which operates in the very-high-frequency domain
and records the echos of that frequency, invented by Karl

�eodore Dussik [2]. An ultrasound imagemachine contains
a Central Processing Unit (CPU), transducer, a display unit,
and a few other peripheral devices. �is device is capable of
capturing both 2D and 3D images. Ultrasound techniques
do not have any side-e
ects, with some exceptions like
production of heat bubbles around the targeted tissue. (b)
X-ray: X-rays utilize electromagnetic radiation, invented by
Wilhelm Conrad Roentgen in 1895. �e mammogram is a
special kind of X-ray (low-dose) imaging technique which
is used to capture a detailed image of the breast [3]. X-rays
sometimes increase the hydrogen peroxide level of the blood,
which may cause cell damage. Sometimes X-rays may change
the base of DNA. (c) Computer Aided Tomography (CAT):
CAT, or in short CT imaging, is advanced engineering of X-
ray imaging techniques, where the X-ray images are taken
at di
erent angles. �e CT imaging technique was invented
in 1970 and has been mostly used for three-dimensional
imaging. (d) Magnetic Resonance Imaging (MRI): MRI is a
noninvasive imaging technique which produces a 3D image
of the body, invented by Professor Sir Peter Mars	eld, and
this method utilizes both a magnetic 	eld as well as radio
waves to capture the images [4]. MRI techniques take longer
to capture images, which may create discomfort for the user.
Extra cautions need to be addressed to patients whomay have
implanted extra metal.

(ii) Invasive. (a) Histopathological images (biopsy imaging):
histopathology is the microscopic investigation of a tissue.
For histopathological investigation, a patient needs to go
through a number of surgical steps. �e photographs taken
from the histopathological tissue provide histopathological
images (see Figure 4).

2. Breast Image Classification

Various algorithms and investigation methods have been
used by researchers to investigate breast images fromdi
erent
perspectives depending on the demand of the disease, the
status of the disease, and the quality of the images. Among
the di
erent tasks, for breast image classi	cation, machine
learning (ML) and the Arti	cial Intelligence (AI) are heavily
utilized. A general breast image classi	er consists of four
stages (see Figure 5):

(i) Selection of a breast database

(ii) Feature extraction and selection

(iii) Classi	er model

(iv) Performance measuring parameter

(v) Classi	er output.

Figure 5 shows a very basic breast image classi	er model.

2.1. Available Breast Image Databases. Doctors and physi-
cians are heavily reliant on the ultrasound,MRI, X-ray, and so
forth images to 	nd the breast cancer present status.However,
to ease the doctors’ work, some research groups are investi-
gating how to use computers more reliably for breast cancer
diagnostics. To make a reliable decision about the cancer
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Figure 3: Anatomy of the female breast images (for the National Cancer Institute 2011; Terese Winslow, US Government, has certain rights).

(a) (b)

(c) (d)

Figure 4: (a, b) showmammogram benign and malignant images (examples of noninvasive image) and (c, d) show histopathological benign
and malignant images (examples of invasive image).
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Table 1: Available breast image database for biomedical investigation.

Database Number of images Database size (GB) Image capture technique Image type Total patients

MIAS 322 2.3 Mammogram 161

DDSM Mammogram 2620

CBIS-DDSm 4067 70.5 MG DICOM 237

ISPY1 386,528 76.2 MR, SEG 237

Breast-MRI-NACT-Pilot 99,058 19.5 MRI 64

QIN-Breast 100835 11.286 PET/CT, MR DICOM 67

Mouse-Mammary 23487 8.6 MRI DICOM 32

TCGA-BRCA 230167 88.1 MR, MG DICOM 139

QIN Breast DCE-MRI 76328 15.8 CT DICOM 10

BREAST-DIAGNOSIS 105050 60.8 MRI/PET/CT DICOM 88

RIDER Breast MRI 1500 .401 MR DICOM 5

BCDR Mammogram 1734

TCGA-BRCA 53.92 (TB) Histopathology 1098

BreakHis 7909 Histopathology 82

Inbreast 419 Mammogram 115

Breast image
database

Feature extraction
and selection

Classifier
model

Benign

Malignant

Figure 5: A very basic breast image classi	cation model.

outcome, researchers always base their investigation on some
well-established image database. Various organizations have
introduced sets of images databases which are available to
researchers for further investigation. Table 1 gives a few of the
available image databases, with some speci	cations.

�e image formats of the di
erent databases are di
erent.
Few of the images contained images in JPEG format and few
databases contained DICOM-format data. Here the MIAS,
DDSM, and Inbreast databases containmammogram images.
According to the Springer (http://www.springer.com),
Elsevier (https://www.elsevier.com), and IEEE (http://www
.ieeexplore.ieee.org) web sites, researchers have mostly
utilized the MIAS and DDSM databases for the breast image
classi	cation research. �e number of conference papers
published for the DDSM and MIAS databases is 110 and 168,
respectively, with 82 journal papers published on DDSM
databases and 136 journal papers published using the MIAS
database. We have veri	ed these statistics on both Scopus
(https://www.scopus.com) and the Web of Science database
(http://www.webo�nowledge.com). Figure 6 shows the
number of published breast image classi	cation papers based
on the MIAS and DDSM database from the years 2000 to
2017.

Histopathological images provide valuable information
and are being intensively investigated by doctors for 	nd-
ing the current situation of the patient. �e TCGA-BRCA
and BreakHis databases contain histopathological images.
Research has been performed in a few experiments on this
database too. Among these two databases, BreakHis is the
most recent histopathological image database, containing a

4 4 3 2
4

7

16

6
8 8

23

19

37

19

38

45

41

17

1 0 0

4 4 4
7 8 9

6

12
15 14

21
23

28
26

12

0
5

10
15
20
25
30
35
40
45
50

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

F
re

q
u

en
cy

Year

MIAS

DDSM

Figure 6: Number of papers published based on MIAS and DDSM
databases.

total of 7909 images which have been collected from 82
patients [6]. So far around twenty research papers have been
published based on this database.

2.2. Feature Extraction and Selection. An important step
of the image classi	cation is extracting the features from
the images. In the conventional image classi	cation task,
features are cra�ed locally using some speci	c rules and
criteria. However, the-state-of-the-art Convolutional Neural
Network (CNN) techniques generally extract the features
globally using kernels and these Global Features have been
used for image classi	cation. Among the local features,
texture, detector, and statistical are being accepted as impor-
tant features for breast image classi	cation. Texture features
actually represent the low-level feature information of an
image, which providesmore detailed information of an image
that might be possible from histogram information alone.
More speci	cally, texture features provide the structural and
dimensional information of the color as well as the intensity
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Table 2: Feature descriptor.

Feature category Feature description

Texture

Haralick texture features [7]

(1) Angular Second Moment (ASM), (2) Contrast, (3) correlation, (4) Sum of Squares of Variances (SSoV), (5) Inverse
of Di
erence (IoD), (6) Sum of Average (SoA), (7) Sum of Variances (SoV), (8) Sum of Entropy (SoE), (9) Entropy,(10) Di
erence of Variance (DoV), (11) Di
erence of Entropy (DoE), (12) Gray-Level Concurrence Matrix (GLCM).

Tamura features [8](1) Coarseness, (2) Contrast, (3) directionality, (4) line-likeness, (5) roughness, (6) regularity.
Global texture descriptor(1) Fractal dimension (FD), (2) Coarseness, (3) Entropy, (4) Spatial Gray-Level Statistics (SGLS), (5) Circular Moran
Autocorrelation Function (CMAF).

Detector

Single scale detector(1)Moravec’s Detector (MD) [9], (2)Harris Detector (HD) [10], (3) Smallest Univalue Segment Assimilating Nucleus
(SUSAN) [11], (4) Features from Accelerated Segment Test (FAST) [12, 13], (5)Hessian Blob Detector (HBD) [14, 15].

Multiscale detector [8](1) Laplacian of Gaussian (LoG) [9, 16], (2) Di
erence of Gaussian (DoG) Contrast [17] (3)Harris Laplace (HL), (4)
Hessian Laplace (HeL), (5) Gabor-Wavelet Detector (GWD) [18].

Strutural

(1) Area, (2) bounding box, (3) centroid, (4) Convex Hull (CH), (5) eccentricity, (6) Convex Image (CI), (7)
compactness, (8) Aspect Ratio (AR), (9)moments, (10) extent, (11) extrema, (12)Major Axis Length (MaAL), (13)
Minor Axis Length (MiAL), (14)Maximum Intensity (MaI), (15)Minimum Intensity (MiI), (16)Mean Intensity (MI),(17) orientation, (18) solidity.

Haralick Tamura

Texture BI-RADS

Local

Structural

Global texture
descriptor

Feature

Global

Descriptor Statistical Detector

Single scale
detector

Multiscale
detector

Figure 7: Classi	cation of features for breast image classi	cation.

of the image. Breast Imaging-Reporting and Data System
(BI-RADS) is a mammography image assessment technique,
containing 6 categories normally assigned by the radiologist.
Feature detector actually provides information whether the
particular feature is available in the image or not. Structural
features provide information about the features structure and
orientation such as the area, Convex Hull, and centroid. �is
kind of information gives more detailed information about
the features. In a cancer image, it can provide the area of
the nucleus or the centroid of the mass. Mean, Median,
and Standard Deviation always provide some important
information on the dataset and their distribution. �is kind
of features has been categorized as statistical features. �e
total hierarchy of the image feature extraction is resented in
Figure 7. Tables 2 and 3 further summarize the local features
in detail.

Features which are extracted for classi	cation do not
always carry the same importance. Some features may even
contribute to degrading the classi	er performance. Priori-
tization of the feature set can reduce the classi	er model
complexity and so it can reduce the computational time.
Feature set selection and prioritization can be classi	ed into
three broad categories:

(i) Filter: the 	lter method selects features without eval-
uating any classi	er algorithm.

(ii) Wrapper: the wrapper method selects the feature set
based on the evaluation performance of a particular
classi	er.

(iii) Embedded: the embeddedmethod takes advantage of
the 	lter andwrappermethods for classi	er construc-
tion.
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Table 3: Feature descriptor.

Feature category Feature description

Statistical (1)Mean, (2)Median, (3) Standard Deviation, (4) Skewness, (5) Kurtosis, (6) Range

Descriptor

(1) Scale Invariant Feature Transform (SIFT) [17, 19], (2) Gradient Location-Orientation Histogram (GLOH) [20], (3)
Speeded-Up Robust Features Descriptor (SURF) [21–23], (4) Local Binary Pattern (LBP), [24–27], (5) Binary Robust
Independent Elementary Features (BRIEF) [28], (6)Weber Local Descriptor (WLD) [29, 30] (7) Back Ground Local
Binary Pattern (BGLBP) [31], (8) Center-Symmetric Local Binary Pattern (CS-LBP), [32] (9) Second-Order
Center-Symmetric Local Derivative Pattern (CS-LBP) [33], (10) Center-Symmetric Scale Invariant Local Ternary
Patterns (CS-SILTP) [34], (11) Extended LBP or Circular LBP (E-LBP) [35], (12)Opponent Color Local Binary Pattern
(OC-LBP), [36] (13) Original LBP(O-LBP) [25], (14) Spatial Extended Center-Symmetric Local Binary Pattern
(SCS-LBP) [37], (15) Scale Invariant Local Ternary Pattern (SI-LTP) [38], (16) Variance-Based LBP (VAR-LBP) [24],(17) eXtended Center-Symmetric Local Binary Pattern (XCS-LBP), (18) Average Local Binary Pattern (ALBP), (19)
Block Based Local Binary Pattern (BBLBP) [39],

BI-RADS [40]

(1)Margin Integrality (MarI), (2)Margin Ambiguity (MarA), (3) Echo Pattern Posterior Feature (EPPF), (4)
Calci	cation in Mass (CM), (5) Architectural Distortion (AD), (6) Edema, (7) Eymph Nodes Axillary (ENA) (8) Ducts
Changes (DC), (9) Skin�ickening (ST), (10) Postsurgical Fluid Collection (PSFC), (11) Skin Retraction (SR1), (12)
Fat Necrosis (FN), (13) Lump Nodes Intramammary (LNI).

Recursive feature
selection

Fisher score
Mutual

information

Sequential feature
selection

Filter Wrapper

Relief

Bridge
regularization

Feature
selection

Embedded

Chi square

Lasso Adaptive lasso

Figure 8: A summary of feature selection method.

Figure 8 shows a generalized feature selection method
where we have further classi	ed the 	lter method into
Fisher Score, Mutual Information, Relief, and chi square
methods. �e embedded method has been classi	ed into
Bridge Regularization, Lasso, and Adaptive Lasso methods,
while the wrapper method has been classi	ed to recursive
feature selection and sequential feature selection method.

2.3. Classi�er Model. Based on the learning point of view,
breast image classi	cation techniques can be categorized into
the following three classes [41]:

(i) Supervised

(ii) Unsupervised

(iii) Semisupervised.

�ese three classes can be split into Deep Neural Network
(DNN) and conventional classi	er (without DNN) and to
some further classes as in Table 4.

2.4. Performance Measuring Parameter. A Confusion Matrix
is a two-dimensional table which is used to a give a visual

T
ru

e 
cl

as
s

Hypothesized class

True positive (A) False negative (B)

False positive (C) True negative (D)

Figure 9: Confusion Matrix.

perception of classi	cation experiments [54]. �e (�, �)th
position of the confusion table indicates the number of times
that the �th object is classi	ed as the �th object. �e diagonal
of this matrix indicates the number of times the objects are
correctly classi	ed. Figure 9 shows a graphical representation
of a Confusion Matrix for the binary classi	cation case.
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Table 4: A simpli	ed hierarchy of classi	cation.

Learning technique Algorithm

Supervised

Conventional

(a) Logic based

(1) ID3, (2) C4.5, (3) bagging,(4) random trees, (5) Random Forest,(6) boosting, (7) advanced boosting,(8) Extreme Boosting (XGBoosting).

(b) Bayesian
(1) Naive Bayes(2) Bayesian Network

(c) Conventional Neural Network

(d) Support Vector Machine

DNN-based

(a) Convolutional Neural Network (CNN),

(b) Deep Belief Network (DBN),

(c) Generative Adversial Network (GAN).

Unsupervised
Conventional

(a) �-Means Clustering

(b) Self-Organizing Map (SOP)

(c) Fuzzy �-Means Clustering (FCM)

DNN-based (a) Deep Belief Network (DBN)

Semisupervised Conventional

(a) Self-training

(b) Graph Based

(c) S3V3

(d) Multiview

(e) Generative model

Among the di
erent classi	cation performance proper-
ties, this matrix will provide following parameters:

(i) Recall is de	ned as Recall = TP/(TP + FN).
(ii) Precision is de	ned as Precision = TP/(TP + FP).
(iii) Speci	city is de	ned as Speci	city = TN/(TN + FP).
(iv) Accuracy is de	ned as ACC = (TP+TN)/(TP+TN+

FP + FN).
(v) F-1 score is de	ned as �1 = (2 × Recall)/(2 × Recall +

FP + FN).
(vi) Matthew Correlation Coe�cient (MCC): MCC is a

performance parameter of a binary classi	er, in the
range {−1 to +1}. If the MCC values trend more
towards +1, the classi	er gives a more accurate classi-
	er and the opposite condition will occur if the value
of theMCC trend towards the−1.MCCcanbe de	ned
as

MCC

= TP × TN − FP × FN√(TP + FP) (TP + FN) (TN + FP) (TN + FP) .
(1)

3. Performance of Different Classifier Model
on Breast Images Dataset

Based on Supervised, Semisupervised, and Unsupervised
methods di
erent research groups have been performed
classi	cation operation on di
erent image database. In this
section we have summarized few of the works of breast image
classi	cation.

3.1. Performance Based on Supervised Learning. In super-
vised learning, a general hypothesis is established based on
externally supplied instances to produce future prediction.
For the supervised classi	cation task, features are extracted
or automatically cra�ed from the available dataset and each
sample is mapped to a dedicated class. With the help of the
features and their levels a hypothesis is created. Based on the
hypothesis unknown data are classi	ed [55].

Figure 10 represents an overall supervised classi	er archi-
tecture. In general, the whole dataset is split into training
and testing parts. To validate the data, some time data
are also split into a validation part as well. A�er the data
splitting themost important part is to 	nd out the appropriate
features to classify the data with the utmost Accuracy.
Finding the features can be classi	ed into two categories,
locally and globally cra�ed. Locally cra�ed means that this
method requires a hand-held exercise to 	nd out the features,
whereas globally cra�edmeans that a kernelmethod has been
introduced for the feature extraction. Handcra�ed features
can be prioritized, whereas Global Feature selection does not
have this luxury.

3.1.1. Conventional Neural Network. �e Neural Network
(NN) concept comes from the working principle of the
human brain. A biological neuron consists of the following
four parts:

(i) Dendrites

(ii) Nuclease

(iii) Cell body

(iv) Axon.
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Classifier model

Image
database

Train/test
data splitting

Locally
cra�ed

Globally
cra�ed

Hand cra�ing

Kernel based
cra�ing

Feature
prioritization

Conventional
classifier

DNN
classifier

Evaluation
matrix

Classified
data

Feature collection

Ensemble learning

Figure 10: A generalized supervised classi	er model.

Nucleus

Axon

Cell body

Dendrites

Figure 11: A model of a biological neuron.

Dendrites collect signals and axons carry the signal to the
next dendrite a�er processing by the cell body as shown in
Figure 11. Using the neuronworking principle, the perceptron
model was proposed by Rosenblatt in 1957 [56]. A single-
layer perceptron linearly combines the input signal and gives
a decision based on a threshold function. Based on the
working principle and with some advanced mechanism and
engineering, NNmethods have established a strong footprint
in many problem-solving issues. Figure 12 shows the basic
working principle of NN techniques.

In the NN model the input data X = {�0, �1, . . . , ��} is
	rst multiplied by the weight dataW = {	0, 	1, . . . , 	�} and
then the output is calculated using

Y = g (∑) where∑ = W ⋅ X. (2)

Function g is known as the activation function. �is
function can be any threshold value or Sigmoid or hyperbolic
and so forth. In the early stages, feed-forwardNeuralNetwork
techniques were introduced [57]; lately the backpropagation
method has been invented to utilize the error information to
improve the system performance [58, 59].

�e history of breast image classi	cation by NN is a long
one. To the best of my knowledge a lot of the pioneer work

y
g

x0

x1

xN−1

xN

w0

w1

wN−1

wN



Figure 12:Working principle of a simpleNeuralNetwork technique.

was performed by Dawson et al. in 1991 [60]. Since then, NN
has been utilized as one of the strong tools for breast image
classi	cation. We have summarized some of the work related
to NN and breast image classi	cation in Tables 5, 6, and 7.

3.1.2. Deep Neural Network. Deep Neural Network (DNN) is
a state-of-the-art concept where conventional NN techniques
have been utilized with advanced engineering. It is found
that conventional NNs have di�culties in solving complex
problems, whereas DNNs solve them with utmost Precision.
However DNNs su
er from more time and computational
complexity than the conventional NN.

(i) Convolutional Neural Network (CNN)

(ii) Deep Belief Network (DBN)

(iii) Generative Adverbial Network (GAN)

(iv) Recurrent Neural Network (RNN)

Convolutional Neural Network. A CNN model is the combi-
nation of a few intermediate mathematical structures. �is
intermediatemathematical structure creates or helps to create
di
erent layers:

(i) Convolutional Layer. Among all the other layers, the
convolutional layer is considered as the most important part
for a CNN model and can be considered as the backbone of
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Table 5: Neural Network for breast image classi	cation.

Reference Descriptor Image type
Number of
images

Key 	ndings

Rajakeerthana et al. [42]
(1) GLCM, GLDM, SRDM,
NGLCM, GLRM

Mammogram 322
(1)�e classi	er achieved 99.20%
Accuracy.

Lessa and Marengoni [43]
(1)Mean, Median, Standard
Deviation, Skewness, Kurtosis,
Entropy, Range

�ermographic 94
(1) Achieved Sensitivity, Speci	city, and
Accuracy are 87.00%, 83.00%, and
85.00%, respectively.

Wan et al. [44] (1) ALBP (2) BBLBP OCM 46
(1) Achieved Sensitivity and Speci	city
are 100% and 85.20%. respectively.(2) ROC value obtained 0.959.

Chen et al. [40] (1) 19 BI-RADS features have
been used

Ultrasound 238

(1) Chi squared method has been
utilized for the feature selection.(2) Achieved Accuracy, Sensitivity, and
Speci	city are 96.10%, 96.70%, and
95.70%, respectively.

de Lima et al. [45]
(1) Total 416 features have been
used

Mammogram 355
(1)Multiresolution wavelet and Zernike
moment have been utilized for the
feature extraction.

Abirami et al. [46]
(1) 12 statistical measures such as
Mean, Median, and Max have
been utilized as the features

Mammogram 322

(1)Wavelet transform has been utilized
for the feature extraction.(2)�e achieved Accuracy, Sensitivity,
and Speci	city are 95.50%, 95.00%, and
96.00%, respectively.

El Atlas et al. [47]
(1) 13 morphological features
have been utilized

Mammogram 410

(1) Firstly the edge information has
been utilized for the mass segmentation
and then the morphological features
were extracted.(2) Achieved best Accuracy is 97.5%.

Table 6: Neural Network for breast image classi	cation.

Reference Descriptor Image type
Number of
images

Key 	ndings

Alharbi et al. [48] (1) 49 features have
been utilized.

Mammogram 1100

(1) Five feature selection methods: Fisher score,
Minimum Redundancy-Maximum Relevance, Relief-f,
Sequential Forward Feature Selection, and Genetic
Algorithm have been used.

(2) Achieved Accuracy, Sensitivity, and speci	city are
94.20%, 98.36%, and 99.27%, respectively

Peng et al. [49]
(1)Haralick and
Tamura features have
been utilized

Mammogram 322

(1) Feature reduction has been performed by
Rough-Set theory and selected 5 prioritized features.

(2)�e best Accuracy, Sensitivity, and Speci	city
achieved were 96.00%, 98.60%, and 89.30%

Jalalian et al. [50] (1) GLCM
Mammogram

(1)�e obtained classi	er Accuracy, Sensitivity, and
Speci	city are 95.20%, 92.40%, and 98.00%,
respectively.(2) Compactness

Li et al. [51]
(1) Four feature
vectors have been
calculated

Mammogram 322

(1) 2D contour of breast mass in mammography has
been converted into 1D signature.

(2) NN techniques achieved Accuracy is 99.60% when
RMS slope is utilized.

Chen et al. [52] (1) Autocorrelation
features

Ultrasound 242
(1)�e overall achieved Accuracy, Sensitivity, and
Speci	city are 95.00%, 98.00%, and 93%, respectively.

Chen et al. [53] (1) Autocorrelation
features

Ultrasound 1020 (1)�e obtained ROC area is 0.9840 ± 0.0072.
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Table 7: Neural Network for breast image classi	cation.

Reference Descriptor Image type
Number of
images

Key 	ndings

Chen et al. [61]

(1) Variance Contrast of Wavelet
Coe�cient

Ultrasound 242 (1)�e achieved ROC curve 0.9396 ± 0.0183(2) Autocorrelation of Wavelet
Coe�cient

Silva et al. [62]
(1) 22 di
erent morphological
features such as convexity and
lobulation have been utilized

Ultrasound —
(1)�e best obtained Accuracy and ROC
curve are 96.98% and 0.98, respectively

Saritas [63]

(1) Age of patient, (2)mass
shape, (3)mass border, (4)Mass
density, (5) BIRADS Mammogram —

(1) Disease prediction rate is 90.5%(2) Neural Network utilized 5 neurons in
input layers and one hidden layer.

López-Meléndez et
al. [64]

(1) Area, perimeter, etc. have
been utilized

Mammogram 322
(1)�e achieved Sensitivity and Speci	city
are 96.29% and 99.00%, respectively.

themodel. A kernel of size�×� is scanned through the input
data for the convolutional operation which ensures the local
connectivity and weight sharing property.

(ii) Stride and Padding. In the convolutional operation, a
	lter scans through the input matrices. In each step how
much position a kernel 	lter moves through the matrix
is known as the stride. By default stride keeps to 1. With
inappropriate selection of the stride the model can lose the
border information. To overcome this issue themodel utilizes
extra rows and columns at the end of the matrices, and these
added rows and columns contain all 0s. �is adding of extra
rows and columns which contain only zero value is known as
zero padding.

(iii) Nonlinear Operation. �e output of each of the kernel
operations is passed through a recti	er function such as Rec-
ti	ed Linear Unit (ReLU), Leaky-ReLU, TanH, and Sigmoid.
�e Sigmoid function can be de	ned as

� (�) = 1(1 + exp−�) (3)

and the tanh function can be de	ned as

tanh (�) = (exp� − exp−�)(exp� + exp−�) . (4)

However the most e
ective recti	er is ReLU. �e ReLU
method converts all the information into zero if it is less than
or equal to zero and passes all the other data as is shown in
Figure 13

� (�) = max (0, �) . (5)

Another important nonlinear function is Leaky-RelU

Leaky-ReLU (�) = � (�) + �min (0, �) , (6)

where � is predetermined parameter which can be varied to
give a better model.

−3 −2 −1 0 1 2 3

1

2

3

Input
O

u
tp

u
t

Figure 13: ReLU Operation.

(iv) Subsampling. Subsampling is the procedure of reducing
the dimensionality of each of the feature maps of a particular
layer; this operation is also known as a pooling operation.
Actually it reduces the amount of feature information from
the overall data. By doing so, it reduces the overall computa-
tional complexity of themodel. To do this �×� patch units are
utilized. �e two most popular pooling methods are

(a) Max-Pooling

(b) Average Pooling.

In Max-Pooling, only the maximum values within a partic-
ular kernel size are selected for further calculation. Consider
an example of a 16 × 16 image as shown in Figure 14. A 2 by
2 kernel is applied to the whole image, 4 blocks in total, and
produces a 4 × 4 output image. For each block of four values,
we have selected the maximum. For instance, from blocks
one, two, three, and four, maximum values 4, 40, 13, and 8
are selected, respectively, as they are the maximum in that
block. For the Average Pooling operation, each kernel gives
the output as average.

(v) Dropout. Regularization of the weight can reduce the
out	tting problem. Randomly removing some neurons can
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Figure 14: Max-Pooling and Average Pooling.

ConvolutionSubsamplingConvolution Subsampling Fully connected

Benign

Malignant

Image 6 features

6 features 9 features

Figure 15: Work-�ow of a Convolutional Neural Network.

regularize the over	lling problem. �e technique of ran-
domly removing neurons from the network is known as
dropout.

(vi) So	-Max Layer. �is layer contains normalized expo-
nential functions to calculate the loss function for the data
classi	cation.

Figure 15 shows a generalized CNN model for the image
classi	cation.All the neurons of themost immediate layer of a
fully connected layer are completely connected with the fully

connected layer, like a conventional Neural Network. Let��−1�
represent the �th feature map at the layer �−1.�e �th feature
map at the layer � can be represented as

��� = �(��−�∑
�=1
��−1� ∗ ��,� + ���) , (7)

where��−� represents the number of featuremaps at the �−1th
layer, ��,� represents the kernel function, and ��� represents the
bias at �, where � performs a nonlinear function operation.
�e layer before the So�-Max Layer can be represented as

ℎend� = 	end ∗ ℎend−1� + �end. (8)

As we are working on a binary classi	cation, the So�-Max
regression normalized output can be represented as

�� = exp (ℎend� )
∑2�=1 exp (ℎend� ) . (9)

Let � = 1 represent Benign class and � = 2 represent the
Malignant class. �e cross-entropy loss of the above function
can be calculated as

 � = − ln (��) . (10)

Whichever group experiences a large loss value, the
model will consider the other group as predicted class.

A di�cult part of working on DNN is that it requires
a specialized so�ware package for the data analysis. Few
research groups have been working on how e
ectively data
can be analyzed by DNN from di
erent perspectives and the
demand. Table 8 summarizes some of the so�ware which is
available for DNN analysis.

�e history of the CNN and its use for biomedical image
analysis is a long one. Fukushima 	rst introduced a CNN
named “necognitron” which has the ability to recognize
stimulus patterns with a few shi�ing variances [113]. To
the best of our knowledge, Wu et al. 	rst classi	ed a set
of mammogram images into malignant and benign classes
using a CNN model [78]. In their proposed model they only
utilized one hidden layer. A�er that, in 1996 Sahiner et al.
utilized CNNmodel to classify mass and normal breast tissue
and achieved ROC scores of 0.87 [79]. In 2002, Lo et al.
utilized aMultiple Circular Path CNN (MCPCNN) for tumor
identi	cation from mammogram images and obtained ROC
scores of around 0.89. A�er an absence of investigation of
the CNN model, this model regained its momentum a�er
the work of Krizhevsky et al. [114]. �eir proposed model is
known as AlexNet. A�er this work a revolutionary change
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Table 8: Available so�ware for deep learning analysis.

So�ware Interface and backend Provider

Ca
e [65, 66] Python, MATLAB, C++
Berkeley Vision and Learning Centre,
University of California, Berkeley

Torch [67] C, LuaJIT

MatConvNet [68, 69] MATLAB, C
Visual Geometry Group, Department of
Engineering, University of Oxford

�eano [70, 71] Python
Montreal Institute for Learning Algorithms

University of Montreal

TensorFlows [72] C++, Python Google

CNTK [73] C++ Microso�

Keras [74] �eano, Tensor Flow MIT

dl4j [75] Java Skymind Engineering

DeeBNET [76, 77] MATLAB
Information Technology Department,
Amirkabir University of Technology

has been achieved in the image classi	cation and analysis
	eld. As an advanced engineering of the AlexNet, the paper
titled “Going Deeper with Convolutions” by Szegedy [115]
introduced the GoogleNet model. �is model contains a
much deeper network than AlexNet. Sequentially ResNet
[116], Inception [117], Inception-v4, Inception-ResNet [118],
and a few other models have recently been introduced.

Later, directly or with some advanced modi	cation,
these DNN models have been adapted for biomedical image
analysis. In 2015, Fonseca et al. [81] classi	ed breast density
using CNN techniques. CNN requires a su�cient amount
of data to train the system. It is always very di�cult to
	nd a su�cient amount of medical data for training a CNN
model. A pretrained CNN model with some 	ne tuning can
be used rather than create a model from scratch [119]. �e
authors of [119] did not perform their experiments on a breast
cancer image dataset; however they have performed their
experiments on three di
erent medical datasets with layer-
wise training and claimed that “retrained CNN along with
adequate training can provide better or at least the same
amount of performance.”

�e Deep Belief Network (DBN) is another branch of the
Deep Neural Network, which mainly consists of Restricted
Boltzmann Machine (RBM) techniques. �e DBN method
was 	rst utilized for supervised image classi	cation by Liu et
al. [120]. A�er that, Abdel-Zaher and Eldeib utilized the DBN
method for breast image classi	cation [121]. �is 	eld is still
not fully explored for breast image classi	cation yet. Zhang
et al. utilized both RBM and Point-Wise Gated RBM (PRBM)
for shear-wave electrography image classi	cation where the
dataset contains 227 images [97].�eir achieved classi	cation
Accuracy, Sensitivity, and Speci	city are 93.40%, 88.60%, and
97.10%, respectively. Tables 9, 10, and 11 have summarized the
most recent work for breast image classi	cation along with
some pioneer work on CNN.

3.1.3. Logic Based Algorithm. A Logic Based algorithm is
a very popular and e
ective classi	cation method which
follows the tree structure principle and logical argument as
shown in Figure 16. �is algorithm classi	es instances based

on the feature’s values. Along with other criteria, a decision-
tree based algorithm contains the following features:

(i) Root node: a root node contains no incoming node,
and it may or may not contain any outgoing edge

(ii) Splitting: splitting is the process of subdividing a set of
cases into a particular group. Normally the following
criteria are maintained for the splitting:

(a) information gain,

(b) Gini index,

(c) chi squared

(iii) Decision node

(iv) Leaf/terminal node: this kind of node has exactly one
incoming edge and no outgoing edge.�e tree always
terminates here with a decision

(v) Pruning: pruning is a process of removing subtrees
from the tree. Pruning performs to reduce the over-
	tting problem. Two kinds of pruning techniques are
available:

(a) prepruning,

(b) postpruning.

Among all the tree based algorithms, Iterative
Dichotomiser 3 (ID3) can be considered as a pioneer,
proposed by Quinlan [149]. �e problem of the ID3
algorithm is to 	nd the optimal solution which is very much
prone towards over	tting. To overcome the limitation of the
ID3 algorithm the C4.5 algorithm has been introduced by
Quinlan [150], where a pruning method has been introduced
to control the over	tting problem. Pritom et al. [151] classi	ed
the Wisconsin breast dataset where they utilized 35 features.
�ey have obtained 76.30% Accuracy, 75.10% False Positive
Rate, and ROC score 0.745 when they ranked the features.
Without ranking the features they obtained 73.70%Accuracy,
50.70% False Positive Rate, and ROC score value 52.80. Asri
et al. [152] utilized the C4.5 algorithm for the Wisconsin
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Table 9: Convolutional Neural Network.

Reference Descriptor Image type Number of images Key 	ndings

Wu et al. [78] (1) Global Features Mammogram 40
(1) Achieved Sensitivity 75.00% and Speci	city
75.00%.

Sahiner et al. [79] (1) Global Features Mammogram 168 (1)�e achieved ROC score is 0.87.

Lo et al. [80]
(1) Density, size, Shape,
Margin

Mammogram 144 (1)�e achieved ROC curve is 0.89.

Fonseca et al. [81] (1) Global Features Mammogram —
(1) Breast density classi	cation has been
performed utilizing HT-L3 convolution.(2)Average achieved obtained Kappa value is 0.58.

Arevalo et al. [82] (1) Global Features Mammogram 736 (1)�e achieved ROC curve is 0.826.

Su et al. [83] (1) Global Features Mammogram 92

(1) Fast Scanning CNN (fCNN) method has been
utilized to reduce the information loss.(2)�e average Precision, Recall, and �1 score are
91.00%, 82.00%, and 0.85, respectively.

Sharma and Preet [84]
(1) GLCM, GLDM
Geometrical

Mammogram 40
(1)�e best Accuracy achieved is 75.23% and
72.34%, respectively, for fatty and dense tissue
classi	cation.

Spanhol et al. [6] (1) Global Features Histopathology 7909 (1)�e best Accuracy achieved 89 ± 6.6%.

Rezaeilouyeh et al. [85] (1) Local and Global
Features

Histopathology —

(1) Shearlet transform has been utilized for
extracting local features.(2)When they utilize RGB image along with
magnitude of Shearlet transform together, the
Achieved Sensitivity, Speci	city, and Accuracy
were 84.00 ± 1.00%, 91.00 ± 2.00%, and 84.00 ±
4.00%; when they utilize RGB image along with
both the phase and magnitude of Shearlet
transform together, the achieved Sensitivity,
Speci	city, and Accuracy were 89.00 ± 1.00%,
94.00 ± 1.00%, and 88.00 ± 5.00%.
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node
Terminal

node

Terminal
node

Terminal
node

Terminal
node

Node split

Subtree

Figure 16: A general structure of a tree.

database classi	cation where they utilized 11 features and
obtained 91.13% Accuracy.

Logic Based algorithms allow us to produce more than
one tree and combine the decisions of those trees for an
advanced result; this mechanism is known as an ensemble
method. An ensemble method combines more than one

classi	er hypothesis together and produces more reliable
results through a voting concept. Boosting and bagging
are two well-known ensemble methods. Both boosting and
bagging aggregate the trees. �e di
erence is in bagging
successive trees do not depend on the predecessor trees,
where in the boosting method successive trees depend on the
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Table 10: Convolutional Neural Network.

Reference Descriptor Image type
Number of
images

Key 	ndings

Albayrak and Bilgin [86] (1) Global Features Histopathology 100

(1) Cluster-based segmentation has been
performed to 	nd out the cellular structure.(2) Blob analysis has been performed on the
segmented images.(3) To reduce the high dimensionality, Principal
Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) methods have been
utilized.(4) Before the dimensionality reduction the
Precision, Recall, and �-score values were 97.20%,
66.00%, and 0.78%, respectively, but when the
dimensionality reduction method was utilized the
Precision, Recall, and �-score values were
100.00%, 94.00%, and 0.96%, respectively(5)�e best average Accuracy is 73.00% (without
dimensionality reduction) and 96.8% (with
dimensionality reduction).

Jiao et al. [87] (1) Global and Local
Features.

Mammogram —

(1)�ey performed their experiments on the
DDSM database.(2) Total required parameter is 5.8 × 107 and time
for the per image processing is 1.10 ms.(3)�e best classi	cation achieved is 96.70%;
however they show that when they utilize the
VGG model the Accuracy was 97.00% which is
slightly better than their model.

However in terms of memory size and time per
image processing their model gives better
performance than the VGG model.

Zejmo et al. [88] (1) Global Features Cytology 40

(1) GoogleNet and AlexNet models have been
utilized.(2)�e best Accuracy obtained when they utilized
GoogleNet model was 83.00%.

information gathered from the predecessor trees. Gradient
boosting is a very popular method for data classi	cation
[153, 154]; however a state-of-the-art boosting algorithm such
as “Extreme Gradient Boosting” (XGBoosting) is a very
e
ective method for data classi	cation [155]. Interestingly,
there has not been a single paper published for breast image
classi	cation using the XGBoost algorithm. Along with the
boosting method, di
erent bagging methods are available;
among them Random Forest (RF) is very popular where a
large number of uncorrelated trees are aggregated together
for a better prediction. Tables 12 and 13 summarize a set of
papers where a Logic Based algorithm has been used for
image classi	cation.

3.1.4. Support Vector Machine (SVM). SVM were proposed
by VC (Vepnick-Cherovorenkis). �is technique does not
require any prior distribution knowledge for the data classi-
	cation task like Bayesian classi	cation technique. In many
practical situations, the distribution of the features is not
available. In such cases, SVM can be used to classify the
available data into the di
erent classes.

Consider the set of two-dimensional data plotted in
Figure 17.�e symbol “∘” represents those data which belong
to Class-1 and “◻” represents data which belong to Class-2.
A hyperplane (#) has been drawn which classi	es the data
into two classes. Interestingly, there will be “�” hyperplanes
available which can separate the data.

Let X = {X�}, where {X� ∈ R
�} (� = {1, 2, 3, . . . , �}) is

to be classi	ed into two classes % ∈ {%1, %2}. Suppose that
the classes {%1} and {%2} are recognized as “+1” and “−1”.
Classi	cation of this data can be written

C = {(X1, %1) , (X2, %2) , (X3, %3) , . . . , (X�, %�)} . (11)

During the learning stage, the SVM 	nds parameters W� =[*1� ,*2� , . . . ,*�� ]	 and � to produce a decision function-(X�,W�, �):
- (X�,W�, �) = W

	
� X� + � = W� ⋅ X� + �

= �∑
�=1
*�� :�� + �, (12)
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Table 11: Convolutional Neural Network.

Reference Descriptor Image type Number of images Key 	ndings

Jiang et al. [89] (1) Global Features Mammogram —

(1) Image preprocessing was performed to
enhance tissue characteristics.(2) Transfer learning was performed and obtained
AUC was 0.88 whereas when the system learned
from scratch, the best ROC is 0.82.

Suzuki et al. [90] (1) Global Features Mammogram 198
(1)�e achieved sensitivity 89.90%.(2) Transfer learning techniques have been
utilized.

Qiu et al. [91] (1) Global Features Mammogram 270 (1) Average achieved Accuracy is 71.40%.

Samala et al. [92] (1) Global Features — 92

(1)�ey utilized Deep Learning CNN (DLCNN)
and CNNmodels for classi	cation.(2)�e AUC of CNN and DLCNNmodel is 0.89
and 0.93, respectively.

Sharma and Preet [84] (1) Global Features Mammogram 607

(1) Transfer learning and ensemble techniques
utilized.(2)When using ensemble techniques the so�
voting method has been used.(3)�e best ROC score is 0.86.

Kooi et al. [93]
(1) Global and Local

features
Mammogram 44090

(1) Transfer learning method utilized (VGG
model).

Geras et al. [94] (1) Global Features Mammogram 102800
(1)�ey investigated the relation of the Accuracy
with the database size and image size.

Arevalo et al. [82] (1) Global Features Mammogram 736 (1)�e best ROC value was 0.822.

Table 12: Logic Based.

Reference Descriptor Image type
Number
of images

Key 	ndings

Beura et al. [95]

(1) Two-dimensional
discrete orthonormal;-transform has been used
for the feature extraction

Mammogram —

(1) Achieved Accuracy and AUC values on MIAS
database are 98.3%, 0.9985.(2) Achieved Accuracy and AUC values on
DDSM database are 98.8%, 0.9992.

Diz et al. [96]
(1) GLCM

Mammogram 410
(1)�eir achieved Accuracy value is 76.60%(2) GLRLM (2)Mean false positive value is 81.00%.

Zhang et al. [97]
(1) 133 features (mass based
and content based)

Mammogram 400
(1) Computer model has been created which is
able to 	nd a location that was not detected by
trainee.

Ahmad and Yuso

[98]

(1) Nine features selected Biopsy 700
(1) Achieved Sensitivity, Speci	city, and Accuracy
are 75.00%, 70.00%, and 72.00%, respectively.

Paul et al. [99] (1)Harlick texture feature Histopathological 50
(1)�eir achieved Recall and Precision are 81.13%
and 83.50%.

Chen et al. [100]

(1) Dual-tree complex
wavelet transform
(DT-CWT) has been used
for the feature extraction.

Mammogram —
(1) Achieved Received Operating Curve (ROC)
0.764.

Zhang et al. [101]
(1) Curvelet Transform(2) GLCM (3) CLBP Histopathological 50

(1) Random Subspace Ensemble (RSE) utilized.(2)�eir achieved classi	cation Accuracy is
95.22% where the previous Accuracy on this same
database was 93.40%.
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Table 13: Logic Based.

Reference Descriptor Image type
Number
of images

Key 	ndings

Angayarkanni and
Kamal [102]

(1) GLCM Mammogram 322
(1)�e Achieved Sensitivity and Accuracy are 93.40%
and 99.50%, respectively.

Wang et al. [103]

(1)Horizontal Weighted
Sum(2) Vertical Weighted Sum(3) Diagonal Weighted
Sum(4) Grid Weighted Sum.

Mammogram 322

(1) Surrounding Region Dependence Method (SRDM)
utilized for region detection.(2) Achieved True Positive Rate 90.00% and False
Positive Rate 88.80%.

Tambasco Bruno
et al. [104]

(1) Curvelet Transform(2) LBP Mammogram
Histopathological

—

(1) ANOVA method utilized for feature prioritization.(2)When they use RF algorithm on Mammogram
(DDSM) dataset, obtained Accuracy and ROC are
79.00% and 0.89.

Muramatsu et al.
[105]

(1) Radial Local Ternary
Pattern (RLTP)

Mammogram 376

(1) Textural features have been extracted from the
regions of interest (ROIs) using RLTP.(2)�ey claimed that the RLTP feature provides better
performance than the rotation invariant patterns.

Dong et al. [106]
(1) NRL margin gradient(2) Gray-level histogram(3) Pixel value �uctuation Mammogram —

(1) Chain code utilized for extraction of regions of
interest (ROIs).(2) Rough-Set method utilized to enhance the ROIs.(3)�eir achieved ROC value is 0.947 and obtained
Matthews Correlation (MCC) is 0.8652.

Piantadosi et al.
[107]

(1) Local Binary
Pattern-�ree Orthogonal
Projections (LBP-TOP)

Mammogram —
(1)�eir achieved Accuracy, Sensitivity, and Speci	city
values are 84.60%, 80.00%, and 90.90%.

X

Y

Hyperplane P

Figure 17: SVM 	nds the hyperplane which separates two classes.

whereW�,X� ∈ R
�. As the training data are linearly separable

no training data will satisfy the condition

- (X�,W�, �) = 0. (13)

To control the separability, we consider the following
inequalities:

- (X�,W�, �) ≥ 1 for %� = +1,
- (X�,W�, �) < 1 for %� = −1. (14)

Sometime it is very di�cult to 	nd the perfect hyperplane
which can separate the data, but if we transform the data
into a higher dimension the data may be easily separable.
To separate this kind of data, a kernel function can be
introduced.

Kernel Methods. Assume a transformation ? such that it

transforms the dataset X1 ∈ R
� into dataset X2 ∈ R


 where� > �. Now train the linear SVM on the dataset X2 to get a
new classi	er �SVM.

A kernel ? e
ectively computes a dot product in a higher-

dimensional space R

. For {x�, x�} ∈ R

�, A(x�, x�) =⟨?(x�, x�)⟩
 is an inner product ofR
, where?(x) transforms

x to R

. Consider {x�, x�} ∈ R

�; then we can de	ne the
kernel as follows:

(i) Radial basis function kernel (rbf): A(x�, x�) =
exp(−D| < ?(x� − x�) > |2).

(ii) Polynomial kernel (polynomial): A(x�, x�) = (⟨?(x� ⋅
x�)⟩ + E)�.

(iii) Sigmoid kernel:A(x�, x�) = tanh(⟨?(x�, x�)⟩ + E).
(iv) Linear kernel (linear): A(x�, x�) = ⟨?(x�, x�)⟩.
�e advantage of the kernel method for breast cancer

image classi	cation using an SVM was 	rst introduced by
El-Naqa et al. [156]. �ey classify Microcalci	cation clusters
in mammogram images (76 images were utilized for the
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Table 14: SVM for breast image classi	cation (Page-1).

Reference Descriptor Image type
Number
of images

Key 	ndings

Malik et al. [108]
(1) Speed of sound(2) Attenuation image vector(3) Re�ection image vector

QTUS —

(1) Glands, fat, skin, and connective tissue have
been classi	ed.(2) Both linear and nonlinear SVM classi	er have
been utilized.(3)�eir experiment obtained 85.20% Accuracy.

Chang et al. [109]

(1) Textural features such as
(i) Autocorrelation
Coe�cient
(ii) Autocovariance
Coe�cient

Ultrasound 250

(1) Benign and malignant images have been
classi	ed.(2) Accuracy, Sensitivity, Speci	city, positive
predictive values, and negative predictive value
are 85.60%, 95.45%, 77.86%, 77.21%, and 95.61%,
respectively.

Akbay et al. [110]
(1) 52 features have been
extracted

Mammogram —
(1)Microcalci	cation (MC) Classi	cation
Accuracy 94.00%

Levman et al. [111]

(1) Relative Signal
Intensities(2) Derivative of Signal
Intensities(3) Relative Signal Intensities
and their derivatives in one
vector(4) (i) Maximum of signal
intensity enhancement; (ii)
time of maximum
enhancement; (iii) time of
maximum washout

MRI 76

(1) Benign and malignant lesions are investigated.(2) Linear kernel, a polynomial kernel, and a
radial basis function kernel utilized along with the
SVMmethod for the breast image classi	cation.

de Oliveira
Martins et al.
[112]

(1) Ripley’s A function Mammogram 390

(1) Benign and malignant image classi	cation.(2)�e achieved Accuracy, Sensitivity, and
Speci	city are 94.94%, 92.86%, and 93.33%,
respectively.

experiment where the total number of MCs was 1120). �ey
utilized the SVM method along with the Gaussian kernel
as well as the polynomial kernel. In 2003, Chang et al.
classi	ed a set of sonography images using SVM techniques
where they consider that the image is surrounded by pickle
noise [157], where the database contains 250 images. �eir
achieved Accuracy was 93.20%. A total of thirteen features,
including shape, law, and gradient features, were utilized
along with SVM and a Gaussian kernel for the mammogram
image classi	cation. �ey performed their operation on 193
mammogram images and achieved 83.70% sensitivity and
30.20% False Positive Rate [158]. SVM has been combined
with the NN method by B. Sing et al. for ultrasound breast
image classi	cation where the database contained a total
of 178 images. �ey performed a hybrid feature selection
method to select the best features [159].

A breast ultrasound image is always very complex in
nature. �e Multiple Instance Learning (MIL) algorithm has
been 	rst used along with SVM for the breast image classi-
	cation by [176], and their obtained Accuracy was 91.07%.
�e Concentric Circle BOW feature extraction method was
utilized to extract the features and later the SVM method
was used for breast image classi	cation [177]. �eir achieved
Accuracy is 88.33% when the dimension of the features was

1000. A Bag of Features has been extracted from histopatho-
logical images (using SIFT and DCT) and using SVM for
classi	cation by Mhala and Bhandari [178]. �e experiment
is performed on a database which contains 361 images, where
119 images are normal, 102 images are ductal carcinoma
in situ, and the rest of the images are invasive carcinoma.
�eir experiment achieved 100.00% classi	cation Accuracy
for ductal carcinoma in situ, 98.88% classi	cation Accuracy
for invasive carcinoma, and 100.00% classi	cation Accuracy
for normal image classi	cation. A mammogram (DDSM)
image database has been classi	ed byHiba et al. [179] by SVM
along with the Bag of Feature method. Firstly the authors
extract LBP and quantize the binary pattern information for
feature extraction. �eir obtained Accuracy was 91.25%.

Along with the above-mentioned work di
erent breast
image databases have been analyzed and classi	ed using
SVM.We have summarized some of the work related to SVM
in Tables 14, 15, and 16.

3.1.5. Bayesian. A Bayesian classi	er is a statistical method
based on Bayes theorem. �is method does not follow any
explicit decision rule; however it depends on estimating
probabilities.�e Naive Bayes method can be considered one
of the earlier Bayesian learning algorithms.
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Table 15: SVM for breast image classi	cation.

Reference Descriptor Image type
Number
of images

Key 	ndings

Zhang et al. [122]
(1) Fractional Fourier
transform information
utilized as features

Mammogram 200

(1)�ey selected ROI for avoiding redundant complexity.(2)When SVM and Principal Component Analysis were
used together the achieved Accuracy, Sensitivity and
Speci	city are 92.16 ± 3.60%, 92.10 ± 2.75% and92.22 ± 4.16% respectively.

Shirazi and Rashedi
[123]

(1) GLCM Ultrasound 322

(1) ROI extracted for reducing redundant complexity.(2) SVM and Mixed Gravitational Search Algorithm
(MGSA) used together for feature reduction.(3)�e achieved Accuracy 86.00%; however SVM with
MGSA method achieved 93.10% Accuracy.

Sewak et al. [124]

(1) Radius, perimeter, area,
compactness, smoothness,
concavity, concave points,
symmetry, fractal
dimension, and texture of
nuclei calculated

Biopsies 569
(1) Achieved Accuracy, Sensitivity, and Speci	city are
99.29%, 100.00%, and 98.11%, respectively.

Dheeba and
Tamil Selvi [125]

(1)�e laws texture
features utilized

Mammogram 322 (1)�e achieved Accuracy is 86.10%.

Table 16: SVM for breast image classi	cation.

Reference Descriptor Image type
Number
of images

Key 	ndings

Taheri et al. [126]
(1) Intensity information(2) Value of detected corner(3) Energy Mammogram 600

(1) Classi	ed images into normal and abnormal
images.(2) Removing unwanted objects from the images for
reducing the redundancy and computational
complexity.(3) Achieved Precision and Recall rates are 96.80%
and 92.5%, respectively.

Tan et al. [127]

(1) Shape, fat, presence of
calci	cation texture,
spiculation, Contrast,
Isodensity type features
selected(2) Total number of features
181

Mammogram 1200

(1) Features have been selected from the region of
interest.(2)�ey utilized the radial basis function (RBF) for
their analysis.(3)�e Sequential Forward Floating Selection
(SFFS) method utilized for the feature selection.(4)�e area under the receiver operating
characteristic curve was (AUC) = 0.805 ± 0.012.

Kavitha and
�yagharajan [128]

(1)Histogram of the intensity
has been used as a statistical
feature.(2) 2D Gabor 	lter utilized for
the textural feature extraction(3) Clinical features extracted
from the database directly

Mammogram 322

(1)When using SVM with the linear kernel the
obtained Accuracy, Sensitivity, and Speci	city are
98%, 100%, and 96%, respectively.(2)When using weighted feature SVM with weights
the obtained Accuracy, Sensitivity, and Speci	city are
90%, 100% and 75%, respectively.

�e Naive Bayes (NB) method works on the basis of the
Bayes formula, where each of the features is considered statis-
tically independent. Consider a dataset with� samples, with

each sample containing a feature vector xk with � features
[180] and belonging to a particular class F�. According to the
NB formula, the probability of the particular class F� with the
conditional vector xk is represented as

# (F� | xk) = # (xk | F�) # (F�)# (xk) . (15)

Applying the chain rule

# (xk
1
, xk

2
, xk

3
, . . . , xk

n
| F�) = n∏

i=1
P (xk

i
| F�) . (16)

�e NB theorem considers all the features independently
which can be represented as

F = arg max
�∈1⋅⋅⋅


# (F�) �∏
�=1
# (xk

i
| F�) . (17)
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Table 17: Bayesian classi	er.

Reference Descriptor Image type
Number
of images

Key 	ndings

Kendall and Flynn
[129]

(1) Features extracted using
DCT method.

Mammogram
(1) Bayesian classi	er obtained 100.00% sensitivity with
64.00% speci	city.

Oleksyuk et al.
[130]

— —
(1) Bayesian method obtained 86.00% with 80.00%
speci	city.

Burling-Claridge
et al. [131]

(1) Statistical and LBP
features extracted.

Mammogram 322/410

(1) Bayesian method obtained 67.07 ± 0.73% and67.61 ± 0.83% Accuracy on MIAS and Inbreast image
datasets (using statistical features).(2) Bayesian method obtained 62.86 ± 0.70% and51.99 ± 1.28% Accuracy on MIAS and Inbreast image
datasets (using LBP).

Raghavendra et al.
[132]

(1) Gabor wavelet
transform utilized for
feature extraction.

Mammogram 690

(1) Locality Sensitive Discriminant Analysis (LSDA) for
the data reduction.(2) NB obtained 84.34% Accuracy and 83.69%
Sensitivity with 90.86% Speci	city.

Pérez et al. [133] (1) 23 features utilized. Mammogram —
(1) UFilter feature selection methods utilized and its
e�ciency veri	ed by Wilcoxon statistical test.

Rashmi et al. [134] (1) 10 features utilized. — — (1) Benign and malignant tumors have been classi	ed.

Gatuha and Jiang
[135]

(1) 10 features utilized. — —
(1)�ey built an android based benign and malignant
tumor classi	er.(2)�eir obtained Accuracy is 96.4%

�e NB method is very easy to construct and very 	rst
to predict the data. �is method can also utilize the kernel
method. However, for a large dataset and continuous data,
this method has very poor performance. NB can be classi	ed
into the following subclasses:

(i) Gaussian Naive Bayes

(ii) Multinomial Naive Bayes

(iii) Bernoulli Naive Bayes.

One of the constraints of the NB classi	er is that it
considers that all the features are conditionally independent.
A Bayesian Network is another Bayesian classi	er which
can overcome this constraint [181, 182]. �e literature shows
that the Bayesian classi	er method is not utilized much for
breast image classi	cation. In 2003 Butler et al. used NB
classi	er for X-ray breast image classi	cation [183]. �ey
extracted features from the low-level pixels. For all feature
combinations they obtained more than 90.00% Accuracy.
Bayesian structural learning has been utilized for a breast
lesion classi	er by Fischer et al. [184]. Soria et al. [185] classify
a breast cancer dataset utilizing C4.5, multilayered percep-
tron, and the NB algorithm using WEKA so�ware [186].
�ey conclude that the NB method gives better performance
than the other two methods in that particular case. �ey
also compared their results with the Bayes classi	er output.
Some other research on the Bayes classi	er and breast image
classi	cation has been summarized in Tables 17 and 18.

3.2. Performance Based on Unsupervised Learning. �is
learning algorithm does not require any prior knowledge
about the target. �e main goal of the unsupervised learning
is to 	nd the hidden structure and relations between the

di
erent data [187] and distribute the data into di
erent
clusters. Basically clustering is a statistical process where a
set of data points is partitioned into a set of groups, known
as a cluster. �eA-means algorithm is a clustering algorithm
proposed by [188]. Interestingly, unsupervised learning can
be utilized as preprocessing step too.

(i) In the A-means algorithm, 	rstly assign A centroid
points. Suppose that we have � feature points ��
where � ∈ {1, . . . , �}. �e objective of the A-means
algorithm is to 	nd positions H�, where � ∈ 1, . . . , A
that minimize the data points to the cluster by solving

argmin
�∈��

�∑
�=1

∑
�∈��

- (�, H�) = argmin
�∈��

�∑
�=1

∑
�∈��

IIII� − H�IIII2 . (18)

(ii) Self-OrganizingMap (SOM): SOM is another popular
unsupervised classi	er, proposed by Kohonen et al.
[189–191]. �e main idea of the SOM method is to
reduce the dimension of the data and represent those
dimensionally reduced data by a map architecture,
which provides more visual information.

(iii) Fuzzy �-Means Clustering (FCM): the FCM algo-
rithm cluster databased on the value of a member-
ship function is proposed by [192] and improved by
Bezdek [193].

�e history of using unsupervised learning for breast
image classi	cation is a long one. In 2000, Cahoon et al. [194]
classi	ed mammogram breast images (DDSM database) in
an unsupervised manner, utilizing the A-NN clustering and
Fuzzy �-Means (FCM) methods. Chen et al. classi	ed a set
of breast images into benign and malignant classes [164].
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Table 18: Bayesian classi	er.

Reference Descriptor Image type
Number
of images

Key 	ndings

Benndorf et al. [136]
(1) BI-RADS features
utilized.

— 2766
(1) For the training data the AUC value is 0.959 for the
inclusive model, whereas AUC value is 0.910 for the
descriptor model.

Rodŕıguez-López
and Cruz-Barbosa
[137]

(1) Eight image
feature nodes utilized.

— —
(1) NB model obtained 79.00% Accuracy, 80.00%
Sensitivity.

Nugroho et al. [138]
(1) Eight image
feature nodes utilized.

Mammogram —

(1) Naive Bayes model along with SMO; obtained ROC
value is 0.903.(2) Bayesian Network model along with SMO; obtained
Accuracy was 83.68%.

Rodŕıguez-López
and Cruz-Barbosa
[139]

(1) Eight image
features have been
utilized.

— 231
(1) Bayesian Network model obtained 82.00%
Accuracy, 80.00% Sensitivity, and 83.00% Speci	city
when they utilized only three features.

Shivakumari et al.
[140]

— 231
(1) Analyze the Ljubljana breast image dataset.(2) NB algorithm along with feature ranking
techniques; the best achieved Accuracy was 81.46%.

Rodŕıguez-López
and Cruz-Barbosa
[141]

(1) Seven di
erent
clinical features
extracted.

Mammogram 690
(1) Obtained Accuracy, Sensitivity, and Speci	city are
82.00%, 80.00%, and 83.00%, respectively.

Table 19: A-means Cluster Algorithm and Self-Organizing Map for breast image classi	cation.

Reference Descriptor Image type
Number
of images

Key 	ndings

Mo�ah et al. [142]
(1) Intensity distribution
used as feature.

MRI —

(1)�ree types of evaluation measures performed:
(a) Accuracy, (b) feature based, (c) shape based
measure.(2)�is can classify the data as well as identify the
target.(3)�e obtained best Accuracy of the segmented ROI is
90.83%

Lee et al. [143] (1) 1734 signal patterns. MRI 322
(1) Available signal patterns have been classi	ed into 10
classes.

Dalmiya et al. [144]
(1) Discrete Wavelet
Transform.

Mammogram — (1) Cancer tumor masses have been segmented.

Elmou	di et al. [145] (1) Local Binary Pattern. Mammogram 322

(1) Image enhancing.(2) Generation of number of clusters(3) Detection of regions of interest.(4)Mean detection of regions of interest is 85.00%.

Samundeeswari
et al. [146]

Ultrasound —
(1) Utilizing ant colony and regularization parameters.(2)�is method obtained 96.00% similarity between
segmented and reference tumors.

Rezaee [147]
Discrete Wavelet
Transform.

Mammogram 120
(1) Early detection of tumors from the breast image.(2) Tumor detection Accuracy 92.32%, Sensitivity
90.24%.

Chandra et al. [148] (1) Gray intensity values. Mammogram —
(1)Mammogram image has been clustered using SOM
along with the Quadratic Neural Network.

�ey utilized a SOM procedure to perform this classi	cation
operation.�ey collected 24 autocorrelation textural features
and used a 10-fold validation method. Markey et al. utilized
the SOM method for BIRADS image classi	cation of 4435
samples [195]. Tables 19 and 20 summarize the breast image
classi	cation performance based on A-means algorithm and
SOMmethod.

3.3. Performance Based on Semisupervisor. �eworking prin-
ciple of semisupervised learning lies in between supervised
and unsupervised learning. For the semisupervised learning
a few input data have an associated target and large amounts
of data are not labeled [196]. It is always very di�cult to collect
the labeled data. Few data such as speech or information
scratched from the web are di�cult to label. To classify
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Table 20: A-means Cluster Algorithm and Self-Organizing Map for breast image classi	cation.

Reference Descriptor Image Type
No. of
Images

Key Findings

Lashkari and
Firouzmand
[160]

�ermogram 23

(1) Both FCMmethod and Adaboost method
utilized separately to classify images.(2) For the classi	cation purposes selected 23
features and also select the best features using
feature selection algorithm. When they used the
FCMmethod, the obtained Mean Accuracy was
75.00% whereas the Adaboost method Accuracy
was 88.00%.

Nattkemper et al.
[161]

MRI —
(1) A-means algorithm as well as SM method
utilized.

Slazar-Licea et al.
[162].

⋅ ⋅ ⋅ — (1) Fuzzy F-means algorithm used.

Marcomini et al.
[163]

(1) 24 morphological
features

Ultrasound 144

(1)Minimizing noise using Wiener 	lter,
equalized and Median 	lter(2) Obtained Sensitivity 100% and Speci	city
78.00%.

Chen et al. [164]
(1) 24 autocorrelation
texture features

Ultrasound 243
(1)Obtained ROC area 0.9357 ± 0.0152. Accuracy
85.60%, Speci	city 70.80%.

Iscan et al. [165]

(1) Two-dimensional
discrete cosine transform(2) 2D continuous wavelet
transform

Ultrasound —
(1) Automated threshold scheme introduce to
increase the robustness of the SOM algorithm.

this kind of data semisupervised learning is very e�cient.
However lately this method has been utilized for the brats
image classi	cation too. Semisupervised learning can be
classi	ed as

(i) Graph Based (GB)

(ii) Semisupervised Support Vector Machine

(iii) Human Semisupervised Learning.

To the best of our knowledge, Li and Yuen have utilized GB
semisupervised learning for biomedical image classi	cation
[197]. �e kernel trick is applied along with the semisu-
pervised learning method for breast image classi	cation by
Li et al. [198]. �ey performed their experiments on the
Wisconsin Prognostic Breast Cancer (WPBC) dataset for
the breast image classi	cation. Ngadi et al. utilized both the
SKDA (Supervised Kernel-Based Deterministic Annealing)
and NSVC methods for mammographic image classi	cation
[199]. �ey performed their experiments on 961 images,
where 53.60% of the images were benign and the rest of the
images are malignant. Among the other utilized features they
utilized BI-RADS descriptors as features. When they utilized
the NSVC method they also utilized RBF, polynomial, and
linear kernel. �ey found that the best Accuracy of 99.27%
was achieved when they utilized linear kernels. Few studies
have performed the breast image classi	cation by semisuper-
vised learning, as summarized in Tables 21 and 22.

4. Conclusion

Breast cancer is a serious threat to women throughout the
world and is responsible for increasing the female mortality

rate. �e improvement of the current situation with breast
cancer is a big concern and can be achieved by proper
investigation, diagnosis, and appropriate patient and clinical
management. Identi	cation of breast cancer in the earlier
stages and a regular check of the cancer can save many lives.
�e status of cancer changes with time, as the appearance,
distribution, and structural geometry of the cells are changing
on a particular time basis because of the chemical changes
which are always going on inside the cell.�e changing struc-
ture of cells can be detected by analysing biomedical images
which can be obtained by mammogram, MRI, and so forth
techniques. However these images are complex in nature and
require expert knowledge to perfectly analyze malignancy.
Due to the nontrivial nature of the images the physician
sometimes makes a decision which might contradict others.
However computer-aided-diagnosis techniques emphasising
the machine learning can glean a signi	cant amount of
information from the images and provide a decision based
on the gained information, such as cancer identi	cation, by
classifying the images.

�e contribution of machine learning techniques to
image classi	cation is a long story. Using some advanced
engineering techniques with somemodi	cations, the existing
machine learning based image classi	cation techniques have
been used for biomedical image classi	cation, specially for
breast image classi	cation and segmentation. A few branches
of the machine learning based image classi	er are available
such as DeepNeural Network, Logic Based, and SVM. Except
for deep-learning, a machine learning-based classi	er largely
depends on handcra�ed feature extraction techniques such as
statistical and structural information that depend on various
mathematical formulations and theorize where they gain
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Table 21: Semisupervised algorithm for breast image classi	cation.

Reference Descriptor Image type
Number
of images

Key 	nding

Cordeiro et al.
[166]

(1) Zernike
moments have been
used for the feature
extraction.

— 685
(1) Semisupervised Fuzzy GrowCut algorithm utilized.(2) For the fatty-tissue classi	cation this method
achieved 91.28% Accuracy.

Cordeiro et al.
[167]

— Mammogram 322
(1) Semisupervised Fuzzy GrowCut as well as the Fuzzy
GrowCut algorithm utilized for tumors, region
segmentation.

Nawel et al. [168] — — —

(1) Semisupervised Support Vector Machine (S3VM)
utilized.(2)�is experiment shows impressive results on the
DDSM database.

Zemmal et al. [169] — DDSM —
(1) Transductive semisupervised learning technique
using (TSVM) utilized for classi	cation along with
di
erent features.

Zemmal et al. [170] — — 200
(1) Semisupervised Support Vector Machine (S3VM)
utilized with various kernels.

Zemmal et al. [171]
(1) GLCM (2)Hu
moments (3)
Central Moments

Mammogram —

(1) Transductive Semisupervised learning technique
used for image classi	cation.(2)�is experiment shows impressive results on DDSM
database.

Peikari et al. [172]

(1)Mean, Mode,
Standard Deviation,
Media, Skewness,
Kurtosis

Histopathological 322
(1)�e Ordering Points to Identify the Clustering
Structure (OPTICS) method utilized for image
classi	cation [173].

Table 22: Semisupervised algorithm for breast image classi	cation.

Reference Descriptor Image type
Number
of images

Key 	ndings

Zhu et al. [174]
(1) Relative local intensity(2) Shape irregularity(3) Orientation consistency

Ultrasound 144
(1) One important microenvironment inside the
tumor is vasculature, which has been classi	ed in
this paper.

Liu et al. [175] — Ultrasound —

(1) Iterated Laplacian regularization based
semisupervised algorithm for robust feature
selection (Iter-LR-CRFS) utilized.(2)�e archived Accuracy and Sensitivity are89.0 ± 3.6% and 91.0 ± 5.2%.

object-speci	c information. �ey are further utilized as an
input for an image classi	er such as SVM and Logic Based,
for the image classi	cation.

�is investigation 	nds that most of the conventional
classi	ers depend on prerequisite local feature extraction.�e
nature of cancer is always changing, so the dependencies
on a set of local features will not provide good results on
a new dataset. However the state-of-the art Deep Neural
Networks, specially CNN, have recently advanced biomedical
image classi	cation due to the Global Feature extraction
capabilities. As the core of the CNN model is the kernel,
which gives this model the luxury of working with the Global
Features, these globally extracted features allow the CNN
model to extract more hidden structure from the images.
�is allows some exceptional results for breast cancer image
classi	cation. As the CNN model is based on the Global

Features, this kind of classi	er model should be easy to adapt
to a new dataset.

�is paper also 	nds that the malignancy information is
concentrated in the particular area de	ned as ROI. Utiliz-
ing only the ROI portions, information gathered from the
segmented part of the data can improve the performance
substantially. �e recent development of the Deep Neural
Network can also be utilized for 	nding the ROI and
segmenting the data, which can be further utilized for the
image classi	cation.

For breast cancer patient care, the machine learning tech-
niques and tools have been a tremendous success so far, and
this success has gained an extra impetus with the involvement
of deep-learning techniques. However the main di�culty of
handling the current deep-learning based machine learning
classi	er is its computational complexity, which is much
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higher than for the traditional method. �e current research
is focused on the development of the light DNN model so
that both the computational and timing complexities can be
reduced. Another di�culty of using the DNN based cancer
image classi	er is that it requires a large amount of training
data. However the reinforcement of learning techniques and
data augmentation has been largely adapted with the current
CNN model, which can provide reliable outcomes. Our
research 	nds that the current trend of machine learning
is largely towards deep-learning techniques. Among a few
other implications, the appropriate tools for designing the
overall deep-learning model was the initial obligation for
utilizing deep-learning based machine learning techniques.
However some reliable so�ware has been introduced which
can be utilized for breast image classi	cation. Initially it was
di�cult to implement a DNN based architecture in simpler
devices; however due to cloud-computer based Arti	cial
Intelligence techniques this issue has been overcome and
DNN has already been integrated with electronic devices
such as mobile phones. In future combining the DNN
network with the other learning techniques can provide
more-positive predictions about breast cancer.

Due to the tremendous concern about breast cancer,
many research contributions have been published so far.
It is quite di�cult to summarize all the research work
related to breast cancer image classi	cation based onmachine
learning techniques in a single research article. However
this paper has attempted to provide a holistic approach
to the breast cancer image classi	cation procedure which
summarizes the available breast dataset, generalized image
classi	cation techniques, feature extraction and reduction
techniques, performance measuring criteria, and state-of-
the-art 	ndings.

In a nutshell, the involvement of machine learning for
breast image classi	cation allows doctors and physicians to
take a second opinion, and it provides satisfaction to and
raises the con	dence level of the patient. �ere is also a
scarcity of expert people who can provide the appropriate
opinion about the disease. Sometimes the patient might need
to spend a long time waiting due to the lack of expert
people. In this particular scenario themachine learning based
diagnostic system can help the patient to receive the timely
feedback about the disease which can improve the patient-
management scenario.
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